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1. Introduction

In several research areas such as mathematical statistics, qualitative theory of inte-
grals [1], information theory [2], differential equations [3], engineering [4] and economics [5],
mathematical inequalities play a significant role and have several applications. Numer-
ous mathematical inequalities have attracted the attention of many mathematicians who
have worked hard to refine, prove and generalise them. As a result of this rapid ex-
pansion, mathematical inequalities are now regarded as a separate branch of analysis.
The Hermite–Hadamard inequality, the Jensen’s and Jensen–Mercer inequality and Stef-
fensen’s inequality are a few notable ones among the many interesting inequalities that have
been examined, (see [6–10] and references therein). Mathematical inequality researchers
continue to be interested in many versions of these inequalities involving certain families of
functions [11–15]. Among other techniques, some significantly used tools to prove integral
inequalities are interpolating polynomials. Researchers have used different interpolating
polynomials such as Hermite interpolation [16,17], Abel–Gontscharoff interpolation [18]
and other interpolations [19,20] to prove integral inequalities.

Steffensen’s inequality, proved in [10], has been vastly studied due to its vital role in the
branch of mathematical analysis [21–23] along with other research directions; for example,
its role in estimating Chebyshev’s functional, the difference between the product of inte-
grals and the integral of the product [24] and to asses bounds for expectations of order and
record statistics [25,26]. Thus, due to these characteristics, the development of many variants
and generalizations of the Steffensen’s inequality is still important [14,27–30]. Although,
a generalization of Steffensen’s inequality [31], which is several years before a generalization
given in [21], but interestingly via appropriate substitution, one may obtain the result of [21]
from [31]. By keeping in view the importance of [21,31], another generalization of Steffensen’s
inequality was proved in [32]. In fact, the results presented in [32] provide generalizations of
all [10,21,31]. A few other variants of Steffensen’s inequality by using interpolating polynomi-
als can be seen in [33–35]. Moreover, to elaborate the importance of Hardy-type inequalities in
the theory of function spaces, we recommend [36] to the readers.
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In this paper, we prove new Steffensen-type inequalities by combining generalized
Taylor expansions, Rabier [21] and Pečarić [31] extensions of Steffensen’s inequality and
Faà di Bruno’s formula. The generalization proved in this paper recaptures the results
of [10,21,31,32]. Further, we prove consequences of the main results, which as a special
case produce some inequalities from [32] which are related to Hardy-type inequalities, see
also [36]. At the end, we prove some inequalities involving Euler polynomials.

2. Materials and Methods

In this section, we include necessary notions and known results which are necessary
to describe and achieve the objectives of this paper. We set that for any k ∈ N and for
any k times differentiable function ψ, the kth order derivative of the function ψ is denoted
by ψ(k). We start with the Steffensen’s inequality. Steffensen [10] established an inequality,
demonstrated as follows: if θ, ζ : [α, β]→ R, ζ is decreasing and 0 ≤ θ ≤ 1, then∫ β

α
ζ(µ)θ(µ) dµ ≤

∫ α+γ

α
ζ(µ) dµ, where γ =

∫ β

α
θ(µ) dµ. (1)

There are many extensions and generalizations of Steffensen’s inequality (1); Ra-
bier [21] has provided a notable contribution in recent times.

Theorem 1. Let ψ be a real valued, continuous and convex function on [0, ∞) with ψ(0) = 0.
If d > 0 and θ ∈ L∞(0, d), θ ≥ 0 and ‖θ‖∞ ≤ 1, then θψ(1) ∈ L1(0, d) and

ψ
( ∫ d

0
θ(µ) dµ

)
≤
∫ d

0
θ(µ)ψ(1)(µ) dµ. (2)

Interestingly, Theorem 1 is closely associated with a generalization of (1) proved by
Pečarić [31].

Theorem 2. Let ζ be a real-valued, nondecreasing and differentiable function on [c, d] and
g : J → R is a nondecreasing function with (J ⊂ R be an interval and c, d, ζ(c), ζ(d) ∈ I).

(a) If ζ(µ) ≤ µ, then ∫ d

c
g(µ)ζ(1)(µ) dµ ≥

∫ ζ(d)

ζ(c)
g(µ) dµ. (3)

(b) If ζ(µ) ≥ µ, then the inequality mentioned above holds in reverse.

The inequality denoted as Steffensen’s inequality (1) can be derived by employing
substitutions ζ(µ) 7→

∫ µ
c θ(ν + α− c) dν + c and g(µ) 7→ −ζ(µ + α− c) and also by taking

d = β− α + c, based on Theorem 2.
Theorem 1 follows from Theorem 2 (under slightly weaker assumptions, see [32]) by

taking c = 0, ψ(µ) =
∫ µ

0 g(ν)dν and ζ(µ) =
∫ µ

0 θ(ν)dν. Since 0 ≤ θ ≤ 1, the function
ζ satisfies ζ(µ) ≤ µ. On the other hand, a function ζ : [0, d] → R can satisfy ζ(µ) ≤ µ
without satisfying 0 ≤ ζ(1)(µ) ≤ 1, so Theorem 2 is broader than Theorem 1.

The following is the concept for the Theorem 2 proof: take ψ(µ) =
∫ µ

c g(ν)dν and
make the substitution z = ζ(µ) in the integral below

ψ(ζ(d))− ψ(ζ(c)) =
∫ ζ(d)

ζ(c)
g(z) dz

=
∫ d

c
g(ζ(µ))ζ(1)(µ) dµ ≤

∫ d

c
g(µ)ζ(1)(µ) dµ, (4)

and the last inequality is satisfied when ζ(µ) ≤ µ.
By replacing the equality

ψ(ζ(d)) = ψ(ζ(c)) +
∫ ζ(d)

ζ(c)
ψ(1)(µ) dµ,
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utilizing the m-th order Taylor expansion of the composition ψ ◦ ζ, a generalization of
Theorem 2 was obtained in [32].

Theorem 3. Let m ∈ N. Let ζ : [c, d] → R and ψ : J → R (where J ∈ R be a interval in such a
way that c, d, ζ(c), ζ(d) ∈ J) be two m times differentiable functions such that ζ(1), ζ(2), . . . ζ(m),
ψ(1), ψ(2), . . . , ψ(m) are nondecreasing functions. If ζ(µ) ≤ µ, then

(ψ ◦ ζ)(d) ≤ (ψ ◦ ζ)(c)

+
m−1

∑
κ=1

ψ(κ)(ζ(c))
m−1

∑
j=κ

(−1)j+1Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))

(d− c)j

j!

+
∫ d

c

(d− µ)m−1

(m− 1)!

m

∑
k=1

ψ(κ)(µ)Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ.

Here, Bm,κ(g(1)(µ), . . . , g(m−κ+1)(µ)) corresponds to the Bell polynomials.

The Bell polynomial Bn,j(ν1, ν2, . . . , νn−j+1), with variables ν1, ν2, . . . νn−j+1 is

Bn,j(ν1, ν2, . . . , νn−j+1) :=

∑
n!

i1!i2! · · · in−j+1!

(ν1

1!

)i1(ν2

2!

)i2
· · ·
(

νn−j+1

(n− j + 1)!

)in−j+1

,

where the sum is calculated over all sequences of non-negative integers i1, i2, . . . , in−κ+1 such as

i1 + i2 + . . . = j and i1 + 2i2 + 3i3 + . . . = n.

Faa’ di Bruno’s formula, which provides higher order derivatives of the composition
function ψ ◦ ζ, contains the Bell polynomials (see, for example, [37])

dn

dxn ψ(ζ(ν)) =
n

∑
j=1

ψ(j)(ζ(ν))Bn,j(ζ
(1)(ν), . . . , ζ(n−j+1)(ν)). (5)

The use of these formulae and relevant works is still a topic of interest [38,39].
This paper aims to derive general Steffensen-type inequalities by using the generalized

Taylor’s formula from [40].

Theorem 4. Let {Pn} be the polynomials form a harmonic sequence, implying

P′m(ν) = Pm−1(ν), for m ∈ N and P0(ν) = 1.

Moreover, consider a closed interval I ⊂ R, and let c ∈ I. If Φ : I → R be any function such
that Φ(m−1) is absolutely continuous for some m ∈ N, then for any ν ∈ I.

Φ(ν) = Φ(c) +
m−1

∑
j=1

(−1)j+1
[

Pj(ν)Φ(j)(ν)− Pj(c)Φ(j)(c)
]

+ (−1)m−1
∫ ν

c
Pm−1(µ)Φ(m)(µ)dµ. (6)

Some immediate consequence of generalized Taylor are evident in [41,42], where a
fractional version of Taylor’s formula can be seen [43].

3. Main Results

We will first start with an identity from which we will then derive our inequalities.

Lemma 1. Let m ∈ N and let ζ : [c, d]→ J and ψ : J → R be two m times differentiable functions
with the assumption that ψ(m−1) is absolutely continuous. Then, the following identity holds
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(ψ ◦ ζ)(d) = (ψ ◦ ζ)(c)

+
m−1

∑
κ=1

ψ(κ)(ζ(d))
m−1

∑
j=κ

(−1)j+1Bj,κ(ζ
(1)(d), . . . , ζ(j−κ+1)(d))Pj(d)

−
m−1

∑
κ=1

ψ(κ)(ζ(c))
m−1

∑
j=κ

(−1)j+1Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))Pj(c)

+ (−1)m−1
∫ d

c
Pm−1(µ)

m

∑
κ=1

ψ(κ)(ζ(µ))Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ. (7)

Proof. The generalized Taylor’s Formula (6) for Faá di Bruno’s Formula (5) and the compo-
sition Φ = ψ ◦ ζ give

(ψ ◦ ζ)(d) = (ψ ◦ ζ)(c)

+
m−1

∑
j=1

(−1)j+1Pj(d)
j

∑
κ=1

ψ(κ)(ζ(d))Bj,κ(ζ
(1)(d), . . . , ζ(j−κ+1)(d))

−
m−1

∑
j=1

(−1)j+1Pj(c)
j

∑
κ=1

ψ(κ)(ζ(c))Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))

+ (−1)m−1
∫ d

c
Pm−1(µ)

m

∑
κ=1

ψ(κ)(ζ(µ))Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ.

Rearranging the terms yields the stated identity (7).

The next theorem contains our primary result.

Theorem 5. Let m ∈ N and let {Pn} be a harmonic sequence of polynomials such that
(−1)m−1Pm−1(ν) ≥ 0 for ν ∈ [c, d]. Let ζ : [c, d]→ R and ψ : J → R (where J ∈ R be a interval in
such a way that c, d, ζ(c), ζ(d) ∈ J) be two m times differentiable functions such that ζ, ζ(1), . . . ζ(m−1),
ψ(1), ψ(2), . . . , ψ(m) are nondecreasing functions and ψ(m−1) is absolutely continuous.

(a) If ζ(µ) ≤ µ, then

(ψ ◦ ζ)(d) ≤ (ψ ◦ ζ)(c)

+
m−1

∑
κ=1

ψ(κ)(ζ(d))
m−1

∑
j=κ

(−1)j+1Bj,κ(ζ
(1)(d), . . . , ζ(j−κ+1)(d))Pj(d)

−
m−1

∑
κ=1

ψ(κ)(ζ(c))
m−1

∑
j=κ

(−1)j+1Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))Pj(c)

+ (−1)m−1
∫ d

c
Pm−1(µ)

m

∑
κ=1

ψ(κ)(µ)Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ. (8)

(b) If ζ(µ) ≥ µ, then the inequality mentioned above holds in reverse.

Furthermore, if (−1)m−1Pm−1(ν) ≤ 0 for ν ∈ [c, d], then the inequalities in (a) and (b)
are reversed.

Proof. Identity (7) holds and, according to the theorem’s presumptions, the Bell polyno-
mials evaluated at ζ derivatives in (7) are nonnegative because ζ(j) ≥ 0 for j = 1, . . . , m.
Therefore, for ζ(µ) ≤ µ the inequality

(−1)m−1
∫ d

c
Pm−1(µ)

m

∑
κ=1

ψ(κ)(ζ(µ))Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ

≤ (−1)m−1
∫ d

c
Pm−1(µ)

m

∑
κ=1

ψ(κ)(µ)Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ,
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holds, but the reverse inequality exists when ζ(µ) ≥ µ.

The previous theorem has the following corollary as a special case.

Corollary 1. Let m ∈ N and let {Pn} be a harmonic sequence of polynomials such that
(−1)m−1Pm−1(ν) ≥ 0 for ν ∈ [c, d]. Let ζ : [0, d] → [0,+∞) be m− 1 differentiable function
and ψ : J → R (where J is an interval in R such that 0, d,

∫ d
0 ζ(µ)dµ ∈ J) be m times differentiable

function such that ζ, ζ(1), . . . ζ(m−2), ψ(1), ψ(2), . . . , ψ(m) are nondecreasing functions and ψ(m−1)

is absolutely continuous.

(a) If
∫ ν

0 ζ(µ)dµ ≤ ν for every ν ∈ [0, d], then

ψ

(∫ d

0
ζ(µ)dµ

)
≤ ψ(0)

+
m−1

∑
κ=1

ψ(κ)

(∫ d

0
ζ(µ)dµ

) m−1

∑
j=κ

(−1)j+1Bj,κ(ζ(d), ζ(1)(d), . . . , ζ(j−κ)(d))Pj(d)

−
m−1

∑
κ=1

ψ(κ)(0)
m−1

∑
j=κ

(−1)j+1Bj,κ(ζ(0), ζ(1)(0), . . . , ζ(j−κ)(0))Pj(0)

+ (−1)m−1
∫ d

c
Pm−1(µ)

m

∑
κ=1

ψ(κ)(µ)Bm,κ(ζ(µ), ζ(1)(µ), . . . , ζ(m−κ)(µ)) dµ. (9)

(b) If ν ≤
∫ ν

0 ζ(µ)dµ for every ν ∈ [0, d], then the inequality mentioned above holds in reverse.

Proof. It can be deduced from Theorem 5 by substituting c = 0 and replacing ζ with
ν 7→

∫ ν
0 ζ(µ)dµ.

Example 1. The polynomials

Pm−1(ν) =
(ν− d)m−1

(m− 1)!
,

form a harmonic sequence. Identity (6) for these polynomials reduces to the classical Taylor’s formula.
These polynomials satisfy the assumptions of Theorem 5 and inequality (8) becomes

(ψ ◦ ζ)(d) ≤ (ψ ◦ ζ)(c)

+
m−1

∑
κ=1

ψ(κ)(ζ(c))
m−1

∑
j=κ

Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))

(d− c)j

j!

+
∫ d

c

(d− µ)m−1

(m− 1)!

m

∑
κ=1

ψ(κ)(µ)Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ,

which is a result given in [32].

Example 2. The polynomials

Pm−1(ν) =
1

(m− 1)!

(
ν− c + d

2

)m−1
,

form a harmonic sequence. These polynomials satisfy the assumptions of Theorem 5 for odd m and
inequality (8) becomes
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(ψ ◦ ζ)(d) ≤ (ψ ◦ ζ)(c)

+
m−1

∑
j=1

(d− c)j

j!2j

[
j

∑
κ=1

ψ(κ)(ζ(c))Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))

+(−1)j+1
j

∑
κ=1

ψ(κ)(ζ(d))Bj,κ(ζ
(1)(d), . . . , ζ(j−κ+1)(d))

]

+
∫ d

c

(d− µ)m−1

(m− 1)!

m

∑
κ=1

ψ(κ)(µ)Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ.

Example 3. We will use Euler polynomials in this example and we will first recall some of their
properties (all the results cited here can be found, for example, in Chapter 23 of [44]). The series
expansion can be used to define the Euler polynomials

2eµx

ex + 1
=

∞

∑
m=0

Em(µ)

m!
xm, |x| < π, µ ∈ R.

The first few Euler polynomials are

E0(µ) = 1, E1(µ) = µ− 1
2

, E2(µ) = µ2 − µ, E3(µ) = µ3 − 3
2

µ2 +
1
4

, . . .

The Euler polynomials are uniquely determined by the following two properties

E′m(µ) = mEm−1(µ), for m ∈ N; E0(µ) = 1, (10)

Em(µ + 1) + Em(µ) = 2µm, for m ∈ N0. (11)

The property (10) implies that the polynomials given by

Pm−1(µ) =
(d− c)m−1

(m− 1)!
Em−1

(
µ− c
d− c

)
, (12)

satisfy P′m(µ) = Pm−1(µ) and P0(µ) = 1, i.e., they form a harmonic sequence of polynomials.
The properties

Em(1− µ) = (−1)mEm(µ), for m ∈ N0, (13)

(−1)mE2m(µ) > 0, for 0 < µ <
1
2

, m ∈ N, (14)

(−1)mE2m−1(µ) > 0, for 0 < µ <
1
2

, m ∈ N. (15)

yield that

E4n(µ) ≥ 0 and E4n+2(µ) ≤ 0, for 0 ≤ µ ≤ 1, n ∈ N0. (16)

Alternatively, the Euler polynomials for even index have constant sign on [0, 1], so for odd m
the polynomials Pm−1 from (12) have constant sign.

Further, the Euler polynomials satisfy

Em(1) = −Em(0) =
2

m + 1
(2m+1 − 1)Bm+1, for m ∈ N, (17)

where Bm are the Bernoulli numbers. Since B2m+1 = 0, we have Pj(c) = Pj(d) = 0 for even j.
For odd m = 2n + 1 the assumptions of Theorem 5 are satisfied and inequality (8) for even n becomes
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(ψ ◦ ζ)(d) ≤ (ψ ◦ ζ)(c)

+
n

∑
j=1

(−1)2j−1 (d− c)2j−1

(2j− 1)!
E2j−1(1)

[
2j−1

∑
k=1

ψκ(ζ(d))Bj,κ(ζ
(1)(d), . . . , ζ(j−κ+1)(d))

+
2j−1

∑
κ=1

ψ(κ)(ζ(c))Bj,κ(ζ
(1)(c), . . . , ζ(j−κ+1)(c))

]

+
(d− c)m−1

(m− 1)!
Em−1(1)

∫ d

c

m

∑
κ=1

ψ(κ)(µ)Bm,κ(ζ
(1)(µ), . . . , ζ(m−κ+1)(µ)) dµ,

In the case of odd values for n, the inequality reversed.

4. Conclusions

In this paper, we first proved the generalized Taylor expansion for the composi-
tion functions. Then, under suitable assumptions, we proved a new generalization of
Steffensen’s inequality, which under special cases coincides with the well-known gener-
alizations of Steffensen’s inequality [10,21,31,32]. Moreover, we proved consequences of
the main results, which as a special case produce some inequalities from [32] which are
related to Hardy-type inequalities. At the end, we proved some inequalities involving
Euler polynomials.
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