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Abstract: A prompt and precise estimation of traffic conditions on the scale of a few minutes by
analyzing past data is crucial for establishing an effective intelligent traffic management system.
Nevertheless, because of the irregularity and nonlinear features of traffic flow data, developing
a prediction model with excellent robustness poses a significant obstacle. Therefore, we propose
genetic-search-algorithm-improved kernel extreme learning machine, termed GA-KELM, to unleash
the potential of improved prediction accuracy and generalization performance. By substituting
the inner product with a kernel function, the accuracy of short-term traffic flow forecasting using
extreme learning machines is enhanced. The genetic algorithm evades manual traversal of all possible
parameters in searching for the optimal solution. The prediction performance of GA-KELM is
evaluated on eleven benchmark datasets and compared with several state-of-the-art models. There
are four benchmark datasets from the A1, A2, A4, and A8 highways near the ring road of Amsterdam,
and the others are D1, D2, D3, D4, D5, D6, and P, close to Heathrow airport on the M25 expressway.
On A1, A2, A4, and A8, the RMSEs of the GA-KELM model are 284.67 vehs/h, 193.83 vehs/h,
220.89 vehs/h, and 163.02 vehs/h, respectively, while the MAPEs of the GA-KELM model are 11.67%,
9.83%, 11.31%, and 12.59%, respectively. The results illustrate that the GA-KELM model is obviously
superior to state-of-the-art models.

Keywords: kernel extreme learning machine; short-term traffic flow forecasting; genetic algorithm

MSC: 68Q07; 68Q32; 68W50

1. Introduction

Convenient traffic conditions can promote the economic development of a country.
However, effective and precise prediction of short-term traffic flows can anticipate upcom-
ing traffic situations based on road traffic data, so to provide drivers with appropriate
driving routes to alleviate traffic congestion [1].

Traffic flow exhibits cyclical variations that are often masked by noise or random
behavior and influenced by external factors like unforeseen accidents or varying weather
conditions [2]. Consequently, it is still a great challenge to propose a scheme for efficient
and accurate traffic flow forecasting.

There exists a wide variety of methods and approaches proposed to forecast traffic flow,
including non-parametric models and parametric models [3]. Kalman filter (KF) models [4–6],
Bayesian vector autoregressive moving [7], time series analysis models [8–10], spectral analysis
and statistical volatility models [11,12] and autoregressive integrated moving average (ARIMA)
models [13,14] are parametric models. This group of models makes use of designated functions
to map the present traffic flow in the future. Nevertheless, models with restricted parameters
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struggle to capture the intricate nonlinear relationships within the traffic flow. Consequently,
these models often exhibit under-fitting issues.

Non-parametric models encompass support vector regression models (SVR) [15,16],
fuzzy logic system methods [17,18], artificial neural network models (ANN) [19,20], deep
feature fusion models [21], extreme learning machine (ELM) models [22] and k-nearest
neighbour regression models [23,24]. Currently, nonlinear models based on deep learning
techniques are of great interest in traffic flow prediction due to their effectiveness in
modeling complex nonlinear relationships. Huang et al. [25] proposed a deep belief
network architecture with a multitask region, which can learn the effective characteristics of
traffic flow prediction in an unsupervised way. Lv et al. [26] applied the stacked automatic
encoder model to learn traffic flow features, trained in a greedy layer-wise way. Zhou et al.
used a training sample replication strategy to train stacked autoencoders (SAE), thereby
improving the accuracy of traffic flow prediction models. Zhou et al. [27] proposed a
new multi model ensemble framework based on deep learning for traffic flow prediction.
Zhang et al. [28] proposed a new framework for forecasting traffic flow, termed the
Spatial-Temporal Graph Diffusion Network (ST-GDN), which learns both the geographical
dependence of local regions and global spatial semantics. All the above methods have
been confirmed to be effective for predicting traffic flow. Despite their effectiveness, deep
learning networks still exhibit some drawbacks when applied in forecasting traffic flow.
For example, a deep learning network requires a lot of parameters and takes a long time
to learn. Furthermore, because they are based on a gradient descent learning method to
iteratively adjust network parameters, they often converge to local minima in practical
applications [29]. Therefore, deep learning networks obtain the global optimal value by
continuously changing the initial value and running many times.

Huang et al. [30] demonstrated that biases and input weights can be stochastic in the
event that the activation function employed within the hidden layer possesses an infinite
number of differentiable properties. Accordingly, they proposed extreme learning machine
(ELM), an efficient prediction algorithm. ELM has been widely used for forecasting traffic
flow [22,31]. Wang et al. [32] proposed improved fuzzy C-means (FCM)-based ELM and
demonstrated its superior performance in traffic flow prediction. Compared with the
backpropagation algorithm, the ELM algorithm has a superior generalization ability and
learns faster [33]. Furthermore, because ELM is based on the principle of the least squares
method, it circumvents certain problems of the gradient-based learning method, such as
falling into the local minimum and how to select the learning rate. However, ELM requires
time to determine the number of hidden layer nodes. In order to eliminate the need to
manually adjust the number of hidden nodes and further improve the generalization ability
of ELM, kernel extreme learning machine (KELM) was developed by substituting implicit
kernel mappings for explicit feature mappings [34]. The selection of parameters is crucial
for the performance of the KELM model [35]. Typically, KELM searches for the optimal
parameters of the model through the grid search method, which will lead to over-fitting,
slow learning speeds, a decrease in generalization performance, etc.

To solve these problems, we propose kernel extreme learning machine optimized by
the genetic algorithm [36] in this paper. In this way, we achieve a more accurate prediction
performance without increasing the number of parameters, which reduces the problem of
over-fitting.

In this paper, the primary contributions are revealed as follows.

• Firstly, we propose a hybrid learning model, termed genetic-algorithm-improved
kernel extreme learning machine (GA-KELM), avoiding manual traversal of all possi-
ble parameters.

• Secondly, we unleashed the potential prediction accuracy and generalization perfor-
mance of the kernel extreme learning machine through genetic algorithms.

• Thirdly, this model retains the character of kernel extreme learning machine that
has the advantages of rapid learning and a robust generalization ability to deal with
non-linear traffic flow through an end-to-end mechanism.
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• Fourthly, we have carried out sufficient experiments on GA-KELM and several state-
of-the-art traffic flow prediction models on the Amsterdam highway dataset and the
England M25 highway dataset and proved the superior performance of GA-KELM.

The subsequent sections of this paper are structured as follows. The Section 2 is the
methodology, the Section 3 is the relevant settings for the experiment, and the Section 4 is
the discussion based on the results on real-world data. The Section 5 is the conclusions.

2. Materials and Methods

This section presents kernel extreme learning machine (KELM) for forecasting traffic
flow. Then, we used genetic algorithms to optimize the performance of this model.

2.1. Kernel Extreme Learning Machine

Extreme learning machine is a type of machine learning algorithm based on a single-
layer feedforward neural network. Compared with the traditional feedforward neural
network, the hidden layer parameters in ELM are randomly assigned and then the output
weight is calculated according to these parameters, without propagating the error back
through the gradient descent algorithm to continuously correct the parameters of the
model [31]. ELM exhibits a rapid learning speed, an enhanced fitting capability, and an
exceptional generalization performance.

Suppose D = {xi, yi}M
i=1 is the dataset of M training samples, where

xi = [xi1, xi2, . . . , xiE]
T is the input vector and yi = [yi1, yi2, . . . , yiF]

T is the output vec-
tor. The letters E and F represent the quantity of neurons in the input and output layers.
The feed-forward neural network with activation function o(x) and l hidden nodes can be
described as

Y = Oβ (1)

where Y = [y1, y2, . . . , yM]T , O = [o(x1), o(x2), . . . , o(xM)]T , and β = [β1, β2, . . . , βl ]
T .

Y, O, and β are the target matrix, the output matrix resulting from the hidden layer,
and the weight vector connecting the output layer and the hidden layer, respectively.
o(xi) = [o(ωT

1 xi + b1), o(ωT
2 xi + b2), . . . , o(ωT

l xi + bl)]
T , i = 1, . . . , M. ωi, i = 1, . . . , l is the

weight vector between the input layer and the hidden layer. bi, i = 1, . . . , l is the bias of
the hidden layer. βi = [βi1, βi2, . . . , βiF]

T , i = 1, . . . , l represents the output weight of the
ith node.

To ensure that the estimated value is as close as possible to the real value, the output
weight β of ELM can be obtained by minimizing the objective function L. The objective
function of ELM is shown in Formula (2).

L =
1
2
||Oβ−Y||2 + 1

2
γ||β||2 (2)

The optimal solution of Formula (2) is shown in Formula (3).

β = (γI + OTO)−1OTY (3)

where γ is the regularization factor that balances the influence of the error term and the
model complexity. I represents an identity matrix. Therefore, the output of the new input x
can be shown as

f (x) = o(x)β (4)
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After replacing the implicit mapping defined by the kernel with Gaussian kernel
g(x1, x2), the output can be expressed as

f (x) = ϕ(x)β

= ϕ(x)(γI + AT A)−1 ATY

= ϕ(x)AT(γI + AAT)−1Y

= w(x)α

(5)

where g(x1, x2) = exp(− ||x1−x2||
2σ2 ), w(x) = ϕ(x)AT , and α = (γI + AAT)−1Y. σ is the

kernel size and α is the coefficient matrix. ϕ(x) and A are the activation function and
output matrix with the Gaussian kernel, respectively. The kernel trick can be expressed in
Equation (6). Then, ϕ(x)AT and AAT can be, respectively, shown in Formulas (7) and (8).

g(x1, x2) = ϕ(x1)ϕ(x2)
T (6)

ϕ(x)AT = ϕ(x)[ϕ(x1)
T , ϕ(x2)

T , . . . , ϕ(xM)T ]

= g(x, x1), g(x, x2), . . . , g(x, xM)
(7)

AAT =

 g(x1, x1) · · · g(x1, xM)
...

. . .
...

g(xM, x1) · · · g(xM, xM)

 (8)

The following is the calculation process of KELM. The value of α is calculated by
putting the values of input x, output y, σ and γ into Equation (8). Furthermore, the
estimated value of f (x) is calculated by Formulas (5) and (7).

2.2. Genetic Algorithm

The genetic algorithm is an optimization method exploiting biological evolution
principles, inspired by Darwin’s theory of evolution and Mendel’s genetic theory, which
performs a randomized global search for the optimal solution. In the genetic algorithm, an
individual, referred to as a chromosome, represents a solution in the context of this problem.
The suitability of the genetic algorithm is assessed using the fitness function, while the
group of potential solutions is referred to as the population. The better the adaptability
of individuals, the higher the probability that individuals will produce offspring through
mating. In the process of mating, the probability of an individual’s crossing and mutation
is expressed by the value of the crossing rate and the mutation rate. Over the course of
multiple generations, the individual’s fitness value will eventually stabilize at an optimal
solution to the problem [36].

The following is the process of the genetic algorithm.

• Step 1. Specify the quantity of iterations and chromosomes and the values of crossover
rate and mutation rate.

• Step 2. Generate the chromosomes of the first population P, where the population
P = [p1, p2, . . . , pq] is the collection of all chromosomes (individuals), pi=1,...,q =
[x1, x2, . . . , x2k] is the ith chromosome, whose value is expressed by 2k binary se-
quences, and q is the number of individuals. A chromosome is formed by the combi-
nation of γ = [x1, x3, . . . , x2k−1] and σ = [x2, x4, . . . , x2k].

• Step 3. Map all the individuals pi in population P to a certain range set according to
the actual problem.

• Step 4. Calculate the fitness value of each individual by means of the objective function.
• Step 5. The population P is selected according to the fitness value to reproduce. The

greater the individual’s fitness value, the higher the probability of being selected.
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• Step 6. The selected population P breeds offspring and has a certain probability of
crossing and mutation. m and c stand for the values of the mutation and crossing
rates, respectively.

• Step 7. Conduct Step 4 to 6 until the iteration number n is met.

2.3. GA-KELM for Traffic Flow Forecasting

Through the grid search method, we must continuously and manually set plenty of
values of γ and σ to train the model in order to discover a group of parameters from these
values that can achieve the best training effect for the KELM model. Therefore, to achieve
better training results, it is imperative to manually set a vast quantity of parameter values,
which will consume a lot of time. In addition, when new samples are added during training,
the generalization ability of KELM is insufficient.

This paper puts forward a hybrid model called GA-KELM as a solution to the afore-
mentioned issues. We use the genetic algorithm instead of grid search methods to search for
network parameters that are more suitable for KELM. The model iteratively generates the
parameters γ and σ of KELM through genetic algorithms. The purpose of crossover is to
generate new gene combinations as different as possible from their parents, while mutation
avoids local optima. The result of mutation is unstable [37]. The crossover rate is usually
set to a value higher than 0.5, while the mutation rate is typically set to a value lower than
0.1. In this experiment, the value of the crossover rate was set from 0.7 to 1. The value of the
mutation rate was set between 0 and 0.1. We chose the root mean squared error to construct
the fitness function f (x). The workflow diagram of GA-KELM is shown in Figure 1. The
parameters N, T, m, and c are the number of chromosomes, the maximum iteration number,
the value of the mutation rate, and the value of the crossover rate. R1(γmin, γmax) and
R2(σmin, σmax) represent the range of values for the regularization factor γ and the kernel
size σ.

Figure 1. The workflow of the GA-KELM mode.
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3. Experiments

This section assesses the effectiveness of GA-KELM by analyzing its performance
on two benchmark datasets for short-term traffic flow prediction, e.g., the Amsterdam
highway dataset and the England M25 highway dataset. More specific details with regard
to the case studies are below. The experimental outcomes presented in this study are the
average of 50 individual experiments. On A1, A2, A4, and A8, the standard deviations
of RMSEs are 0.753, 0.781, 0.897, and 0.794, respectively, and the standard deviations of
MAPEs are 0.154, 0.275, 0.163, and 0.161, respectively.

3.1. Datasets Description

The Amsterdam highway dataset comprises real traffic flow data gathered from the
A1, A2, A4, and A8 freeways located in the Amsterdam Ring Road [38]. The measurement
positions of A1, A2, A4, and A8 are shown in Figure 2. The four benchmark datasets are
summarized based on the number of vehicles passing through in each minute per hour.
In the experiment, one minute of traffic flow data are summarized as 10 min of traffic
flow data.

Figure 2. Brief overview of A1, A2, A4, and A8 on the ring road of Amsterdam.

The England M25 highway dataset consists of D1, D2, D3, D4, D5, D6, and P, collected
from seven different stations. Figure 3 shows the measurement locations near the intersec-
tion of the A10 ring road. Each subset is a collection of the traffic flow for 15 min. There are
2976 data points from 1 August 2019 to 31 August 2019.
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Figure 3. Brief overview of D1, D2, D3, D4, D5, D6, and P on the M25 expressway in England.

3.2. Evaluation Criteria

The RMSE calculates the average difference between predicted values and true ones,
while the MAPE represents the percentage of the average difference. These two criteria are,
respectively, represented by Equations (9) and (10).

RMSE =

√√√√ 1
N

N

∑
n=1

(ȳ(n)− y(n))2 (9)

MAPE =

√√√√ 1
N

N

∑
n=1
| ȳ(n)− y(n)

y(n)
| × 100% (10)

where y(n) and ȳ(n) refer to the actual measurement and prediction values for the nth
data group.

3.3. Experimental Setup

In this experiment, we set the data for the initial four weeks for A1, A2, A4, and A8 as
the training dataset, and the last week of data as the testing dataset. As for the England
M25 highway dataset, the training dataset is composed of data from the initial week, while
the testing dataset is composed of data from the second week.

An artificial neural network (ANN) is a computational model that emulates the struc-
ture and function of biological neural networks by interconnecting neurons, and is a
non-parametric learning model. In this paper, we set the following network parameters
according to the standards in [31]. The goal of mean square error is set to 0.001, and there
is one hidden layer with a radial basis function (RBF) spread of 2000. The upper limit of
neurons in the hidden layer (MN) is set to 40. The default standard number of neurons is
set to 25.

Grey prediction (GM) [39] is a method utilized for forecasting systems comprising
uncertain factors. GM is based on the past and present development laws of objective
things, analyzing future development trends and conditions. The GM(1,1) model was
employed to predict traffic flow.

Support vector regression (SVR) is a non-parametric regression model that uses the
support vector machine (SVM) algorithm to solve regression problems. For this experiment,
we establish the parameters of SVR based on the criteria outlined in [24]. The chosen kernel
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type for SVR is the radial basis function (RBF). The cost parameter C is is determined by
the maximum deviation allowed between the predicted and actual traffic flow, and the loss
function is ε-insensitive with a value of 1.

The autoregressive (AR) model predicts the current value of a variable by analyzing
its past values and establishing a relationship between the historical and current data of
the variable. To ensure an appropriate model fit, it is crucial to choose a reasonable value
for the order p, as higher values of p require the estimation of more parameters. The value
of parameter p is established as 8, identical to that used by Cai et al. [6].

Kalman filtering (KF) is an algorithm that estimates the optimal state of a system by
observing its input and output data. To mitigate the impact of noisy data on prediction
results and improve the performance of KF, the discrete wavelet decomposition method
was used to preprocess the traffic flow data. The criteria outlined in [40] were utilized to
establish the relevant parameters.

The seasonal autoregressive integrated moving average (SARIMA) [41] model converts
a time series with seasonality into a stationary time series through differential operations.
It was specifically designed to leverage the inherent sequential lagged relationships often
found in periodically collected data.

The long short-term memory (LSTM) network [42] is a specialized variation of a
recurrent neural network (RNN), and is commonly used to predict important events with
very long intervals and delays in time series. All parameters of the LSTM network were
set as follows. The number of hyper parameter units, the batch size, the epochs, and the
validation split were set to 256, 32, 50, and 0.05, respectively.

The noise-immune long short-term memory (NiLSTM) network is a model based on
LSTM networks that can eliminate non-Gaussian noise. In the NiLSTM, the cost function
is designed based on Correntropy instead of the mean square error (MSE), consequently
improving the forecasting performance of the model. NiLSTM is detailed in [43].

A stacked autoencoder (SAE) [44] is a deep learning model that utilizes unsupervised
pre-training to enhance model performance. The model conducts unsupervised pre-training
for each autoencoder followed by fine-tuning through backpropagation to optimize the
performance of each autoencoder.

Extreme learning machine optimized by the genetic algorithm (GA-ELM) is a hybrid
learning model utilized for predicting short-term traffic flow. This model employs the
genetic algorithm to explore the most effective solution for the extreme learning machine.
The values for the maximum number of iterations, generation gap, probability of crossover,
and mutation are 100, 0.95, 0.85, and 0.03, respectively, as stated in [31].

Gravitational search algorithm-optimized extreme learning machine (GSA-ELM) is a
blended learning model. Genetic algorithms are utilized to find the optimal solution of the
extreme learning machine in the study. The number of hidden layer nodes and the time lag
were set to 30 and 8. The maximum number of iterations, the population size, the gravity
constant G0, and the constant v were set to 100, 300, 100, and 20, respectively, according
to [31].

The study also includes a comparison between GA-KELM and two other meth-
ods: the standard extreme learning machine (ELM) and the kernel extreme learning
machine (KELM).

4. Results and Discussion

The iteration number of the GA-KELM model is set to 30. The experimental results of
GA-KELM on A1, A2, A4, and A8 are shown in Figure 4. The RMSEs for training datasets
are displayed using green lines, while the RMSEs for testing datasets are shown using red
lines. After surpassing 10 iterations, the fitness function displays negligible fluctuations
in value, which proves that the number of iterations is reasonable. In Figure 4a, while the
final stable value attained during the training process is not the minimum value, this still
does not have any impact on the performance and stability of the model.
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(a) A1 (b) A2

(c) A4 (d) A8

Figure 4. The RMSE forecasting results with different numbers of GA iterations on A1, A2, A4,
and A8.

The GA-KELM model exhibited superior performance across all datasets (A1, A2, A4,
and A8) with the lowest RMSE values, as indicated in Table 1. For example, compared
to AR, our model performs better on A1, A2, A4, and A8. GA-KELM achieved RMSE
values that are lower than those of AR by 5.56%, 9.52%, 2.31%, and 2.21% on the respective
datasets A1, A2, A4, and A8. Overall, KELM performs the best on A1 and A2, among
several other methods. Compared with KELM, the RMSEs of our model reduce by 0.42%,
2.00%, 0.65%, and 0.42%, respectively. For all models, the RMSEs of A8 are smaller than
those of the other three datasets. Due to the different traffic environments on the roads, the
traffic flow on the A8 highway is generally smaller than those on the other three highways,
making the RMSEs of the A8 dataset the lowest.

In Table 2, the MAPEs of the model proposed by us achieved the best performance
on A1, A2, and A4. On the A8 dataset, although our model did not perform the best,
the performance of GA-KELM improved compared to KELM. The MAPE represents the
proportion of the discrepancy between the predicted and actual values in relation to the
actual values, which makes it more sensitive to small measurements or outliers than the
RMSE. The traffic flow of the A8 dataset is much smaller than that of other datasets, meaning
that the measured values in the A8 dataset are relatively small. Therefore, although the
RMSEs of all models on A8 are the smallest, the MAPE is relatively high.



Mathematics 2023, 11, 3574 10 of 15

Table 1. The RMSEs (vehs/h) of different forecasting models on the Amsterdam ring road dataset.

Models A1 A2 A4 A8

ANN 299.64 212.95 225.86 166.50
GM 347.94 261.36 275.35 189.57
SVR 329.09 259.74 253.66 190.30
AR 301.44 214.22 226.12 166.71
KF 332.03 239.87 250.51 187.48

SARIMA 308.44 221.08 228.36 169.36
LSTM 294.52 211.31 224.68 168.91

NiLSTM 285.54 203.69 223.72 163.25
SAE 295.43 209.32 226.91 167.01
ELM 294.10 201.67 222.07 169.15

KELM 285.86 197.79 222.34 163.70
GA-ELM 291.42 211.43 228.57 169.25

GSA-ELM 287.89 203.04 221.39 163.24
GA-KELM 284.67 193.83 220.89 163.02

Table 2. The MAPEs (%) of different forecasting models on the Amsterdam ring road dataset.

Models A1 A2 A4 A8

ANN 12.61 10.89 12.49 12.53
GM 12.49 10.90 13.22 12.89
SVR 14.34 12.22 12.23 12.48
AR 13.57 11.59 12.70 12.71
KF 12.46 10.72 12.62 12.63

SARIMA 12.81 11.25 12.05 12.44
LSTM 12.82 11.06 13.71 12.56

NiLSTM 12.00 10.14 11.57 11.76
SAE 11.92 10.23 11.87 12.03
ELM 11.82 10.34 12.05 12.42

KELM 11.76 10.07 11.58 12.61
GA-ELM 11.86 10.30 11.87 12.26

GSA-ELM 11.69 10.25 11.72 12.05
GA-KELM 11.67 9.83 11.31 12.59

The results of the GA-KELM model on the Amsterdam highway dataset are shown
in Figure 5. The actual values are represented by a blue line, while the predicted values
of GA-KELM are denoted by a red line. The error between the predicted value and the
actual value divided by the actual value is expressed by the green line. In Figure 5, it is
evident that the relative errors obtained by the GA-KELM model on A1, A2, A4, and A8
tend to approach 0 in most cases, indicating that GA-KELM has great fitting performance
on the Amsterdam highway dataset. Additionally, the red and blue lines are extremely
close to the A1, A2, A4, and A8 datasets, indicating that the predicted values exhibit
remarkable proximity to the actual values, indicating that our model has a good predictive
performance. However, during the early morning or late night, there is a significant
decrease in the volume of traffic flow, which results in relatively small prediction errors
but large relative errors. To minimize the randomness in forecasting performance, we
compared our model with the KELM and the GSA-ELM in different periods. The results
are depicted in Figure 6. Figure 6a–e displays the predictions of GA-KELM, KELM, and
GSA-ELM in some typical scenarios characterized by significant fluctuations in traffic flow,
such as during the morning peak period and evening rush hour. The figure demonstrates
that GA-KELM achieves a superior prediction accuracy when confronted with uncertainties
and variations in traffic flow. Figure 6f displays the predictions of GA-KELM, KELM, and
GSA-ELM at midnight, suggesting that our model excels in the low traffic scenario as well.
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(a) A1 (b) A2

(c) A4 (d) A8

Figure 5. Visualization results of the related error, the measurements, and the predictions of the
GA-KELM.

(a) (b) (c)

(d) (e) (f)

Figure 6. (a–f) display the measurement and the forecasting results of GA-KELM, KELM, and
GSA-ELM in different periods.

In Tables 3 and 4, the data from the initial five days, the previous week, the first two
weeks, and the first four weeks are set as different sample sizes to train the model, and
the last week of data are set as the testing dataset. Our model achieved lower RMSEs and
MAPEs than KELM on A1, A2, A4, and A8 with all different sample sizes. For example,
compared to KELM, the RMSEs of our model reduced by 2.03%, 3.83%, 1.84%, and 2.09%
on A1, A2, A4, and A8, respectively, when the sample size was two weeks. Similarly,
the MAPEs reduced by 6.51%, 5.59%, 7.84%, and 5.11%, respectively. Furthermore, we
trained our model on A8, A4, A2, and A1 but, respectively, tested it on A1, A2, A4, and A8,
represented by A1*, A2*, A4*, and A8*, respectively. As shown in Tables 3 and 4, the four
week training dataset achieves the lowest values of RMSE and MAPE in different sample
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sizes. Our model achieved a good performance even when trained on one dataset and
tested on another.

Table 3. The RMSE (vehs/h) comparison results on A1, A2, A4, and A8 with different sample sizes of
GA-KELM, KELM, and GA-KELM trained on one dataset but tested on another.

Different
Sample Sizes

A1
(Ours)

A1
(KELM)

A1*
(Ours)

A2
(Ours)

A2
(KELM)

A2*
(Ours)

A4
(Ours)

A4
(KELM)

A4*
(Ours)

A8
(Ours)

A8
(KELM)

A8*
(Ours)

five days 291.87 295.85 305.02 208.28 214.35 213.53 225.81 233.92 232.14 169.82 173.62 166.45
one week 288.22 294.28 306.05 200.71 207.16 208.29 224.74 229.87 231.25 168.85 173.07 167.13

two weeks 288.01 293.97 298.93 198.01 205.89 205.11 223.61 227.81 226.67 165.46 168.99 166.43
four weeks 284.67 285.86 297.52 193.83 197.79 204.56 220.89 222.34 225.36 163.02 163.70 164.66

Table 4. The MAPE (%) comparison results on A1, A2, A4, and A8 with different sample sizes of
GA-KELM, KELM, and GA-KELM trained on one dataset but tested on another.

Different
Sample Sizes

A1
(Ours)

A1
(KELM)

A1*
(Ours)

A2
(Ours)

A2
(KELM)

A2*
(Ours)

A4
(Ours)

A4
(KELM)

A4*
(Ours)

A8
(Ours)

A8
(KELM)

A8*
(Ours)

five days 12.39 13.21 13.54 11.21 12.68 13.13 12.17 13.36 12.46 13.01 14.06 13.41
one week 11.78 12.91 13.53 10.05 10.84 12.18 12.26 13.34 12.36 13.13 14.36 13.20

two weeks 11.91 12.74 13.02 10.13 10.73 11.44 11.88 12.89 11.94 12.64 13.32 12.87
four weeks 11.67 11.76 12.89 9.83 10.07 11.30 11.31 11.58 11.85 12.59 12.61 12.69

Figure 7 shows the iterative process of GA-KELM on the English M25 highway dataset.
After fifteen iterations, the value of RMSE tends to stabilize. As shown in Table 5, our model
exhibited optimal performance on all datasets, achieving 94.12, 106.40, 111.67, 46.53, 17.30,
132.44, and 25.33 on the D1, D2, D3, D4, D5, D6, and P datasets, respectively. The RMSEs of
GA-KELM are 7.10%, 3.91%, 6.08%, 5.02%, 6.74%, 8.78%, and 10.11% lower than GA-ELM,
respectively. Compared with the standard KELM, the RMSEs of GA-KELM decreased by
0.70%, 0.08%, 1.36%, 2.68%, 1.42%, 4.23%, and 0.55%, respectively. Due to some zero traffic
flow in the England M25 highway dataset, it is not appropriate to choose the MAPE as an
evaluation indicator. The experiment on the England M25 highway dataset demonstrates
that the GA-KELM model has a good generalization ability.

(a) D1, D2, D3 and D6 (b) D4, D5 and P

Figure 7. The RMSE forecasting results with different GA iterations on D1, D2, D3, D4, D5, D6, and P.
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Table 5. The RMSE (vehs/h) comparison results of traffic flow datasets from D1 to D6 and P on the
England M25 highway dataset.

Models D1 D2 D3 D4 D5 D6 P

ELM 161.49 116.81 124.22 51.52 19.44 149.33 29.17
GA-ELM 101.31 110.74 118.90 48.99 18.55 145.18 28.18

GSA-ELM 97.47 108.03 113.20 48.87 18.45 140.22 26.02
KELM 94.78 106.49 113.20 47.81 17.55 138.29 25.47

GA-KELM 94.12 106.40 111.67 46.53 17.30 132.44 25.33

5. Conclusions

In this paper, a blended learning model is developed for short-term traffic flow fore-
casting. Kernel extreme learning machine is used to cope with the non-linearity of traffic
flow sequences with an end-to-end mechanism. The application of a genetic algorithm
facilitates the optimization of the parameters of kernel extreme learning machine. The
experimental results on the Amsterdam dataset and the England M25 highway dataset
show that the genetic algorithm improves the prediction performance and generalization
ability of kernel extreme learning machine. We plan to extend the application of the GA-
KELM model to other relevant fields in the future, such as PM2.5 concentration forecasting,
investment risk level prediction, product sales forecasting, and so on.
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