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1. Introduction

Although the topic of inequalities has been dealt with since the Greeks, the consoli-
dation of this discipline as a theoretical corpus is attributed to the classic text by Hardy,
Littlewood, and Pólya [1], which was influential in increasing research on the study of dif-
ferent types of inequalities (such as the inequalities of Jensen, Gruss, Hermite–Hadamard,
Fejer, which generalizes this list, Minkowski, and Polya–Szego, among others). Interested
readers may refer to [2–6].

In the last 50 years, this area has become an object of attention for researchers from
various disciplines (pure and applied) since the advent of what is now recognized as
fractional calculus.

Throughout this work, we use the functions Γ (see [7–10]) and Γk (cf. defined by [11]):

Γ(z) =
∫ ∞

0
τz−1e−τ dτ, Re(z) > 0, (1)

Γk(z) =
∫ ∞

0
τz−1e−τk/k dτ, k > 0. (2)

Evidently, as k approaches 1, we observe the convergence of Γk(z) to Γ(z), where
Γk(z) = (k)

z
k−1Γ

( z
k
)

and Γk(z + k) = zΓk(z). Additionally, we establish the k-beta function
through the subsequent definition:

Bk(u, v) =
1
k

∫ 1

0
τ

u
k−1(1− τ)

v
k−1dτ,

noting that Bk(u, v) = 1
k B( u

k , v
k ) and Bk(u, v) = Γk(u)Γk(v)

Γk(u+v) .
For the purpose of enhancing comprehension of the subject, we provide several

definitions of fractional integrals, including some that are very recent (with 0 ≤ a1 < τ <
a2 ≤ ∞). The first is the classic Riemann–Liouville fractional integrals.
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Definition 1. Let f ∈ L1[a1, a2]; subsequently, the Riemann–Liouville fractional integrals of order
α ∈ C, with Re(α) > 0, are given explicit definitions for the right and left cases as follows:

For u > a1 : Iα
a1

+ f (u) =
1

Γ(α)

∫ u

a1

(u− τ)α−1 f (τ) dτ. (3)

For u < a2 : Iα
a2
− f (u) =

1
Γ(α)

∫ a2

u
(τ − u)α−1 f (τ) dτ. (4)

Furthermore, the fractional derivatives, of any order n, corresponding to the afore-
mentioned operators can be defined as follows:

Definition 2. Given f (u) belonging to L1(a1, a2), where α is a complex number with Re(α) > 0,
and satisfying n− 1 < α < n, the left- and right-sided Riemann–Liouville fractional derivatives
are characterized by

(Dα
a+1

f )(u) =
dn

dun

(
In−α
a+1

f
)
(u), (5)

(Dα
a−2

f )(u) = (−1)n dn

dun

(
In−α
a−2

f
)
(u). (6)

The left- and right-sided Riemann–Liouville k-fractional integrals are given in [12].

Definition 3. Now, suppose we have a function f belonging to the space L1[a1, a2]. The expressions
that define the Riemann–Liouville k-fractional integrals of order α ∈ C, where the real part of α is
greater than 0 and k > 0 is a positive value, can be stated as follows:

α Ik
a1

+ f (u) =
1

kΓk(α)

∫ u

a1

(u− τ)
α
k−1 f (τ) dτ, u > a1, (7)

α Ik
a2
− f (u) =

1
kΓk(α)

∫ a2

u
(τ − u)

α
k−1 f (τ) dτ, u < a2. (8)

A more general definition of the Riemann–Liouville fractional integrals is given in [13].

Definition 4. Consider a function f : [a1, a2]→ R that is integrable. Additionally, let us suppose
we have a function g defined on the interval (a1, a2] which is both increasing and positive. This
function g should have a continuous derivative g′ within the interval (a1, a2). Now, turning our
attention to the fractional integrals of function f with respect to another function g over the interval
[a1, a2] of a given order α ∈ C, where the real part of α is greater than 0, we can represent these
integrals as follows:

α
g Ia+1

f (u) =
1

Γ(α)

∫ u

a1

(
g(u)− g(τ)

)α−1g′(τ) f (τ) dτ, u > a1, (9)

α
g Ia−2

f (u) =
1

Γ(α)

∫ a2

u

(
g(τ)− g(u)

)α−1g′(τ) f (τ) dτ, u < a2. (10)

A k-fractional analogue of Definition 4 is given in the following (see [14–16]):

Definition 5. Let f : [a1, a2]→ R be an integrable function. Let g be an increasing and positive
function on (a1, a2] with a continuous derivative g′ on (a1, a2). The left- and right-sided k-fractional
integrals of a function f with respect to another function g on [a1, a2] of order α ∈ C, Re(α) > 0
and k > 0 are expressed by

α Ik
a+1

f (u) =
1

kΓk(α)

∫ u

a1

(
g(u)− g(τ)

) α
k−1g′(τ) f (τ) dτ, u > a1, (11)

α Ik
a−2

f (u) =
1

kΓk(α)

∫ a2

u

(
g(τ)− g(u)

) α
k−1g′(τ) f (τ) dτ, u < a2. (12)



Mathematics 2023, 11, 3565 3 of 11

On the other hand, in 2011, Katugampola defined a new integral operator as a general-
ization of the n-integral, as follows:

Definition 6. Let f : [a1, a2]→ R be an integrable function. The general Katugampola fractional
integrals of a function f of order α ∈ R, with Re(α) > 0 and s 6= −1, is expressed by

s
a1

Iα
u f (u) =

(s + 1)1−α

Γ(α)

∫ u

a1

(uα+1 − τα+1)α−1τs f (τ) dτ. (13)

We are now in a position to define the k-generalized fractional Riemann–Liouville
integral.

Definition 7. The k-generalized fractional Riemann–Liouville integral of order α with Re(α) > 0
and the s 6= −1 of an integrable and non-negative function f (u) on [0, ∞) are given as follows:

s J
α
k
F,a1

f (u) =
1

kΓk(α)

∫ u

a1

F(τ, s) f (τ)dτ

[F(u, τ)]1−
α
k

, (14)

with F(τ, s), an integrable and non-negative function on [0,+∞), and F(τ, 0) = 1, with F(u, τ) =∫ u
τ F(θ, s)dθ and F(τ, u) =

∫ τ
u F(θ, s)dθ.

In the subsequent remark, we will establish relationships between our generalized
operator and some of the operators introduced in the earlier definitions.

Remark 1. Let us consider the kernel F(τ, s) = τs; then, we will have, successively,

F(u, τ) =
∫ u

τ
θsdθ =

us+1 − τs+1

s + 1
, (15)

(F(u, τ))1− α
k =

[
us+1 − τs+1

s + 1

]1− α
k

. (16)

The (k,s)-Riemann–Liouville fractional integral is defined in Definition 2.1 of [17], and from
here, we have the integral of Definition 6 with k ≡ 1.

Similarly, when we set s ≡ 0 and k ≡ 1, we arrive at the well-known Riemann–Liouville
operator in its traditional form.

Remark 2. Following Definition 2, it is not difficult to define the generalized derivative of the
Riemann–Liouville type, following this formalism. So, we have(

sD
α
k
F,a1

f
)
(u) =

dn

dun

(
s J

n− α
k

F,a1
f
)
(u), (17)

with n− 1 < α < n.

One of the fundamental inquiries regarding a new integral operator is its boundedness.

Theorem 1. Let f : [a1, a2] → R be a continuous function, with α, k > 0 and s 6= −1. Then,
s J

α
k
F,a1

f (u) exists for all u ∈ [a1, a2].
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Proof. For all f ∈ C[a1, a2], and u ∈ [a1, a2], we have

|s J
α
k
F,a1

f (u)| ≤ 1
kΓk(α)

∫ u

a1

F(τ, s)[F(u, τ)]
α
k−1| f (τ)|dτ

≤ ‖ f ‖
kΓk(α)

∫ u

a1

F(τ, s)[F(u, τ)]
α
k−1dτ

=
‖ f ‖

Γk(α + k)
[F(u, a1)]

α
k .

Subsequently, we derive a targeted characteristic of the aforementioned integral op-
erator: the commutativity and the semigroup property of the operator, as presented in
Definition 7. We have the following:

Theorem 2. Let f be a continuous function on [a1, a2], k > 0 and s 6= −1. Then, we have

s J
α
k
F,a1

(
s J

β
k

F,a1
f (u)

)
= s J

α+β
k

F,a1
f (u) = s J

β
k

F,a1

(
s J

α
k
F,a1

f (u)
)

, (18)

for all α > 0, β > 0, u ∈ [a1, a2].

Proof. Taking into account Definition 7 and the Dirichlet formula, we have

s J
α
k
F,a1

(
s J

β
k

F,a1
f (u)

)
=

1
kΓk(α)

∫ u

a1

[F(u, τ)]
α
k−1F(τ, s)

(
s J

β
k

F,a1
f (τ)

)
dτ

=
1

kΓk(α)

∫ u

a1

[F(u, τ)]
α
k−1F(τ, s)

(
1

kΓk(β)

∫ τ

a1

[F(τ, w)]
β
k−1F(w, s) f (w)dw

)
dτ

=
1

kΓk(α)

1
kΓk(β)

∫ u

a1

F(w, s) f (w)

(∫ u

w
[F(u, τ)]

α
k−1[F(τ, w)]

β
k−1

F(τ, s)dτ

)
dw.

Making ρ = F(τ,w)
F(u,w)

, we have

1
kΓk(α)

1
kΓk(β)

∫ u

a1

F(w, s) f (w)

(∫ u

w
[F(u, τ)]

α
k−1[F(τ, w)]

β
k−1

F(τ, s)dτ

)
dw

=
1

k2Γk(α)Γk(β)

∫ u

a1

F(w, s)[F(u, w)]
α+β

k −1 f (w)

(∫ 1

0
(1− ρ)

α
k−1ρ

β
k−1

dρ

)
dw

=
kBk(α, β)

k2Γk(α)Γk(β)

∫ u

a1

F(w, s)[F(u, w)]
α+β

k −1 f (w)dw

=
1

kΓk(α + β)

∫ u

a1

F(w, s)[F(u, w)]
α+β

k −1 f (w)dw

= s J
α+β

k
F,a1

f (u).

The second part of equality of (18) is trivial. This completes the proof.

Example 1. If we take a1 = 0 and F ≡ 1, then we have F(u, τ) = u − τ, so we have the k-
Riemann–Liouville fractional integral of order α [12]. In terms of this operator, we can formulate
equality (18):
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Theorem 3. Let f ∈ Q(I), a1, a2 ∈ I with 1 < a < b and f ∈ L1[a1, a2]. Then, for ∈ (0, 1], the
following equality for the k-Riemann–Liouville fractional integral of order α holds:

Iα
k

(
Iβ
k f
)
(u) = Iα+β

k f (u) = Iβ
k (Iα

k f )(u) (19)

This is the theorem presented in [18], p. 2.
If we take k = 1, a1 = 1, and F(τ, s) = τ−1, the above is still valid for the Hadamark

fractional integral (see [19,20]).

Theorem 4. Let α, β > 0, k > 0 and s 6= −1. Then, we obtain

sJ
α
k
F,a1

[F(u, a1)
β
k−1] =

Γk(β)F(u, a1)
α+β

k −1

Γk(α + β)
. (20)

Proof. Here,

sJ
α
k
F,a1

[F(u, a1)
β
k−1] =

1
kΓk(α)

∫ u

a1

F(τ, s)F(u, τ)
α
k−1F(τ, a1)

β
k−1dτ.

Using the change in variable ρ = F(τ,a1)
F(u,a1)

, we obtain

=
F(u, a1)

α+β
k −1

kΓk(α)

∫ 1

0
(1− ρ)

α
k−1ρ

β
k−1dρ

=
F(u, a1)

α+β
k −1Bk(α, β)

Γk(α)

=
Γk(β)F(u, a1)

α+β
k −1

Γk(α + β)
.

Thus, the proof is complete.

An integral inequality that holds significant recognition is Chebyshev’s inequality.
When applied to the k-generalized Riemann–Liouville fractional integral operator defined
in Definition 7, Chebyshev’s inequality can be expressed as follows:

Theorem 5. Suppose we have two synchronous functions, denoted as f and g, over the interval
[0, ∞). Under these conditions, for any values of τ, a1, α, and λ satisfying τ > a1 ≥ 0, α > 0, and
λ > 0, the ensuing set of inequalities holds:

sJ
α
k
F,a1

( f g)(τ) ≥ 1
sJ

α
k
F,a1

(1)

sJ
α
k
F,a1

f (τ) sJ
α
k
F,a1

g(τ), (21)

and

sJ
α
k
F,a1

( f g)(τ) sJ
λ
k

F,a1
(1) + sJ

λ
k

F,a1
( f g)(τ) sJ

α
k
F,a1

(1) ≥ sJ
α
k
F,a1

f (τ) sJ
λ
k

F,a1
g(τ) + sJ

α
k
F,a1

g(τ) sJ
λ
k

F,a1
f (τ). (22)

Proof. We say that the pair f and g are synchronous on [0, ∞), if for all u, v ≥ 0, we have

( f (u)− f (v))(g(u)− g(v)) ≥ 0. (23)

Therefore,
f (u)g(u) + f (v)g(v) ≥ f (u)g(v) + f (v)g(u). (24)
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Then, multiplying both sides of (24) by F(u,s)

kΓk(α)[F(τ,u)]1−
α
k

, we integrate the resulting

inequality with respect to u over (a1, τ). It holds that

1
kΓk(α)

∫ τ

a1

f (u)g(u)F(u, s)du

[F(τ, u)]1−
α
k

+
f (v)g(v)
kΓk(α)

∫ τ

a1

F(u, s)du

[F(τ, u)]1−
α
k
≥ g(v)

kΓk(α)

∫ τ

a1

f (u)F(u, s)du

[F(τ, u)]1−
α
k

+
f (v)

kΓk(α)

∫ τ

a1

g(u)F(u, s)du

[F(τ, u)]1−
α
k

,

and thus,

sJ
α
k
F,a1

( f g)(τ) + f (v)g(v) sJ
α
k
F,a1

(1) ≥ g(v) sJ
α
k
F,a1

f (τ) + f (v) sJ
α
k
F,a1

g(τ). (25)

Multiplying both sides of (25) by F(v,s)

kΓk(α)[F(τ,v)]1−
α
k

, and then integrating the resulting

inequality with respect to v over (a1, τ), we obtain

sJ
α
k
F,a1

( f g)(τ)
1

kΓk(α)

∫ τ

a1

F(v, s)dv

[F(τ, v)]1−
α
k
+ sJ

α
k
F,a1

(1)
1

kΓk(α)

∫ τ

a1

F(v, s) f (v)g(v)dv

[F(τ, v)]1−
α
k

≥ sJ
α
k
F,a1

f (τ)
1

kΓk(α)

∫ τ

a1

F(v, s)g(v)dv

[F(τ, v)]1−
α
k

+ sJ
α
k
F,a1

g(τ)
1

kΓk(α)

∫ τ

a1

F(v, s) f (v)dv

[F(τ, v)]1−
α
k

,

that is,
2[ sJ

α
k
F,a1

( f g)(τ) sJ
α
k
F,a1

(1)] ≥ 2[ sJ
α
k
F,a1

f (τ) sJ
α
k
F,a1

g(τ)].

Thus, we obtain the first inequality. Now, multiplying both sides of (25) by
F(v,s)

kΓk(λ)[F(τ,v)]1−
λ
k

, we integrate the resulting inequality with respect to v over (a1, τ). It

holds that

sJ
α
k
F,a1

( f g)(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s)dv

[F(τ, v)]1−
λ
k
+ sJ

α
k
F,a1

(1)
1

kΓk(λ)

∫ τ

a1

F(v, s) f (v)g(v)dv

[F(τ, v)]1−
λ
k

≥ sJ
α
k
F,a1

f (τ)
1

kΓk(λ)

∫ τ

a1

F(v, s)g(v)dv

[F(τ, v)]1−
λ
k

+ sJ
α
k
F,a1

g(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s) f (v)dv

[F(τ, v)]1−
λ
k

,

that is,

sJ
α
k
F,a1

( f g)(τ) sJ
λ
k

F,a1
(1) + sJ

λ
k

F,a1
( f g)(τ) sJ

α
k
F,a1

(1) ≥ sJ
α
k
F,a1

f (τ) sJ
λ
k

F,a1
g(τ) + sJ

α
k
F,a1

g(τ) sJ
λ
k

F,a1
f (τ).

This completes the proof.

Remark 3. If in Theorem 5 we take the kernel F(u, s) = us, we obtain Theorem 3.1 of [17]. In the
case that F(u, s) = 1

u and k = 1 from the previous result, Theorem 3.1 of [21] is obtained.

The preceding outcome can be expanded by taking into account a specific positive
“weight” function, denoted as h.

Theorem 6. Considering two functions, f and g, synchronous over the interval [0, ∞), with h
being non-negative, we derive the subsequent inequality for all τ > a1 ≥ 0, α > 0, λ > 0:
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sJ
α
k
F,a1

( f gh)(τ) sJ
λ
k

F,a1
(1) + sJ

α
k
F,a1

(1) sJ
λ
k

F,a1
( f gh)(τ)

≥ sJ
α
k
F,a1

( f h)(τ) sJ
λ
k

F,a1
g(τ) + sJ

α
k
F,a1

(gh)(τ) sJ
λ
k

F,a1
f (τ)

− sJ
α
k
F,a1

h(τ) sJ
λ
k

F,a1
( f g)(τ)− sJ

α
k
F,a1

( f g)(τ)

sJ
λ
k

F,a1
h(τ) + sJ

α
k
F,a1

f (τ) sJ
λ
k

F,a1
(gh)(τ) + sJ

α
k
F,a1

g(τ) sJ
λ
k

F,a1
( f h)(τ).

Proof. Given that h ≥ 0 and the functions f and g are synchronous over the interval [0, ∞),
we can deduce the following inequality for all u, v ≥ 0:

(h(v) + h(u))( f (v)− f (u))(g(v)− g(u)) ≥ 0.

Consequently, we have

f (u)g(u)h(u) + f (v)g(v)h(v) ≥ f (u)g(v)h(u) + f (v)g(u)h(u)− f (v)g(v)h(u)

− f (u)g(u)h(v) + f (u)g(v)h(v) + f (v)g(u)h(v).
(26)

Multiplying both sides of (26) by F(u,s)

kΓk(α)[F(τ,u)]1−
α
k

, we integrate the resulting inequality

with respect to u over (a1, τ). We have

1
kΓk(α)

∫ τ

a1

F(u, s) f (u)g(u)h(u)du

[F(τ, u)]1−
α
k

+
f (v)g(v)h(v)

kΓk(α)

∫ τ

a1

F(u, s)du

[F(τ, u)]1−
α
k

≥ g(v)
kΓk(α)

∫ τ

a1

F(u, s) f (u)h(u)du

[F(τ, u)]1−
α
k

+
f (v)

kΓk(α)

∫ τ

a1

F(u, s)g(u)h(u)du

[F(τ, u)]1−
α
k

− f (v)g(v)
kΓk(α)

∫ τ

a1

F(u, s)h(u)du

[F(τ, u)]1−
α
k
− h(v)

kΓk(α)

∫ τ

a1

F(u, s) f (u)g(u)du

[F(τ, u)]1−
α
k

+
g(v)h(v)
kΓk(α)

∫ τ

a1

F(u, s) f (u)du

[F(τ, u)]1−
α
k

+
f (v)h(v)
kΓk(α)

∫ τ

a1

F(u, s)g(u)du

[F(τ, u)]1−
α
k

.

that is,

sJ
α
k
F,a1

( f gh)(τ) + f (v)g(v)h(v) sJ
α
k
F,a1

(1) ≥ g(v) sJ
α
k
F,a1

( f h)(τ) + f (v) sJ
α
k
F,a1

(gh)(τ)

− f (v)g(v) sJ
α
k
F,a1

h(τ)− h(v) sJ
α
k
F,a1

( f g)(τ) + g(v)h(v) sJ
α
k
F,a1

f (τ) + f (v)h(v) sJ
α
k
F,a1

g(τ). (27)

Now, multiplying both sides of (27) by F(v,s)

kΓk(λ)[F(τ,v)]1−
λ
k

, we integrate the resulting

inequality with respect to v over (a1, τ). We obtain

sJ
α
k
F,a1

( f gh)(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s)dv

[F(τ, v)]1−
λ
k

+ sJ
α
k
F,a1

(1)
1

kΓk(λ)

∫ τ

a1

F(v, s) f (v)g(v)h(v)dv

[F(τ, v)]1−
λ
k

≥ sJ
α
k
F,a1

( f h)(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s)g(v)dv

[F(τ, v)]1−
λ
k

+ sJ
α
k
F,a1

(gh)(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s) f (v)dv

[F(τ, v)]1−
λ
k
− sJ

α
k
F,ah(τ)

1
kΓk(λ)

∫ τ

a1

F(v, s) f (v)g(v)dv

[F(τ, v)]1−
λ
k

− sJ
α
k
F,a1

( f g)(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s)h(v)dv

[F(τ, v)]1−
λ
k

+ sJ
α
k
F,a1

f (τ)
1

kΓk(λ)

∫ τ

a1

F(v, s)g(v)h(v)dv

[F(τ, v)]1−
λ
k

+ sJ
α
k
F,a1

g(τ)
1

kΓk(λ)

∫ τ

a1

F(v, s) f (v)h(v)dv

[F(τ, v)]1−
λ
k

.
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Thus, we obtain

sJ
α
k
F,a1

( f gh)(τ) sJ
λ
k

F,a1
(1) + sJ

α
k
F,a1

(1) sJ
λ
k

F,a1
( f gh)(τ)

≥ sJ
α
k
F,a1

( f h)(τ) sJ
λ
k

F,a1
g(τ) + sJ

α
k
F,a1

(gh)(τ) sJ
λ
k

F,a1
f (τ)

− sJ
α
k
F,a1

h(τ) sJ
λ
k

F,a1
( f g)(τ)− sJ

α
k
F,a1

( f g)(τ)

sJ
λ
k

F,a1
h(τ) + sJ

α
k
F,a1

f (τ) sJ
λ
k

F,a1
(gh)(τ) + sJ

α
k
F,a1

g(τ) sJ
λ
k

F,a1
( f h)(τ).

Remark 4. If in the previous theorem we take the kernel F(u, s) = us, this is reduced to Theorem
3.2 of [17]. Analogously with F(u, s) = 1

u and k = 1 in this result, we obtain Theorem 3.2 of [21].

If in Theorem 6 we consider α = λ, then we have the following results.

Corollary 1. Let f and g be two synchronous functions on [0, ∞), h ≥ 0. Then, for all τ > a1 ≥ 0,
α > 0, we obtain the following inequality:

sJ
α
k
F,a1

( f gh)(τ) ≥s J
α
k
F,a1

( f h)(τ)sJ
α
k
F,a1

g(τ) +s J
α
k
F,a1

(gh)(τ)sJ
α
k
F,a1

f (τ)

− sJ
α
k
F,a1

h(τ)sJ
α
k
F,a1

( f g)(τ).

Remark 5. If in the previous result F(u, s) = us, we have Corollary 3.3 of [17].

More refined outcomes can be achieved by introducing supplementary constraints on
the function h in the preceding theorem.

Theorem 7. Consider three monotonically increasing functions, denoted as f , g, and h, defined
over the interval [0, ∞). These functions fulfill the subsequent inequality for all u, v ∈ [a1, τ]:

( f (v)− f (u))(g(v)− g(u))(h(v)− h(u)) ≥ 0.

Thus, for all τ > a1 ≥ 0, α > 0, λ > 0, we have that

sJ
α
k
F,a1

( f gh)(τ) sJ
λ
k

F,a1
(1)− sJ

α
k
F,a1

(1) sJ
λ
k

F,a1
( f gh)(τ)

≥ sJ
α
k
F,a1

( f h)(τ) sJ
λ
k

F,a1
g(τ) + sJ

α
k
F,a1

(gh)(τ) sJ
λ
k

F,a1
f (τ)

− sJ
α
k
F,a1

h(τ) sJ
λ
k

F,a1
( f g)(τ) + sJ

α
k
F,a1

( f g)(τ) sJ
λ
k

F,a1
h(τ)

− sJ
α
k
F,a1

f (τ) sJ
λ
k

F,a1
(gh)(τ)− sJ

α
k
F,a1

g(τ) sJ
λ
k

F,a1
( f h)(τ).

Proof. We use the same arguments as in the proof of Theorem 6.

An inequality concerning the squares of functions f and g can be expressed in the
following manner.

Theorem 8. Consider functions f and g defined over the interval [0, ∞). For any values of
τ > a1 ≥ 0, α > 0, and λ > 0, the ensuing set of inequalities in terms of integrals holds:

sJ
α
k
F,a1

f 2(τ) sJ
λ
k

F,a1
(1) + sJ

α
k
F,a1

(1) sJ
λ
k

F,a1
g2(τ) ≥ 2 sJ

α
k
F,a1

f (τ) sJ
λ
k

F,a1
g(τ). (28)

sJ
α
k
F,a1

f 2(τ) sJ
λ
k

F,a1
g2(τ) + sJ

λ
k

F,a1
f 2(τ) sJ

α
k
F,a1

g2(τ) ≥ 2 sJ
α
k
F,a1

( f g)(τ) sJ
λ
k

F,a1
( f g)(τ) (29)
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Proof. Since ( f (u)− g(v))2 ≥ 0, we have

f 2(u) + g2(v) ≥ 2 f (u)g(v). (30)

Now, if we multiply both sides of inequality (30) by F(u,s)

kΓk(α)[F(τ,u)]1−
α
k

and F(v,s)

kΓk(λ)[F(τ,v)]1−
λ
k

,

subsequently integrating the result obtained in terms of u and v over the interval (a1, τ),
respectively, we arrive at expression (28).

Furthermore, since ( f (u)g(v)− f (v)g(u))2 ≥ 0, consequently, employing the identical
reasoning as previously, we obtain (29).

Remark 6. Theorem 3.5 of [17] is obtained from the previous result, making F(u, s) = us.

If we consider α = λ, we obtain the following consequence.

Corollary 2. Let f and g be on [0, ∞); then, for all τ > a1 ≥ 0, α > 0, we obtain

sJ
α
k
F,a1

(1)[ sJ
α
k
F,a1

f 2(τ) + sJ
α
k
F,a1

g2(τ)] ≥ 2 sJ
α
k
F,a1

f (τ) sJ
α
k
F,a1

g(τ), (31)

and
sJ

α
k
F,a1

f 2(τ) sJ
α
k
F,a1

g2(τ) ≥ [ sJ
α
k
F,a1

( f g)(τ)]2. (32)

A result in a different direction is that which shows the following result.

Theorem 9. Let f : R → R with f̄ (u) =
∫ u

a1
F(τ, s) f (τ)dτ, u > a1 ≥ 0, s 6= −1. Then, for

α ≥ k > 0 we have
sJ

α+k
k

F,a1
f (u) =

1
k

sJ
α
k
F,a1

f̄ (u).

Proof. Here,

sJ
α
k
F,a1

f̄ (u) =
1

kΓk(α)

∫ u

a1

F(τ, s)F(u, τ)
α
k−1

∫ τ

a1

F(z, s) f (z)dzdτ.

Then, by the Dirichlet formula, we see that the last expression becomes

1
kΓk(α)

∫ u

a1

F(z, s) f (z)
∫ u

z
F(τ, s)F(u, τ)

α
k−1dτdz (33)

=
1

αΓk(α)

∫ u

a1

F(z, s) f (z)F(u, z)
α
k dz (34)

=
1

Γk(α + k)

∫ u

a1

F(z, s) f (z)F(u, z)
α
k dz (35)

= k sJ
α+k

k
F,a1

f (u). (36)

This complete the proof.

Remark 7. Theorem 3.7 of [17] is obtained from this result if we consider the kernel F(u, s) = us.

2. Applications

Following the idea presented in Example 1, we can obtain various inequalities in terms
of other integral operators, fractional or not. In [22], the following functional was considered:

T( f , g) =
1

b− a

∫ b

a
f (x)g(x)dx−

(
1

b− a

∫ b

a
f (x)dx

)(
1

b− a

∫ b

a
g(x)dx

)
(37)

From Theorem 1, with F ≡ 1 and α = k = 1, we have a direct estimation of (37). On
the other hand, if we take F ≡ 1 and k = 1, it is clear that Theorem 3.1 of [23] is a particular
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case of our result. Under the last assumption, we can easily formulate a more general result
than Theorem 4 of [24] and all the results of [25].

The generality of our results can also be checked if we apply our integral operator
to the results of [26], which can be easily generalized, as readers can check if we consider
F(τ, s) = (τ − a1)

1−s and F(τ, s) = (a2 − τ)1−s for the left- and right-sided integrals.

3. Conclusions and Recommendations

Within this research, we introduce a comprehensive formulation of the Riemann–
Liouville fractional integral formulation, encompassing numerous integral operators docu-
mented in the existing literature. Within this framework, we unveil a variety of integral
inequalities that extend the scope of various well-known inequalities.

We aim to emphasize the robustness of Definition 7, elucidating the following points.
If we consider the kernel F(τ, s) = τ1−s, we obtain a variant of the (k,s)-Riemann–Liouville
fractional integral [17]:

s
a1

Iα
u f (u) =

(2− s)1− α
k

kΓk(α)

∫ u

a1

(u2−s − τ2−s)
α
k−1τ1−s f (τ) dτ.

This opens up a wide range of possibilities in obtaining new integral inequalities.
On the other hand, taking into account some recent results (see, for example, [27,28]),

this integral operator in our work, and its corresponding differential operator, can be used
in investigations related to very general fractional differential equations.
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