Framed Natural Mates of Framed Curves in Euclidean 3-Space
Abstract
:1. Introduction
2. Preliminary
Framed Curves in Euclidean 3-Space
3. Framed Natural Mates
4. Some Examples of Framed Natural Mates
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honda, S.; Takahashi, M. Framed curves in the Euclidean space. Adv. Geom. 2016, 16, 265–276. [Google Scholar] [CrossRef]
- Fukunaga, T.; Takahashi, M. Existence conditions of framed curves for smooth curves. J. Geom. 2017, 108, 763–774. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, D.; Gao, R. Generic properties of framed rectifying curves. Mathematics 2019, 7, 37. [Google Scholar] [CrossRef]
- Lancret, M.A. Memoire sur less courbes a double courbure. Mem. Present. Inst. 1806, 1, 416–454. [Google Scholar]
- Altınbaş, H.; Mak, M.; Altunkaya, B.; Kula, L. Mappings that transform helices from Euclidean space to Minkowski space. Hacet. J. Math. Stat. 2022, 51, 1333–1347. [Google Scholar] [CrossRef]
- Izumiya, S.; Takeuchi, N. New special curves and developable surfaces. Turk. J. Math. 2004, 28, 153–164. [Google Scholar]
- Yılmaz, B.; Has, A. New Approach to Slant Helix. Int. Electron. J. Geom. 2019, 12, 111–115. [Google Scholar] [CrossRef]
- Chen, B.Y. When does the position vector of a space curve always lie in its rectifying plane? Am. Math. Mon. 2003, 110, 147–152. [Google Scholar] [CrossRef]
- Monterde, J. Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion. Comput. Aided Geom. Des. 2009, 26, 271–278. [Google Scholar] [CrossRef]
- Honda, S. Rectifying developable surfaces of framed base curves and framed helices. Adv. Stud. Pure Math. 2018, 78, 273–292. [Google Scholar]
- Okuyucu, O.Z.; Canbirdi, M. Framed slant helices in Euclidean 3-space. Adv. Differ. Equ. 2021, 2021, 504. [Google Scholar] [CrossRef]
- Mak, M. Framed Clad Helices in Euclidean 3-Space. Filomat, 2023; in press. [Google Scholar]
- Yazıcı, B.D.; Karakus, S.Ö.; Tosun, M. On the classification of framed rectifying curves in Euclidean space. Math. Meth. Appl. Sci. 2021, 45, 12089–12098. [Google Scholar] [CrossRef]
- Yazıcı, B.D.; Karakus, S.Ö.; Tosun, M. Framed normal curves in Euclidean space. Tbilisi Math. J. 2021, 1, 27–37. [Google Scholar]
- Honda, S.I.; Takahashi, M. Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space. Turk. J. Math. 2020, 44, 883–899. [Google Scholar] [CrossRef]
- Duldul, M.; Bulbul, Z. Integral Curves Connected with a Framed Curve in 3-Space. Honam Math. J. 2023, 45, 130–145. [Google Scholar]
- Yao, K.; Li, M.; Li, E.; Pei, D. Pedal and Contrapedal Curves of Framed Immersions in the Euclidean 3-Space. Mediterr. J. Math. 2023, 20, 204. [Google Scholar] [CrossRef]
- Honda, S.; Takahashi, M.; Yu, H. Bertrand and Mannheim curves of framed curves in the 4-dimensional Euclidean space. J. Geom. 2023, 114, 12. [Google Scholar] [CrossRef]
- Li, Y.; Gezer, A.; Karakaş, E. Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Math. 2023, 8, 17335–17353. [Google Scholar] [CrossRef]
- Li, Y.; Bhattacharyya, S.; Azami, S.; Saha, A.; Hui, S.K. Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications. Mathematics 2023, 11, 2516. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ersoy, S. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Math. 2023, 8, 22256–22273. [Google Scholar] [CrossRef]
- Li, Y.; Kumara, H.A.; Siddesha, M.S.; Naik, D.M. Characterization of Ricci Almost Soliton on Lorentzian Manifolds. Symmetry 2023, 15, 1175. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. A Hypersurfaces of Revolution Family in the Five-Dimensional Pseudo-Euclidean Space . Mathematics 2023, 11, 3427. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, M.K.; Sharma, S.; Chaubey, S.K. On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics 2023, 11, 3365. [Google Scholar] [CrossRef]
- Gür, S.; Şenyurt, S.; Grilli, L. The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space. Symmetry 2022, 14, 1062. [Google Scholar]
- Gür, S. Geometric properties of timelike surfaces in Lorentz-Minkowski 3-space. Filomat 2023, 37, 5735–5749. [Google Scholar]
- Çalışkan, A.; Şenyurt, S. Curves and ruled surfaces according to alternative frame in dual space. Commun. Fac. Sci. Univ. 2020, 69, 684–698. [Google Scholar] [CrossRef]
- Çalışkan, A.; Şenyurt, S. The dual spatial quaternionic expression of ruled surfaces. Therm. Sci. 2019, 23, 403–411. [Google Scholar] [CrossRef]
- Gür, S.; Şenyurt, S.; Grilli, L. The Invariants of Dual Parallel Equidistant Ruled Surfaces. Symmetry 2023, 15, 206. [Google Scholar]
- Şenyurt, S.; Çalışkan, A. The quaternionic expression of ruled surfaces. Filomat 2018, 32, 5753–5766. [Google Scholar] [CrossRef]
- As, E.; Şenyurt, S. Some Characteristic Properties of Parallel-Equidistant Ruled Surfaces. Math. Probl. Eng. 2013, 2013, 587289. [Google Scholar] [CrossRef]
- Özcan, B.; Şenyurt, S. On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space. Adv. Appl. Clifford Al. 2012, 22, 939–953. [Google Scholar]
- Şenyurt, S.; Gür, S. Spacelike surface geometry. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750118. [Google Scholar] [CrossRef]
- Antić, M.; Hu, Z.; Moruz, M.; Vrancken, L. Surfaces of the nearly Kähler preserved by the almost product structure. Math. Nachr. 2021, 294, 2286–2301. [Google Scholar] [CrossRef]
- Antić, M.; Djordje, K. Non-Existence of Real Hypersurfaces with Parallel Structure Jacobi Operator in S6(1). Mathematics 2022, 10, 2271. [Google Scholar] [CrossRef]
- Antić, M. A class of four-dimensional CR submanifolds in six dimensional nearly Kähler manifolds. Math. Slovaca 2018, 68, 1129–1140. [Google Scholar] [CrossRef]
- Antić, M.; Moruz, M.; Van, J. H-Umbilical Lagrangian Submanifolds of the Nearly Kähler . Mathematics 2020, 8, 1427. [Google Scholar] [CrossRef]
- Antić, M. Characterization of Warped Product Lagrangian Submanifolds in . Results Math. 2022, 77, 106. [Google Scholar] [CrossRef]
- Antić, M.; Vrancken, L. Conformally flat, minimal, Lagrangian submanifolds in complex space forms. Sci. China Math. 2022, 65, 1641–1660. [Google Scholar] [CrossRef]
- Antić, M. A class of four dimensional CR submanifolds of the sphere S6(1). J. Geom. Phys. 2016, 110, 78–89. [Google Scholar] [CrossRef]
- Gulbahar, M.; Kilic, E.; Keles, S.; Tripathi, M.M. Some basic inequalities for submanifolds of nearly quasi-constant curvature manifolds. Differ. Geom. Dyn. Sys. 2014, 16, 156–167. [Google Scholar]
- Tripathi, M.M.; Gülbahar, M.; Kiliç, E.; Keleş, S. Inequalities for scalar curvature of pseudo-Riemannian submanifolds. J. Geom. Phys. 2017, 112, 74–84. [Google Scholar] [CrossRef]
- Gulbahar, M.; Kiliç, E.; Keles, S. A useful orthonormal basis on bi-slant submanifolds of almost Hermitian manifolds. Tamkang J. Math. 2016, 47, 143–161. [Google Scholar] [CrossRef]
- Gulbahar, M. Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Math. 2021, 6, 1366–1377. [Google Scholar] [CrossRef]
- Kiliç, E.; Gulbahar, M.; Kavuk, E. Concurrent Vector Fields on Lightlike Hypersurfaces. Mathematics 2020, 9, 59. [Google Scholar] [CrossRef]
- Ali, A.T. Non-lightlike ruled surfaces with constant curvatures in Minkowski 3-space. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850068. [Google Scholar] [CrossRef]
- Ali, A.T. Non-lightlike constant angle ruled surfaces in Minkowski 3-space. J. Geom. Phys. 2020, 157, 103833. [Google Scholar] [CrossRef]
- Ali, A.T. A constant angle ruled surfaces. Int. J. Geom. 2018, 7, 69–80. [Google Scholar]
- Ali, A.T.; Abdel Aziz, H.S.; Sorour, A.H. On some geometric properties of quadric surfaces in Euclidean space. Honam Math. J. 2016, 38, 593–611. [Google Scholar] [CrossRef]
- Ali, A.T.; Abdel Aziz, H.S.; Sorour, A.H. On curvatures and points of the translation surfaces in Euclidean 3-space. J. Egypt. Math. Soc. 2015, 23, 167–172. [Google Scholar] [CrossRef]
- Ali, A.T.; Hamdoon, F.M. Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space. Korean J. Math. 2017, 25, 537–554. [Google Scholar]
- Fukunaga, T.; Takahashi, M. Existence and uniqueness for Legendre curves. J. Geom. 2013, 104, 297–307. [Google Scholar] [CrossRef]
- Fukunaga, T.; Takahashi, M. Evolutes of Fronts in the Euclidean Plane. J. Singul. 2014, 10, 92–107. [Google Scholar] [CrossRef]
- Fukunaga, T.; Takahashi, M. Involutes of Fronts in the Euclidean Plane. Beitr. Algebra Geom. 2016, 57, 637–653. [Google Scholar] [CrossRef]
- Fukunaga, T.; Takahashi, M. Evolutes and Involutes of Frontals in the Euclidean Plane. Demonstr. Math. 2015, 48, 147–166. [Google Scholar] [CrossRef]
- Chen, L.; Takahashi, M. Dualities and evolutes of fronts in hyperbolic and de Sitter space. J. Math. Anal. Appl. 2016, 437, 133–159. [Google Scholar] [CrossRef]
- Honda, S.; Takahashi, M. Evolutes and focal surfaces of framed immersions in the Euclidean space. Proc. Roy. Soc. Edinb. Sect. A 2020, 150, 497–516. [Google Scholar] [CrossRef]
- Tuncer, O.O.; Ceyhan, H.; Gök, İ.; Ekmekci, F.N. Notes on pedal and contrapedal curves of fronts in the Euclidean plane. Math. Meth. Appl. Sci. 2018, 41, 5096–5111. [Google Scholar] [CrossRef]
- Zhao, X.; Pei, D. Pedal Curves of the Mixed-Type Curves in the Lorentz-Minkowski Plane. Mathematics 2021, 9, 2852. [Google Scholar] [CrossRef]
- Li, M.; Yao, K.; Li, P.; Pei, D. Pedal Curves of Non-Lightlike Curves in Minkowski 3-Space. Symmetry 2022, 14, 59. [Google Scholar] [CrossRef]
- Yu, H.; Pei, D.; Cui, X. Evolutes of fronts on Euclidean 2-sphere. J. Nonlinear Sci. Appl. 2015, 8, 678–686. [Google Scholar] [CrossRef]
- Takahashi, M. Legendre curves in the unit spherical bundle over the unit sphere and evolutes. Contemp. Math. 2016, 675, 337–355. [Google Scholar]
- Li, Y.; Pei, D. Pedal curves of fronts in the sphere. J. Nonlinear Sci. Appl. 2016, 9, 836–844. [Google Scholar] [CrossRef]
- Li, E.; Pei, D. Involute-evolute and pedal-contrapedal curve pairs on S2. Math. Meth. Appl. Sci. 2022, 45, 11986–12000. [Google Scholar]
- Li, Y.; Tuncer, O.O. On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 46, 11157–11171. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.H. Associated curves of a Frenet curve and their applications. Appl. Math. Comput. 2012, 218, 9116–9124. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y.; Alghanemi, A. Natural mates of Frenet curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 2826–2840. [Google Scholar] [CrossRef]
- Bishop, R.L. There is more than one way to frame a curve. Am. Math. Mon. 1975, 82, 246–251. [Google Scholar] [CrossRef]
- Gray, A.; Abbena, E.; Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Mak, M. Framed Natural Mates of Framed Curves in Euclidean 3-Space. Mathematics 2023, 11, 3571. https://doi.org/10.3390/math11163571
Li Y, Mak M. Framed Natural Mates of Framed Curves in Euclidean 3-Space. Mathematics. 2023; 11(16):3571. https://doi.org/10.3390/math11163571
Chicago/Turabian StyleLi, Yanlin, and Mahmut Mak. 2023. "Framed Natural Mates of Framed Curves in Euclidean 3-Space" Mathematics 11, no. 16: 3571. https://doi.org/10.3390/math11163571
APA StyleLi, Y., & Mak, M. (2023). Framed Natural Mates of Framed Curves in Euclidean 3-Space. Mathematics, 11(16), 3571. https://doi.org/10.3390/math11163571