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Abstract: Current status data are encountered in a wide range of applications, including tumorigenic
experiments and demographic studies. In this case, each subject has one observation, and the only
information obtained is whether the event of interest happened at the moment of observation. In
addition to censoring, truncating is also very common in practice. This paper examines the regression
analysis of current status data with informative censoring times, considering the presence of left
truncation. In addition, we propose an inference approach based on sieve maximum likelihood
estimation (SMLE). A copula-based approach is used to describe the relationship between the failure
time of interest and the censoring time. The spline function is employed to approximate the unknown
nonparametric function. We have established the asymptotic properties of the proposed estimator.
Simulation studies suggest that the developed procedure works well in practice. We also applied the
developed method to a real dataset derived from an AIDS cohort research.
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1. Introduction

Current status data generally arise in demographic, tumorigenic, and epidemiological
fields [1–3]. One significant feature of the current status data is that the failure time cannot
be accurately observed. On the contrary, it is known that the failure time is less than or
greater than the observation or examination time. One common feature of studies that
produce such data is that participants are only observed once, perhaps due to the limitation
of resources. In this manuscript, we consider the semiparametric regression analysis of
current status data with left truncation and informative censoring. In addition, an SMLE
method is proposed.

Several methods have been developed to study the current status data. For example,
under the proportional hazards (PH) model, ref. [1] considered the efficiency problem
and established asymptotic properties of maximum likelihood estimators of regression
parameters and baseline cumulative hazard functions. Ref. [4] studied this problem under
the additive hazard model and proposed an estimation equation approach to estimate
the regression coefficient. Ref. [5] discussed the regression analysis problem under the
proportional odds model.

Note that all the literature above assume that the failure time is independent of the
examination or observation time. When the two are not independent, the data obtained are
generally referred to as current status data with informative observation times or dependent
current status data. Currently, some literature studies have discussed the regression analysis
of current status data under the assumption of informative censoring. For example, ref. [2]
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discusses the regression analysis of the current status with informative examination times
under the additive hazards regression model. Ref. [6] developed a class of semiparametric
transformation models for dependent current status data. The above literature studies
introduced frailty to depict the correlation between failure time and examination time. It is
well-known that this method needs to assume the specific distribution of the latent variable,
which makes the application of this method limited. An alternative way to describe the
correlation between the failure time and the examination time is by introducing the copula
function. For example, ref. [7] employed this method and discussed the regression analysis
of current status data under the PH model. Note that the copula method has been applied
in many types of dependent data analyses [8–10].

In addition to censoring, truncation is another statistical phenomenon that arises in var-
ious fields, including survival analysis, astronomy, epidemiology, and economics [11–15].
Subjects whose failure times were truncated were unable to provide any information to
researchers. When only the data of individuals whose event times exceeded a certain
random time (i.e., left truncation time) are recorded, left truncation will occur. Under left
truncation, individuals with smaller event times are less likely to be observed, leading to
bias in the research sample toward larger event times. Currently, some literature studies
have developed regression analyses of current status data with left truncation [16,17]. In the
following, we will discuss the regression analyses of current status data with left truncation
and informative censoring.

The remainder of the article is structured as follows: We introduce the models and
assumptions in Section 2. In Section 3, we introduce the SMLE method, including the
estimation procedure and asymptotic properties. In Section 4, we conduct simulation
studies to evaluate the practical performance of the developed approach. In Section 5,
we apply the established approaches to a real dataset. Our discussions and concluding
remarks are presented in Section 6.

2. Notation, Assumptions, and Models

Suppose that a failure time study consists of n independent subjects. For subject
i, let Ti represent the failure time and Zi be the p-dimensional vector of the covariate
associated with the subject. As mentioned above, truncation is also very common in
practice. For this, assume that, for every subject, there exists a left truncation time Ai, such
that Ai ≤ Ti. The examination time is denoted by Yi. It is possible that Y is dependent on
the failure time Ti. Define δi = I(Ti ≤ Yi). The observed data can be represented as follows:
{Di = (Ai, δi, Yi, Zi), i = 1, 2, ..., n }. In other words, for the failure time Ti, we only have
current status data with the left truncation available.

We assume that Ti follows a Cox model given by

h(t|Z) = h10(t) exp(α′Z) , (1)

where h(t|Z) is the hazard function of Ti given Zi, h10(t) denotes an unspecified baseline
hazard function, and α denotes a p× 1 vector of regression coefficients.

In practice, the covariate may also affect the observation time Yi. So, we suppose that
the hazard function of Yi has the following form

h(y|Z) = h20(y) exp(η′Z) , (2)

where h20(y) represents an unknown baseline hazard function, and η represents the regres-
sion parameter.

To show the correlation between Ti and Yi, we next introduce the Copula function. Let
F(·, ·) represent the joint distribution function of Ti and Yi given Zi. Thus, according to
Theorem 2.3.3 in [9], there exists a copula function Cµ(u, v), satisfying

F(t, y) = Cµ(FT(t), FY(y)),
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where FT(·) and FY(·) denote the marginal distribution function of Ti and Yi, respectively,
µ is the association parameter representing the correlation between Ti and Yi. Cµ(u, v)
satisfies Cµ(u, 0) = Cµ(0, v) = 0, Cµ(u, 1) = u, and Cµ(1, v) = v. We then have the
conditional distribution function of Ti given Yi and Zi, as follows:

P(T 6 t|Y = y, Z) =
∂Cµ(u, v)

∂v

∣∣∣∣
u=FT(t),v=FY(y)

= mµ(FT(t), FY(y)) .

Let H10(t) =
∫ t

0 h10(s)ds, H20(y) =
∫ y

0 h20(s)ds and θ = (α, η, H1, H2). We define fY(·)
to be the marginal density function of Yi, given the covariate, so we can obtain

FT(t) = 1− exp
{
− H10(t) exp(α′Z)

}
,

FY(y) = 1− exp
{
− H20(y) exp(η′Z)

}
,

and
fY(y) = exp

{
− H20(y) exp(η′Z)

}
h20(y) exp(η′Z) .

When δ = 1, we have

P(δ = 1, Y|T ≥ A, Y ≥ A, Z) =
P(A ≤ T ≤ Y, Y|Z)
P(T ≥ A, Y ≥ A|Z)

=
fY(Y)

[
mµ(FT(Y), FY(Y))−mµ(FT(A), FY(Y))

]
1− FT(A)− FY(A)−Cµ(FT(A), FY(A))

.

For δ = 0, we have

P(δ = 0, Y|T ≥ A, Y ≥ A, Z) =
P(T > Y, Y|Z)

P(T ≥ A, Y ≥ A|Z)

=
fY(Y)

[
1−mµ(FT(Y), FY(Y))

]
1− FT(A)− FY(A)−Cµ(FT(A), FY(A))

.

Therefore, the likelihood function based on (A, δ, Y, Z) is

fY(Y)
[
mµ(FT(Y), FY(Y))−mµ(FT(A), FY(Y))

]δ[1−mµ(FT(Y), FY(Y))
]1−δ

1− FT(A)− FY(A)−Cµ(FT(A), FY(A))
.

Thus, the full likelihood function based on the i.i.d. sample (Ai, δi, Yi, Zi) has the
following form

Ln(θ) =
n

∏
i=1

fY(Yi)
[
mµ(FT(Yi), FY(Yi))−mµ(FT(Ai), FY(Yi))

]δi
[
1−mµ(FT(Yi), FY(Yi))

]1−δi

1− FT(Ai)− FY(Ai)−Cµ(FT(Ai), FY(Ai))
.

In the next part, we will consider the maximization of the above likelihood function.
It should be noted that, as mentioned by [3], given a specified parametric copula family,
the associated parameter µ cannot be identified without prior or additional information.
Hence, in the next section, we assume that both the copula functions and the associated
parameters are necessary.

3. Maximum Likelihood Estimation

Now, we discuss how to maximize the full likelihood function Ln(θ). In fact, it is
difficult to directly maximize the likelihood function because this likelihood function
contains not only finite-dimensional parameters but also infinite-dimensional parameter
functions, H1(·) and H2(·). In order to maximize the likelihood function, we intend to
approximate H1(·) and H2(·) by linear combinations of some basic functions. Specifically,
we intend to use the I-spline function to accomplish this task [18]. Let {Id(t)}k+mn

d=1 represent
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the I-spline base function, where k and mn are the order of the spline and the number of
interior knots, respectively. Additionally, mn = o(nν) and 0 < ν < 0.5. Then, we define

G j
n =

{
Hjn : Hjn(s) =

k+mn

∑
d=1

φjd Id(t), φjd ≥ 0, d = 1, 2, ..., k + mn, s ∈ [l, u]
}

as the sieve space, j = 1, 2, and [l, u] denote the range of
{

Ai, Yi, i = 1, 2, ..., n
}

. Thus, the

functions in G j
n are all non-negative and non-decreasing on the interval [l,u] [18]. Therefore,

we can employ Hjn(·) to approximate or replace Hj(·) in the likelihood function, and es-
timate the regression parameters α, η and coefficients φj = {φjd}k+mn

d=1 simultaneously by
maximizing the Ln(θ) subject to φjd ≥ 0, j = 1, 2.

One issue when using splines is how to choose k and mn. An easy way to do this for
a given problem is to try several different values for k and mn and compare the results.
Furthermore, we can employ the Bayesian information criteria (BIC) to choose k and mn,
which give the smallest BIC values.

Let θ̂n = (α̂n, η̂n, Ĥ1n(·), Ĥ2n(·)) represent the estimator of θ described above and
θ0 = (α0, η0, H10(·), H20(·)) be the true value of θ. To establish the asymptotic properties,
we need to describe the regularity conditions first.

(C1) The copula functions are differentiable and the partial derivatives satisfy the Lips-
chitz condition.

(C2) The covariate Z has bounded support in Rp.
(C3) (i) If a constant ε0 and the constant vector ζ0 satisfy ζT

0 Z = c0 almost surely, then
ε0 = 0 and ζ0 = 0. (ii) Assume that for any open set B in [0, 1]× [0, 1], ωC(B) > 0,
where ωC represents the probability measure generated by the copula function C.

(C4) For ϑ = (α′, η′)′, suppose that the Fisher matrix E(SϑS′ϑ) is positive-definite, where Sϑ

is defined in Appendix A.
(C5) Let H(k)

j (·) denote the kth derivative of Hj(·), j = 1, 2. Assume they are Holder-
continuous with exponent ω. In other words, there exists a positive constant K and
some η ∈ (0, 1], such that |H(k)

j (t1) − H(k)
j (t2)| ≤ K|t1 − t2|ω for all t1, t2 ∈ (l, u).

In the following, let r = k + ω.

According to [19,20], the aforementioned conditions are typically moderate and meet
in practical situations. The following theorems provide the large sample properties of the
estimators. Here, for function g, let ‖g(X)‖2 = (

∫
|g(X)|2dP)1/2, where P is the probability

measure generated by X.

Theorem 1. Assume that the regularity conditions C1–C4 are satisfied. Then,

α̂n−→ 0 , η̂n−→ 0,

‖Ĥ1n − H10‖2−→ 0 , ‖Ĥ2n − H20‖2−→ 0

almost surely.

Theorem 2. Assume that the regularity conditions C1–C4 are satisfied. Then

‖Ĥ1n − H10‖2 + ‖Ĥ2n − H20‖2 = Op(n−(1−ν)/2 + n−rν) .

Theorem 3. Assume that conditions C1–C5 are satisfied and r > 2. Then, as n−→∞, we have
√

n ((α̂n − α0)
′, (η̂n − η0)

′)′
d−→ N(0, Σ); the definition of Σ is in Appendix A.

We provide the proof of the above theorems in the appendix. In order to estimate
the covariance matrix, we recommend a common and direct method based on the sieve
likelihood function, i.e., using the inverse of the observed information matrix. The observed
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information may be poorly conditioned or high-dimensional, so this method might be
computationally demanding. Nevertheless, the simulation results shown in the following
section suggest that it typically performs effectively, particularly when k and mn are not
very big.

4. Simulation Study

In this section, simulation studies are conducted to evaluate the performance of the
developed procedure. We suppose that the Zi covariates are Bernoulli (0.5). We first
generate the left truncation time Ai from the exponential distribution with parameters a,
where constant a is selected to provide a suitable percentage of the left truncation. We set
H10(t) = t, and Ti is generated from model (1). To generate the examination time Yi, we
consider the following three copula models:

Cµ(u, v) =


uv + µuv(1− u)(1− v), − 1 6 µ 6 1,

logµ

{
1− (1−µu)(1−µv)

1−µ

}
, µ > 0, µ 6= 1,

exp
{
− [(− log u)µ + (− log v)µ]1/µ

}
, µ ≥ 1.

They are the FGM, Frank, and Gumbel models, respectively. As mentioned above, the as-
sociation parameter µ here indicates the correlation between T and Y. Since the range of
µ in the above three copula models are not the same, one needs a uniform measure of
association between T and Y, such as Kendall’s τ. For the FGM model, τ = 2µ/9, and
τ = 1 + 4h−1{B1(h)− 1} for the Frank model, h = − log µ and B1(h) = h−1

∫ h
0 x(ex −

1)−1dx. Under the Gumbel model, the relationship is τ = 1− 1/µ.
Based on a fixed copula function, we set H20(y) = y, then the examination time Yi

is generated from the conditional distribution, given Ti. Specifically, we first generate a
random number b ∼ U(0, 1); given Ti = ti and b, we can solve the following equation for
Yi = yi,

P(Yi 6 yi|T = ti, Zi) =
∂Cµ(u, v)

∂u

∣∣∣∣
u=FT(ti),v=FY(yi)

= b.

For the spline functions, we employ the quadratic splines with the 1/4, 1/2, 3/4 quantiles
of the pooled set of all Ai’s and Yi’s as three interior knots. The results shown below are
based on 1000 replications.

Tables 1 and 2 report the simulation results under the FGM model with sample sizes
n = 200 and 400. The results show the estimated bias (bias, empirical average of the
parameter estimator minus the true value), the standard error of the parameter estimator
(SSE), the empirical average of the standard error estimator (SEE), and the empirical
coverage percentage of the 95% confidence interval (CP). Figure 1 presents the boxplots of
estimators of α and η with α0 = 0.4 and η0 = −0.4 under the FGM copula. It can be seen
that the estimators have a slight bias, and the bias becomes smaller as n increases. The true
variabilities are accurately reflected by the variance estimators, and the confidence intervals
have proper coverage probabilities, i.e., the normal approximation to the distribution of
the estimated regression parameters seems reasonable. The estimation results based on the
Frank and Gumbel copulas are presented in Tables 3–6; they yield comparable conclusions
to those given in Table 1.
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Table 1. Simulation results under the FGM model with n = 200.

α̂ η̂

α0 η0 τ0 Bias SSE SEE CP Bias SSE SEE CP

0 −0.4 −0.2 −0.0034 0.2322 0.2284 0.952 −0.0202 0.1605 0.1576 0.936
−0.1 −0.0141 0.2119 0.2145 0.953 −0.0077 0.1565 0.1508 0.953

0 −0.0135 0.2061 0.2056 0.964 -0.0087 0.1418 0.1452 0.960
0.1 −0.0001 0.2002 0.1980 0.946 0.0032 0.1442 0.1420 0.954
0.2 0.0045 0.1922 0.1901 0.950 0.0023 0.1359 0.1398 0.952

0 −0.2 0.0206 0.2340 0.2281 0.952 −0.0052 0.1587 0.1550 0.940
−0.1 −0.0108 0.2162 0.2148 0.951 0.0013 0.1485 0.1476 0.945

0 −0.0100 0.2030 0.2034 0.952 0.0090 0.1413 0.1426 0.966
0.1 −0.0087 0.2106 0.1944 0.912 0.0014 0.1449 0.1390 0.948
0.2 −0.0022 0.1906 0.1864 0.951 −0.0041 0.1411 0.1361 0.943

0.4 −0.2 0.0066 0.2612 0.2363 0.932 0.0093 0.1617 0.1580 0.946
−0.1 0.0120 0.2282 0.2209 0.934 0.0181 0.1514 0.1505 0.966

0 0.0158 0.2160 0.2097 0.942 0.0112 0.1498 0.1454 0.952
0.1 0.0077 0.2044 0.2016 0.938 0.0010 0.1509 0.1421 0.934
0.2 0.0196 0.2025 0.1919 0.937 0.0138 0.1447 0.1399 0.951

0.4 −0.4 −0.2 −0.0066 0.2274 0.2223 0.949 −0.0101 0.1664 0.1613 0.947
−0.1 0.0219 0.2224 0.2159 0.958 −0.0113 0.1545 0.1521 0.942

0 0.0113 0.2170 0.2109 0.949 −0.0024 0.1551 0.1453 0.935
0.1 0.0353 0.2263 0.2060 0.936 0.0012 0.1497 0.1423 0.938
0.2 0.0122 0.2058 0.2004 0.949 0.0020 0.1424 0.1413 0.959

0 −0.2 0.0218 0.2315 0.2242 0.946 0.0052 0.1614 0.1581 0.938
−0.1 0.0213 0.2299 0.2153 0.938 −0.0089 0.1553 0.1488 0.952

0 0.0314 0.2096 0.2067 0.938 −0.0016 0.1495 0.1429 0.934
0.1 0.0222 0.2091 0.1989 0.945 0.0002 0.1473 0.1389 0.935
0.2 0.0366 0.1965 0.1915 0.941 0.0052 0.1331 0.1357 0.961

0.4 −0.2 0.0250 0.2542 0.2345 0.933 0.0042 0.1682 0.1597 0.947
−0.1 0.0373 0.2407 0.2212 0.926 0.0079 0.1504 0.1512 0.954

0 0.0269 0.2081 0.2109 0.950 0.0074 0.1366 0.1454 0.964
0.1 0.0010 0.2009 0.2017 0.957 0.0147 0.1417 0.1416 0.955
0.2 0.0148 0.1941 0.1953 0.937 0.0076 0.1388 0.1388 0.949

Table 2. Simulation results under the FGM model with n = 400.

α̂ η̂

α0 η0 τ0 Bias SSE SEE CP Bias SSE SEE CP

0 −0.4 −0.2 0.0099 0.1643 0.1589 0.945 −0.0158 0.1191 0.1106 0.929
−0.1 −0.0104 0.1586 0.1498 0.940 −0.0154 0.1027 0.1058 0.950

0 −0.0020 0.1432 0.1430 0.958 −0.0047 0.1056 0.1023 0.942
0.1 0.0074 0.1376 0.1372 0.963 0.0037 0.0979 0.1002 0.955
0.2 0.0191 0.1444 0.1322 0.919 0.0069 0.1017 0.0985 0.937

0 −0.2 0.0078 0.1655 0.1594 0.941 −0.0080 0.1070 0.1086 0.945
−0.1 0.0013 0.1502 0.1493 0.943 −0.0044 0.1000 0.1037 0.957

0 0.0001 0.1444 0.1416 0.944 −0.0042 0.0956 0.1004 0.960
0.1 0.0016 0.1399 0.1349 0.940 −0.0011 0.0986 0.0980 0.952
0.2 0.0001 0.1329 0.1290 0.955 0.0084 0.0964 0.0961 0.951

0.4 −0.2 0.0118 0.1655 0.1637 0.956 −0.0010 0.1100 0.1104 0.952
−0.1 0.0163 0.1643 0.1537 0.934 0.0034 0.1093 0.1057 0.942

0 0.0012 0.1488 0.1460 0.942 0.0060 0.1057 0.1023 0.944
0.1 0.0119 0.1408 0.1401 0.937 0.0100 0.0989 0.1003 0.955
0.2 0.0055 0.1387 0.1341 0.933 −0.0023 0.0940 0.0986 0.957

0.4 −0.4 −0.2 0.0019 0.1632 0.1551 0.930 −0.0139 0.1175 0.1129 0.938
−0.1 −0.0144 0.1536 0.1494 0.949 −0.0066 0.1072 0.1068 0.953

0 0.0118 0.1526 0.1449 0.942 −0.0018 0.1029 0.1023 0.958
0.1 0.0133 0.1470 0.1411 0.941 −0.0017 0.1044 0.1007 0.937
0.2 0.0027 0.1436 0.1376 0.931 0.0047 0.0957 0.0998 0.957

0 −0.2 0.0298 0.1574 0.1565 0.949 −0.0142 0.1177 0.1102 0.927
−0.1 0.0131 0.1446 0.1491 0.963 −0.0063 0.1091 0.1047 0.935

0 0.0127 0.1491 0.1434 0.944 0.0052 0.0954 0.1006 0.966
0.1 0.0125 0.1379 0.1377 0.958 0.0047 0.1032 0.0981 0.932
0.2 0.0047 0.1414 0.1330 0.950 −0.0046 0.1015 0.0962 0.934

0.4 −0.2 0.0263 0.1687 0.1638 0.938 −0.0001 0.1132 0.1119 0.948
−0.1 0.0205 0.1602 0.1542 0.928 0.0062 0.1068 0.1064 0.952

0 0.0131 0.1538 0.1467 0.950 0.0106 0.1032 0.1026 0.938
0.1 0.0014 0.1458 0.1407 0.937 0.0027 0.1052 0.0999 0.943
0.2 0.0001 0.1286 0.1351 0.955 0.0088 0.0937 0.0978 0.965
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Table 3. Simulation results under the Frank model with n = 200.

α̂ η̂

α0 η0 τ0 Bias SSE SEE CP Bias SSE SEE CP

0 −0.4 −0.25 −0.0036 0.2313 0.2262 0.945 −0.0034 0.1642 0.1618 0.941
−0.1 −0.0109 0.2287 0.2142 0.948 −0.0202 0.1545 0.1510 0.942
−0.05 −0.0136 0.2098 0.2093 0.942 −0.0155 0.1560 0.1475 0.942
0.05 0.0053 0.2102 0.2014 0.934 −0.0078 0.1456 0.1433 0.938
0.1 0.0080 0.1931 0.1968 0.951 −0.0173 0.1482 0.1421 0.941

0.25 0.0028 0.1940 0.1866 0.935 −0.0075 0.1355 0.1397 0.961
0 −0.25 0.0104 0.2427 0.2260 0.931 0.0051 0.1640 0.1587 0.943

−0.1 0.0084 0.2261 0.2131 0.936 0.0017 0.1479 0.1476 0.958
−0.05 0.0008 0.2231 0.2083 0.924 −0.0093 0.1414 0.1448 0.954
0.05 −0.0070 0.1939 0.1986 0.964 −0.0061 0.1404 0.1406 0.964
0.1 0.0108 0.2089 0.1932 0.934 0.0086 0.1379 0.1390 0.954

0.25 0.0122 0.1921 0.1796 0.930 0.0128 0.1358 0.1350 0.946
0.4 −0.25 0.0052 0.2374 0.2333 0.945 0.0216 0.1708 0.1615 0.937

−0.1 0.0163 0.2299 0.2200 0.952 0.0232 0.1549 0.1504 0.936
−0.05 0.0073 0.2226 0.2148 0.947 0.0066 0.1529 0.1476 0.945
0.05 0.0050 0.2149 0.2039 0.927 0.0036 0.1494 0.1434 0.945
0.1 0.0010 0.2018 0.1991 0.953 0.0140 0.1416 0.1421 0.949

0.25 0.0021 0.2010 0.1848 0.921 −0.0055 0.1385 0.1394 0.953
0.4 −0.4 −0.25 −0.0089 0.2183 0.2234 0.962 −0.0098 0.1646 0.1657 0.946

−0.1 0.0087 0.2226 0.2146 0.935 −0.0163 0.1527 0.1517 0.947
−0.05 −0.0012 0.2128 0.2118 0.964 −0.0067 0.1469 0.1480 0.948
0.05 0.0349 0.2221 0.2088 0.942 −0.0126 0.1529 0.1436 0.928
0.1 0.0389 0.2098 0.2050 0.956 −0.0018 0.1445 0.1424 0.950

0.25 0.0217 0.2019 0.2007 0.953 0.0065 0.1433 0.1430 0.931
0 −0.25 0.0271 0.2269 0.2241 0.939 −0.0039 0.1703 0.1614 0.937

−0.1 0.0408 0.2206 0.2144 0.946 0.0020 0.1518 0.1487 0.942
−0.05 0.0355 0.2214 0.2117 0.941 −0.0074 0.1461 0.1455 0.939
0.05 0.0189 0.2116 0.2024 0.934 0.0082 0.1404 0.1407 0.946
0.1 0.0193 0.2109 0.1996 0.952 0.0027 0.1405 0.1389 0.954
0.25 0.0259 0.2009 0.1888 0.943 0.0120 0.1377 0.1354 0.945

0.4 −0.25 0.0322 0.2450 0.2353 0.937 −0.0012 0.1605 0.1643 0.953
−0.1 0.0315 0.2278 0.2205 0.935 0.0082 0.1483 0.1509 0.959
−0.05 0.0345 0.2105 0.2160 0.944 0.0057 0.1537 0.1482 0.940
0.05 0.0241 0.2062 0.2064 0.956 0.0118 0.1440 0.1434 0.934
0.1 0.0387 0.1990 0.2017 0.953 0.0076 0.1533 0.1418 0.927
0.25 0.0059 0.2011 0.1898 0.935 0.0001 0.1398 0.1375 0.951

Table 4. Simulation results under the Frank model with n = 400.

α̂ η̂

α0 η0 τ0 Bias SSE SEE CP Bias SSE SEE CP

0 −0.4 −0.25 −0.0031 0.1617 0.1585 0.942 −0.0147 0.1180 0.1128 0.932
−0.1 −0.0070 0.1543 0.1495 0.948 −0.0091 0.1021 0.1056 0.956
−0.05 −0.0066 0.1459 0.1461 0.956 −0.0121 0.1058 0.1039 0.938
0.05 0.0027 0.1412 0.1397 0.956 −0.0002 0.1008 0.1011 0.952
0.1 0.0033 0.1382 0.1369 0.939 0.0022 0.0979 0.1000 0.957

0.25 0.0115 0.1241 0.1304 0.961 0.0007 0.0974 0.0997 0.951
0 −0.25 −0.0087 0.1654 0.1575 0.935 0.0063 0.1120 0.1106 0.947

−0.1 0.0100 0.1576 0.1485 0.928 −0.0077 0.1090 0.1037 0.930
−0.05 0.0011 0.1499 0.1450 0.940 0.0015 0.1047 0.1019 0.946
0.05 0.0053 0.1420 0.1380 0.949 −0.0102 0.0963 0.0992 0.959
0.1 −0.0022 0.1409 0.1344 0.936 0.0005 0.0927 0.0980 0.962

0.25 0.0079 0.1250 0.1242 0.958 0.0008 0.0946 0.0955 0.954
0.4 −0.25 0.0180 0.1605 0.1623 0.946 0.0074 0.1156 0.1130 0.950

−0.1 0.0263 0.1542 0.1530 0.938 0.0015 0.1081 0.1054 0.950
−0.05 0.0079 0.1576 0.1497 0.926 0.0074 0.1059 0.1039 0.934
0.05 0.0035 0.1434 0.1424 0.948 0.0069 0.1055 0.1011 0.938
0.1 0.0034 0.1408 0.1389 0.948 0.0046 0.1015 0.1002 0.946

0.25 0.0097 0.1303 0.1290 0.942 −0.0005 0.1026 0.0985 0.938
0.4 −0.4 −0.25 0.0030 0.1635 0.1544 0.933 −0.0111 0.1095 0.1159 0.959

−0.1 0.0109 0.1515 0.1491 0.956 −0.0076 0.1027 0.1065 0.958
−0.05 0.0100 0.1542 0.1469 0.946 −0.0049 0.1035 0.1043 0.960
0.05 0.0063 0.1391 0.1431 0.952 0.0004 0.1034 0.1012 0.952
0.1 0.0153 0.1404 0.1418 0.951 −0.0003 0.1042 0.1007 0.951

0.25 0.0119 0.1403 0.1386 0.939 0.0013 0.1040 0.1019 0.949
0 −0.25 0.0112 0.1649 0.1563 0.942 −0.0015 0.1283 0.1133 0.918

−0.1 0.0114 0.1404 0.1490 0.958 −0.0104 0.1079 0.1045 0.938
−0.05 0.0097 0.1468 0.1461 0.954 0.0006 0.1003 0.1023 0.946
0.05 0.0199 0.1374 0.1405 0.952 0.0010 0.0986 0.0991 0.954
0.1 0.0155 0.1424 0.1378 0.936 0.0040 0.0962 0.0980 0.952
0.25 0.0146 0.1366 0.1305 0.932 0.0048 0.0993 0.0954 0.932

0.4 −0.25 0.0273 0.1796 0.1626 0.911 0.0033 0.1147 0.1147 0.943
−0.1 0.0381 0.1525 0.1541 0.944 0.0005 0.1100 0.1062 0.946
−0.05 0.0094 0.1532 0.1500 0.944 0.0008 0.1058 0.1042 0.946
0.05 0.0121 0.1407 0.1434 0.942 0.0016 0.0980 0.1011 0.962
0.1 0.0138 0.1373 0.1401 0.959 0.0087 0.1048 0.0999 0.931
0.25 −0.0019 0.1283 0.1307 0.958 0.0047 0.1018 0.0974 0.948
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Table 5. Simulation results under the Gumbel model with n = 200.

α̂ η̂

α0 η0 τ0 Bias SSE SEE CP Bias SSE SEE CP

0 −0.4 0.05 0.0054 0.2064 0.1980 0.944 −0.0135 0.1506 0.1447 0.946
0.1 0.0025 0.2073 0.1914 0.938 −0.0080 0.1506 0.1439 0.958
0.25 −0.0123 0.1833 0.1727 0.943 −0.0037 0.1539 0.1424 0.931

0 0.05 −0.0052 0.1974 0.1965 0.958 0.0158 0.1450 0.1417 0.954
0.1 0.0072 0.1947 0.1894 0.939 0.0028 0.1423 0.1409 0.953
0.25 0.0113 0.1814 0.1719 0.937 −0.0016 0.1472 0.1385 0.941

0.4 0.05 0.0248 0.2006 0.2038 0.948 0.0108 0.1409 0.1445 0.964
0.1 0.0182 0.2038 0.1987 0.931 0.0007 0.1516 0.1438 0.939
0.25 0.0358 0.1908 0.1843 0.933 0.0130 0.1489 0.1427 0.941

0.4 −0.4 0.05 0.0103 0.2116 0.2030 0.949 0.0031 0.1457 0.1458 0.953
0.1 0.0211 0.2119 0.2001 0.932 0.0024 0.1441 0.1471 0.954
0.25 -0.0406 0.1905 0.1845 0.927 0.0114 0.1547 0.1489 0.943

0 0.05 0.0262 0.2149 0.1991 0.935 0.0176 0.1494 0.1426 0.937
0.1 0.0205 0.1938 0.1913 0.950 0.0152 0.1426 0.1428 0.956
0.25 0.0079 0.1757 0.1736 0.948 0.0220 0.1438 0.1419 0.938

0.4 0.05 0.0260 0.2041 0.2025 0.941 0.0169 0.1474 0.1450 0.947
0.1 0.0279 0.2061 0.1949 0.939 0.0259 0.1554 0.1448 0.931
0.25 0.0115 0.1713 0.1735 0.965 0.0117 0.1429 0.1416 0.955

Table 6. Simulation results under the Gumbel model with n = 400.

α̂ η̂

α0 η0 τ0 Bias SSE SEE CP Bias SSE SEE CP

0 −0.4 0.05 −0.0033 0.1464 0.1372 0.928 0.0037 0.0999 0.1015 0.944
0.1 −0.0183 0.1416 0.1331 0.933 0.0021 0.1127 0.1008 0.929
0.25 −0.0140 0.1246 0.1214 0.944 0.0142 0.1018 0.1004 0.950

0 0.05 −0.0054 0.1403 0.1369 0.945 −0.0065 0.1027 0.0997 0.943
0.1 −0.0047 0.1345 0.1324 0.944 −0.0087 0.1023 0.0989 0.940
0.25 0.0043 0.1282 0.1205 0.936 0.0179 0.1050 0.0971 0.922

0.4 0.05 0.0001 0.1449 0.1427 0.944 0.0011 0.1027 0.1016 0.952
0.1 0.0136 0.1376 0.1387 0.952 0.0023 0.1075 0.1010 0.946
0.25 0.0308 0.1382 0.1283 0.921 −0.0019 0.1134 0.0997 0.908

0.4 −0.4 0.05 0.0104 0.1502 0.1412 0.943 0.0024 0.1051 0.1022 0.957
0.1 −0.0151 0.1518 0.1371 0.921 0.0010 0.0967 0.1027 0.969
0.25 −0.0246 0.1353 0.1279 0.927 0.0246 0.1117 0.1042 0.927

0 0.05 0.0096 0.1358 0.1374 0.950 0.0054 0.0985 0.1002 0.952
0.1 −0.0032 0.1266 0.1324 0.953 0.0103 0.1034 0.0998 0.941
0.25 −0.0048 0.1337 0.1208 0.919 0.0099 0.1036 0.0990 0.935

0.4 0.05 0.0127 0.1407 0.1409 0.948 0.0125 0.1028 0.1021 0.940
0.1 0.0055 0.1256 0.1348 0.971 0.0214 0.0982 0.1013 0.953
0.25 0.0097 0.1197 0.1219 0.953 0.0054 0.1035 0.0996 0.933
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Figure 1. Boxplots for the estimators of α and η with α0 = 0.4 and η0 = −0.4 under the FGM copula.

Regarding model misspecification, Table 7 shows the estimation results of the simu-
lated data generated under the Frank model but obtained from the FGM model. In the
table, τE presents Kendall’s τ for the estimation. This table suggests that the estimator of
α may be biased when copula is specified correctly but τ is specified wrong. When τ is
specified correctly but the copula model is misspecified, the estimator seems relatively
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reasonable. In addition, the estimator of η seems to be less sensitive to the choice of the
association parameter τ or the copula model. We attempted other set-ups and acquired
comparable conclusions.

Table 7. Simulation results for model misspecification.

α̂ η̂

α0 η0 τ0 τE Bias SSE SEE CP Bias SSE SEE CP

0 0 0.1 −0.2 −0.0049 0.2228 0.2046 0.930 0.0019 0.1668 0.1627 0.946
−0.1 0.0058 0.2069 0.2018 0.952 0.0101 0.1546 0.1497 0.950
0.1 0.0039 0.1867 0.1942 0.954 0.0088 0.1389 0.1388 0.940
0.2 0.0287 0.2035 0.1884 0.925 0.0076 0.1406 0.1370 0.949

0.2 −0.2 0.0076 0.2127 0.1981 0.936 −0.0154 0.1612 0.1639 0.962
−0.1 0.0092 0.2083 0.1974 0.936 0.0064 0.1448 0.1505 0.960
0.1 −0.0034 0.1946 0.1898 0.939 0.0115 0.1352 0.1386 0.953
0.2 0.0021 0.1860 0.1835 0.932 −0.0029 0.1376 0.1359 0.940

0.4 0.1 -0.2 −0.1060 0.2169 0.2112 0.891 0.0533 0.1629 0.1663 0.937
−0.1 −0.0584 0.2131 0.2087 0.932 0.0283 0.1428 0.1524 0.964
0.1 0.0080 0.2113 0.2010 0.939 −0.0023 0.1486 0.1419 0.935
0.2 0.0438 0.1950 0.1938 0.933 −0.0025 0.1434 0.1404 0.937

0.2 −0.2 −0.1474 0.2218 0.2062 0.881 0.1055 0.1774 0.1682 0.893
−0.1 −0.1213 0.2157 0.2035 0.886 0.0495 0.1533 0.1539 0.942
0.1 −0.0571 0.1973 0.1960 0.944 0.0108 0.1447 0.1414 0.944
0.2 −0.0052 0.1895 0.1935 0.943 0.0122 0.1509 0.1405 0.917

0.4 0 0.1 −0.2 0.0203 0.2224 0.2029 0.926 −0.0546 0.1641 0.1662 0.928
−0.1 0.0431 0.2136 0.2032 0.942 −0.0370 0.1481 0.1508 0.948
0.1 0.0219 0.2044 0.1985 0.950 0.0135 0.1437 0.1378 0.938
0.2 0.0067 0.1966 0.1950 0.954 0.0147 0.1323 0.1368 0.960

0.2 −0.2 0.0188 0.2070 0.1974 0.936 −0.0812 0.1700 0.1642 0.920
−0.1 0.0537 0.2078 0.1984 0.935 −0.0322 0.1578 0.1518 0.929
0.1 0.0382 0.1959 0.1948 0.954 0.0034 0.1453 0.1383 0.942
0.2 0.0289 0.2083 0.1904 0.933 0.0093 0.1346 0.1361 0.951

0.4 0.1 −0.2 −0.0743 0.2286 0.2072 0.909 −0.0103 0.1724 0.1666 0.951
−0.1 −0.0395 0.2184 0.2052 0.936 −0.0042 0.1545 0.1532 0.954
0.1 0.0240 0.2111 0.2023 0.930 0.0201 0.1412 0.1416 0.952
0.2 0.0383 0.2065 0.1985 0.954 0.0193 0.1431 0.1400 0.944

0.2 −0.2 −0.0688 0.2222 0.2000 0.898 −0.0025 0.1706 0.1676 0.956
−0.1 −0.0452 0.2134 0.2011 0.912 0.0099 0.1473 0.1545 0.960
0.1 −0.0162 0.1997 0.1968 0.949 0.0180 0.1463 0.1411 0.931
0.2 0.0046 0.1908 0.1917 0.959 0.0063 0.1368 0.1388 0.949

5. An Application

Now, we apply our method to an AIDS cohort study of hemophiliacs, as analyzed
by [21], among others. This study included 257 hemophilia patients receiving treatment at
medical centers in France since 1978. Due to the potential contamination of blood factors
used for treatment, these patients were in danger of contracting HIV-1. In this study, the
failure time represents the duration from HIV-1 infection to the AIDS diagnosis. Patients
were divided into two groups—heavily and lightly treated groups—based on the blood
volume they received. Here, the primary objective was to evaluate the effect of the treatment
on the total time to HIV diagnosis from the beginning of the treatment.

HIV-1 contraction and the time of AIDS diagnosis cannot be accurately observed since
the patients were only examined regularly; only the time intervals that include HIV-1
contraction and AIDS diagnosis can be observed. Here, the left truncation time is taken as
the midpoint of the examination interval for HIV-1 infection, and the observation time is
taken as the right endpoint of the examination interval for AIDS diagnosis [21]. For our
analysis, we focus on the 188 patients identified as HIV-1-infected during the study. Of
these, 41 had been diagnosed with AIDS.

Let the covariate Zi be 1 if the ith subject is in the heavily treated groups, and 0,
otherwise. Following the simulation part, we still use the quadratic spline functions with
mn = 3, 4, 5, 6, 7, or 8 for approximation, and use FGM, Frank, and Gumbel copulas for
dependent censoring. In the following, the BIC values were calculated to find the smallest
one, which is given by the FGM copula model with mn = 7 and τ = 0.2. We present the
results obtained under the FGM model in Table 8 with mn = 6 and 7, and several τ values.
The table shows the estimated treatment effect α̂n, the estimated effect on the examination
time η̂n, the estimated standard error (SE), and the p-value for testing the absence of
treatment effects. The results indicate that the patients in the heavily treated group had a
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higher hazard of being diagnosed with AIDS, which is similar to the conclusions presented
in [16].

Table 8. Estimation results for the AIDS data.

τ α̂ SE p-Value η̂ SE p-Value BIC

mn = 6
−0.2 0.2239 0.2968 0.4506 0.0538 0.1468 0.7139 1049
−0.1 0.5707 0.3176 0.0724 0.2941 0.1598 0.0657 1052

0 0.8218 0.3335 0.0137 0.1094 0.1462 0.4544 1025
0.1 0.3891 0.3122 0.2127 0.1817 0.1246 0.1449 1002
0.2 0.9103 0.3378 0.0071 0.0748 0.1122 0.5053 982

mn = 7
−0.2 0.2898 0.2953 0.3265 0.2497 0.1480 0.0915 1015
−0.1 0.5988 0.3209 0.0621 0.3371 0.1740 0.0527 1022

0 0.6736 0.3293 0.0408 0.3285 0.1469 0.0254 1000
0.1 0.2400 0.4574 0.5998 0.0838 0.1259 0.5055 972
0.2 0.5362 0.2289 0.0191 0.1386 0.1126 0.2185 956

6. Discussion and Concluding Remarks

In the previous sections, we discussed the regression analysis of dependent current
status data with left truncation and developed an SMLE method for inference. The de-
veloped procedure uses the copula function to depict the correlation between the failure
time and the examination time, and the spline function is used to approximate the known
nonparametric function in the model. Simulation studies suggest that the considered
approach works well in practice.

For the presented approach, one may consider other statistical models, like the linear
transformation model and accelerated failure model, and develop comparable estimation
procedures. In our approach, we applied the copula model to construct the joint distri-
bution. One future study direction will be to apply the frailty methods to describe the
connection between the two and establish corresponding statistical methods. Furthermore,
in our method, while we adopted the I-splines to approximate unknown functions in our
approach, other basis functions can also be utilized, such as monotone B-splines, Bernstein
polynomials, and even step functions.
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Appendix A. Proofs of Theorems 1–3

In the following proofs, let Pg =
∫

g(x)dP(x) and Png = 1
n ∑n

i=1 g(Di) represent the
empirical process of g(D). Let

Θn =

{
θn = (α, η, H1n, H2n) ∈ B ⊗H1

n ⊗H2
n

}
be the sieve space for θ, where B =

{
(α, η) ∈ R2p, ‖α‖+ ‖η‖ 6 H

}
, and H be a positive

number. In the following, let K, H, Hn, C represent constants whose values may vary at
different locations.

Proof of Theorem 1. Let `(θ, D) represent the log-likelihood of one observation
D = (δ, A, C, Z). For consistency, let Ln = {`(θ, D) : θ ∈ Θn}.
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According to Lemma A.1 in [22], the covering number satisfies

N
(

ε,Ln, L1(Pn)
)
≤ KH2p H2(k+mn)

n ε−pm ,

where pk = 2p + 2(k + mn). In addition, by inequality (31) in [23], we acquire

sup
θ∈Θn

∣∣Pn`(θ, D)− P`(θ, D)
∣∣ a.s.−→ 0. (A1)

Let Q(θ, D) = −`(θ, D) , ξ1n = sup
θ∈Θn

|PnQ(θ, D) − PQ(θ, D)|, ξ2n = PnQ(θ0, D) −

PQ(θ0, D), and Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn}. Hence, we have

inf
Kε

PQ(θ, D) = inf
Kε

{
PQ(θ, D)− PnQ(θ, D) + PnQ(θ, D)

}
≤ ξ1n + inf

Kε

PnQ(θ, D). (A2)

If θ̂n ∈ Kε, then

inf
Kε

PnQ(θ, D) = PnQ(θ̂n, D) ≤ PnQ(θ0, D) = ξ2n + PQ(θ0, D). (A3)

Thus, by condition (C3), we have infKε PH(θ, D)− PH(θ0, D) = ρε > 0. Combining (A2)
and (A3), we can obtain infKε PH(θ, D) ≤ ξ1n + ξ2n + PQ(θ0, D) = ξn + PQ(θ0, D) with
ξn = ξ1n + ξ2n. Thus, ξn ≥ ρε and {θ̂n ∈ Kε} ⊆ {ξn ≥ ρε}. Therefore, by (A1), we have
ξ1n

a.s.−→ 0 and ξ2n
a.s.−→ 0. Finally, we conclude that ∪∞

i=1 ∩∞
n=i {θ̂n ∈ Kε} ⊆ ∪∞

i=1 ∩∞
n=i {ξn ≥

ρε}.

Proof of Theorem 2. In order to prove Theorem 2, for any κ > 0, define Fκ = {`(θn0, D)−
`(θ, D) : θ ∈ Θn, d(θ, θn0) ≤ κ} with θn0 = (α0, η0, H1n0, H2n0). According to [24], it can be
shown that log N[](ε,Fκ , ‖ · ‖2) ≤ MN log(κ/ε), where N = 2(k + mn). After a little bit of
algebra, we can obtain ‖`(θn0, D)− `(θ, D)‖2

2 ≤ Mκ2 for any `(θn0, D)− `(θ, D) ∈ Fκ .
Hence, based on Lemma 3.4.2 in [25], we have that

EP‖n1/2(Pn − P)‖Fκ
≤ MJκ(ε,Fκ , ‖ · ‖2)

{
1 +

Jκ(ε,Fκ , ‖ · ‖2)

κ2n1/2

}
, (A4)

where Jκ(ε,Fκ , ‖ · ‖2) =
∫ κ

0 {1 + log N[](ε,Fκ , ‖ · ‖2)}1/2dε ≤ MN1/2κ. Therefore, we
have ϕn(κ) = M(N1/2κ + N/n1/2), and ϕn(κ)/κ decreases with κ. In addition, we also
have r2

n ϕn(1/rn) = rnN1/2 + r2
nN/n1/2 < 2n1/2, here, rn = n1/2/N1/2 = n(1−ν)/2 with

0 < ν < 0.5. Based on Theorem 3.2.5 in [25], we obtain n(1−ν)/2d(θ̂, θn0) = OP(1). Then,
according to Lemma A1 in [26], we can obtain d(θ̂, θ0) = Op(n−(1−ν)/2 + n−rν).

Proof of Theorem 3. First, let θ0 represent the true value of θ, and let V represent the linear
span of Θ− θ0. Define σn = n−r/(1+2r). For any θ ∈ {θ ∈ Θ0 : ‖θ − θ0‖ = O(σn)}, denote

˙̀(θ, D)[ζ] =
d`(θ + sζ, D)

ds

∣∣∣
s=0

to be the directional derivative of l(θ, D) at the direction ζ ∈W. Define

< ζ, ζ̃ >= P
{

˙̀(θ, D)[ζ] ˙̀(θ, D)[ζ̃]
}

the Fisher inner product on W, and the corresponding norm ‖ζ‖1/2 =< ζ, ζ >. Let W̄
denote the closure of W under the Fisher norm. Therefore, (W̄,< ·, · >) is a Hilbert space.

Let
η(θ) = c′1α + c′2η,
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where c = (c′1, c′2)
′ is a vector with ‖c‖ ≤ 1. So, η(θ) is a linear function on W̄.

For ζ ∈W, let

η̇(θ0)[ζ] =
dη(θ0 + sζ)

ds

∣∣∣
s=0

.

Then we have η(θ) − η(θ0) = η̇(θ0)[θ − θ0]. Based on the Riesz theorem, there exists
ζ∗ ∈ W̄, so that η̇(θ0)[ζ] =< ζ∗, ζ > for all ζ ∈ W̄ with ‖ζ∗‖2 = ‖η̇(θ0)‖.

Since c′((α̂− α0)
′, (η̂ − η0)

′) = η(θ̂)− η(θ0) = η̇(θ0)[θ̂ − θ0] =< θ̂ − θ0, ζ∗ >, by the
Cramér–Wold device, in order to prove Theorem 3, it suffices to show

√
n < θ̂ − θ0, ζ∗ >

d−→ N(0, b′Σb). (A5)

Recall that ϑ = (αT , ηT)T . For each component, ϑq, q = 1, 2, · · · , 2p, let ψ∗q = (c∗1q, c∗2q)

be the minimizer of

E
{
`ϑ · eq − `c1 [c1q]− `c2 [c2q]

}2
,

where `ϑ = (`′α, `′η)′, eqis a 2p-dimensional vector whose qth element is 1 and all other
elements are 0. `c1 [c1] and `c2 [c1] denote the directional derivatives with respect to HT
and HC, respectively. Then, according to a similar method by [27], we can obtain ‖ζ∗‖2 =

‖η̇(θ0)‖ = supζ∈W̄:‖ζ‖>0
|η̇(θ0)[ζ]|
‖ζ‖ = b′Σb, where Σ = [E(SϑS′ϑ)]

−1, Sϑ = {`ϑ − `c∗1
[c∗1 ] −

`c∗2
[c∗2 ]}. This completes the proof of Theorem 3.
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