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Abstract: One of the most widely known probability distributions used to explain the probabilistic
behavior of positive data is the log-normal (LN). Although the LN distribution is capable of adjusting
data types, it is not always fully true that the model manages to adequately model the behavior
of the response of interest since in some cases, the degree of skewness and/or kurtosis of the data
are greater or less than those that the LN distribution can capture. Another peculiarity of the LN
distribution is that it only fits unimodal positive data, which constitutes a limitation when dealing
with data that present more than one mode (bimodality). On the other hand, the log-normal model
only fits unimodal positive data and in reality there are multiple applications where the behavior
of materials is bimodal. To fill this gap, this paper introduces a new probability distribution that is
capable of fitting unimodal or bimodal positive data with a high or low degree of skewness and/or
kurtosis. The new distribution is a generalization of the LN distribution. For the new proposal, its
main properties are studied and the process of estimation of the parameters involved in the model
is carried out from a classical perspective using the maximum likelihood method. An important
feature of this distribution is the non-singularity of the Fisher information matrix, which guarantees
the use of asymptotic theory to study the properties of the parameter estimators. A Monte Carlo type
simulation study is carried out to evaluate the properties of the estimators and finally, an illustration
is presented with a set of data related to the concentration of nickel in soil samples, allowing to show
that the proposed distribution fits extremely well in certain situations.

Keywords: bimodality; generalized Gaussian model; maximum likelihood estimation; positive data

MSC: 60E05; 62E10

1. Introduction

Until a few years ago, the modeling of positive data was limited to the use of some
distributions which are characterized by being of asymmetric type, such as the gamma,
Weibull, exponential and log-normal (LN) models. In geochemistry, the fundamental
law enunciated by Ahrens [1], “the concentration of a chemical element in a rock has a
logarithm-normal distribution”, converted to the LN distribution, one of the most used
for modeling the concentration of chemical elements.The LN distribution denoted by
LN(µ, σ2), is defined from the transformation of the random variable Y = log(X), where
X ∼ N(µ, σ2). The model has wide applicability in studies about survival time materials in
engineering sciences and some economic studies.

Another type of asymmetric distribution, used for fitting positive data, is the log-
skew-normal (LSN) model introduced by Azzalini et al. [2], which is an extension of the
original skew-normal (SN) distribution proposed by Azzalini [3]. From the SN model,
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numerous families of asymmetric distributions have been introduced and studied in detail,
for example, the symmetric-asymmetric family of distributions with probability density
function (PDF) given by

ϕA(y; λ) = 2 f (y)G(λy), y ∈ R, (1)

where λ ∈ R, f is a symmetric PDF around zero, G is an absolutely continuous symmetric
distribution function, and λ is a parameter that controls the asymmetry. The SN model is a
special case of the model in (1), which is obtained by letting f = φ and G = Φ, the PDF
and the cumulative distribution function (CDF) of the normal distribution. The extension
of the location-scale version of the SN model follows by applying the linear transformation
Z = ξ + ηY, where ξ ∈ R and η > 0. This is denoted by SN(ξ, η, λ), and the standard case
by SN(λ). Additional works focused on the study of the SN distribution were carried out
by Azzalini and Dalla Valle [4], Henze [5] and Chiogna [6], among others.

An extension of the SN model for fitting positive data denoted by LSN(ξ, η, λ) was
introduced by Azzalini et al. [2]. This extension has PDF given by

fLSN(y; ξ, η, λ) =
2

ηy
φ

(
log(y)− ξ

η

)
Φ
(

λ
log(y)− ξ

η

)
, y ∈ R+, (2)

where φ and Φ are the PDF and CDF of the standard normal distribution, respectively,
and λ is a parameter which controls the asymmetry and kurtosis in the model. The LSN
distribution is commonly used for modeling data with skewness and kurtosis coefficients
greater than the LN distribution can fit. Notice that, letting λ = 0 in the Equation (2), the
LSN reduces to the LN model.

As an alternative to the SN model, Durrans [7] introduced another type of asymmetric
distribution, called fractional order statistics model, and in much of the statistical literature
referred to as alpha-power (AP) model. Properties of the AP model were studied by Gupta
and Gupta [8] and Pewsey et al. [9]. The AP has PDF given by

ϕF(y; α) = α f (y){F(y)}α−1, y ∈ R, (3)

where α ∈ R+ is a parameter that controls the skewness and kurtosis of the distribution,
and F is an absolutely continuous distribution function with PDF f = dF. In the particular
case of F = Φ in (3), we said that the random variable Y follows the generalized Gaussian
(or power-normal) distribution, and is denoted by Y ∼ PN(α). The extension of the
location-scale of the PN model, denoted by PN(ξ, η, α), to the case of positive data was
proposed by Martínez-Flórez et al. [10], who defined the log-power-normal (LPN) model
whose PDF is given by

ϕLPN(y; ξ, η, α) =
α

ηy
φ

(
log(y)− ξ

η

){
Φ
(

log(y)− ξ

η

)}α−1

, y ∈ R+, (4)

where ξ ∈ R and η > 0 are parameters of location and scale, respectively. This model is
denoted by Y ∼ LPN(ξ, η, α). The LPN model contains, as a special case, the LN model
when α = 1.

Contrary to the LSN model in which the information matrix is singular for the case
λ = 0, Martínez-Flórez et al. [10] showed that the LPN model has information matrix
non-singular when α = 1. Thus, in the LPN model, statistical inference based on the theory
of large samples can be carried out. The normality of the vector of maximum likelihood
estimator (MLE) for the model parameters can be tested by using the likelihood-ratio
statistic. The LPN was studied also by Martínez-Flórez et al. [11].

In the statistical literature, it is well known that the SN and PN models are restricted to
the case of unimodal data set; so, extensions to the bimodal situations of these two models
have been considered by some authors. For example, Arnold et al. [12] defined the bimodal
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model known as “the extended normal-asymmetric two-pieces model” (ETN), whose PDF
is given by

fETN(y; λ, β) = 2cλφ(y)Φ(λ|y|)Φ(βy), y ∈ R, (5)

where λ, β ∈ R, and cλ is a normalizing constant. For the ETN model, Arnold et al. [12]
showed that the information matrix is singular when λ = β = 0.

Concerning bimodal positive data, Bolfarine et al. [13] introduced the log-bimodal-
skew-normal model, which is denoted by Y ∼ LBSN(ξ, η, λ, β). The LBSN model is an
extension of the SN distribution and is adequate for modeling bimodal positive data. The
PDF of the LBSN model is given by

ϕLBSN(y; ξ, η, λ, β) =
2

yη

1 + βx2

1 + β
φ(x)Φ(λx), y ∈ R+, (6)

where x = (log(y)− ξ)/η, with ξ, λ ∈ R, β, η ∈ R+.
Recently, Bolfarine et al. [14] extended the unimodal generalized Gaussian model of

Durrans [7] to situations of bimodal asymmetric data by considering the alternative of the
ETN model developed by Arnold et al. [12]. The extension of Bolfarine et al. [14], which is
denoted by ABPN(β, α), has density function given by

ϕ(y; β, α) = 2αcαφ(y){Φ(|y|)}α−1Φ(βy), y ∈ R, (7)

where φ and Φ are the PDF and CDF of the standard normal distribution, respectively,
and, cα = (2α−1)/(2α − 1), with α ∈ R+, and β ∈ R. Bolfarine et al. [14] showed that the
PDF in (7) is bimodal and asymmetric for values of α > 1, and certain values of β; and
unimodal for α ≤ 1. Therefore, the ABPN model can be used for fitting data with a high
degree of asymmetry and bimodality. For the ABPN model, the authors also showed that
the information matrix is non-singular in the neighborhood of α = 1, contrary to the case
of the ETN model of Arnold et al. [12], whose information matrix is singular for the case
λ = β = 0. Hence, normality of the MLE for the parameters of the ABPN model can be
tested by using the large sample theory together with the likelihood-ratio statistic.

In the current literature, there are few distributions for fitting bimodal positive data,
and therefore, this work is focused to propose a new distribution which is adequate to
fit data with this behavior. The proposed model generalizes the fundamental law of
geochemistry of [1], and in addition, is more flexible than the LN, LSN and LPN models,
which are contained as special cases.

The rest of the paper is organized as follows: Section 2 introduces the log-bimodal
asymmetric generalized Gaussian model, and its main properties are enunciated and
studied. The moment, score function, and the observed and expected information matrix are
obtained. The inference for the parameters of the model is realized by using the maximum
likelihood method. The results of a simulation study and its respective discussion are
presented in Section 3. In Section 4, an application to a real data set consisting of samples
of concentration of nickel in soil is presented to illustrate the use of the new model. Finally,
a discussion about the proposed model is presented in Section 5.

2. The Log-Uni-Bi-Modal Asymmetric Generalized Gaussian Model

In this section, we introduce a new model which generalizes some distributions
already known in the statistical literature for fitting positive data. This model contains two
parameters that make it more flexible than the LN, LSN and LPN models, and is obtained
from considering the alternative two-pieces skew-normal model for bimodal asymmetric
data of Arnold et al. [12].
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Definition 1. If random variable Y is distributed with density function given by:

ϕ(y; ξ, η, β, α) =
kα

y
φ

(
log(y)− ξ

η

){
Φ
(
| log(y)− ξ|

η

)}α−1

Φ

(
β
(
log(y)− ξ

)
η

)
, (8)

for y ∈ R+; where ξ, β ∈ R; α, η ∈ R+, and kα = α2α/(2α − 1) is the normalizing constant,
then Y follows a log-bimodal asymmetric generalized Gaussian distribution, also called log-bimodal
asymmetric power-normal (LABPN) distribution, with parameter θ = (ξ, η, β, α)>. We use the
notation Y ∼ LABPN(ξ, η, β, α).

In density function (8), β is an asymmetry parameter, α is a shape parameter, ξ is a
location parameter and η is a scale parameter.

Although the new distribution is a little more complicated than the existing method-
ologies, this does not constitute a limitation in its applicability. On the one hand, the main
benefit of this new proposal is the possibility of fitting positive data that present bimodality
and a high degree of asymmetry and kurtosis that cannot be captured by existing models
in the current literature. On the other hand, the existence of statistical packages today
facilitates their implementation in practical terms.

From Definition 1, some special cases of the LABPN model are followed by letting
specific values of the parameters. For example, when α = 1 and β = 0 the LN model
follows; for α = 1, the LSN model is obtained; and, if β = 0 and (log(y)− ξ)/η > 0 the
LPN model follows. Finally, when α = 2, then Y ∼ ETN(1, β). These results are presented
in the following properties:

Property 1. If Y ∼ LABPN(ξ, η, β, α), then LABPN(ξ, η, 0, 1) = LN(ξ, η2), where LN denote
the log-normal distribution.

Property 2. If Y ∼ LABPN(ξ, η, β, α), then LABPN(ξ, η, β, 1) = LSN(ξ, η, β), where LN
denote the log-skew normal distribution, see Azzalini et al. [2].

Property 3. If Y ∼ LABPN(ξ, η, β, α) and log(Y) > ξ for all Y ∈ R+, then LABPN(ξ, η, 0, α) =
LPN(ξ, η, α), where LN denote the log-skew normal distribution, see Martínez-Flórez et al. [10].

Property 4. If Y ∼ LABPN(ξ, η, β, 2), then Y ∼ ETN(ξ, η, 1), where LN denote the log-skew
normal distribution, see Arnold et al. [12].

Differentiating the density function regarding y, we have that the derivative of
ϕ(y; ξ, η, β, α) is null at

α− 1 = |z|Φ(|z|)
φ(z)

[
1 +

1
z
− β

z
φ(βz)
Φ(βz)

]
, y > 0,

where z = (log(y)− ξ)/η. Now, for y > 0 such that −∞ < z < 0, we have

lim
β→∞

β

z
φ(βz)
Φ(βz)

= −∞,

and for y > 0, such that 0 < z < ∞, we have

lim
β→−∞

β

z
φ(βz)
Φ(βz)

= −∞.

Therefore, for α > 1 and certain values of −∞ < β < ∞ satisfying

0 <

[
1 +

1
z
− β

z
φ(βz)
Φ(βz)

]
< ∞,
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we have a log-bimodal model. Figure 1 reveals how the parameters α and β control the
skewness, kurtosis and shape of the LABPN model.

2.1. Moments

The moments of the random variable Y with LABPN distribution do not have explicit
form; however, the rth moment for the standard case of the LABPN model, that is, ξ = 0
and η = 1, which is denoted by LABPN(β, α), can be obtained by using the formula:

µr = E(Zr) = kα

∫ ∞

0
(exp(−rz) + exp(rz))φ(z){Φ(z)}α−1Φ(βz)dz.

where z = log(y), y > 0. Thus, the rth moment of Y ∼ LABPN(ξ, η, β, α) can be obtained
from the expression:

E(Yr) =
r

∑
k=0

(
r
k

)
ξkηr−kµr−k.

The following result is similar to that given for the LN, LSN and LPN models.

Property 5. For all α ∈ R+, the moment-generating function (MGF) of the random variable
Y ∼ LABPN(ξ, η, β, α) does not exist.

Proof. The result is obvious for α = 1 and β = 0, since this corresponds to the case
of the LN model. For α = 1, the LSN model follows and for β = 0 and z > 0 for all
y = log(z) ∈ R+, we have the case of the LPN model.

For 0 < t < a < ∞ (without loss of generality, we took ξ = 0 and η = 1), we have by
definition

MY(t) = E(etY) = kα

∫ ∞

0

ety

y
φ
(
log(y)

){
Φ
(
| log(y)|

)}α−1
Φ
(

βlog(y)
)
dy, y ∈ R+,

= kα

∫ 1

0

1
y

etyφ
(
log(y)

){
1−Φ(log(y))

}α−1
Φ
(

β log(y)
)
dy

+kα

∫ ∞

1

1
y

etyφ
(
log(y)

){
Φ(log(y))

}α−1
Φ
(

β log(y)
)
dy,

Letting hβ(y) = 2
y etyφ(log(y))Φ(β log(y))dy, it follows for β > 0 that

lim inf
y→∞

Φ
(

β log(y)
)
≥ 1

2
,

see Lin and Stoyanov [15]. In addition, by letting α = α0, we get

0 < 2α0
{

Φ(log(y))
}α0−1

< kα0

{
Φ(log(y))

}α0−1,

then, if y→ ∞ it follows that hβ(y)→ ∞ and 0 < kα0

{
Φ(log(x))

}α0−1 −→ kα0 , where it is
obtained that 0 < 2α0 < kα0 ; therefore, for

A(α) = kα

∫ ∞

1

1
y

etyφ
(
log(y)

){
Φ(log(y))

}α−1
Φ
(

β log(y)
)
,

we conclude that A(α0)(y) = ∞. On the other hand, following Arnold and Lin [16],

lim
y→∞

− log(Φ(−y))
y2 =

1
2

,
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we have for β < 0, and y→ ∞, the approximation

log
(
Φ(β log(y))

)
' −1

2
(

β log(y)
)2;

therefore, when y→ ∞, we have for fixed α that

log
(

1
2

kα0 hβ(y)
{

Φ(log(y))
}α0−1

)
' −1

2
log(2π) + log(kα0)− log(2y) + ty

− 1
2
(1 + β2)

(
log(y)

)2
+ (α0 − 1) log

(
Φ(log(y))

)
−→ ∞

from which we can conclude that A(α0)(y) = ∞. Thus, for all α ∈ R+ and β ∈ R, the
variable random Y does not have MGF when t > 0. Therefore, MY(t) does not exist, and
the proof is completed.

2.2. Statistical Inference

Given a random sample of size n, Y such that, Y = (Y1, Y2, . . . , Yn), with Yi ∼
LABPN(ξ, η, β, α), the log-likelihood function for the parameter θ = (ξ, η, β, α)> can be
written as

`(θ; X) = n
(
log(α) + log(cα)− log(η)

)
+

n

∑
i=1

log
(
φ(zi)

)
+(α− 1)

n

∑
i=1

log
(
Φ(|zi|)

)
+

n

∑
i=1

log
(
Φ(βzi)

)
,

where zi = (log(yi)− ξ)/η, for i = 1, . . . , n. The corresponding score functions, obtained
by taking the first derivative of the log-likelihood function, are given by

U(ξ) =
1
η

n

∑
i=1

zi −
α− 1

η

n

∑
i=1

sgn(zi)
φ(|zi|)
Φ(|zi|)

− β

η

n

∑
i=1

φ(βzi)

Φ(βzi)
= 0

U(η) = −n
η
+

1
η

n

∑
i=1

z2
i −

α− 1
η

n

∑
i=1
|zi|

φ(|zi|)
Φ(|zi|)

− β

η

n

∑
i=1

zi
φ(βzi)

Φ(βzi)
= 0

U(β) =
n

∑
i=1

zi
φ(βzi)

Φ(βzi)
= 0,

U(α) =
n
α
− n log 2

1− 2−α
+

n

∑
i=1

log
(
2Φ(|zi|)

)
= 0.

2.3. Observed Information Matrix

The elements of the observed information matrix are obtained by multiplying by -1
the second partial derivatives of the log-likelihood function regarding the parameters, by
using the expression

kθr ,θp = −∂2`(θ; y)
∂θr∂θp

, r, p = 1, 2, 3, 4, (9)

with θ1 = ξ, θ2 = η, θ3 = β and θ4 = α. These elements are presented in detail in
Appendix A.
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Figure 1. PDF of the LABPN model with parameter θ, for: (a) θ = (0.25, 1.0, 1.0, α) with α = 3.25
(solid line), 2.5 (dashed line), 1.75 (dotted line); (b) θ = (0.25, 1.0, 1.0, α) with α = 0.25 (solid line), 0.5
(dashed line), 0.75 (dotted line); (c) θ = (1.25, 0.5, 1.0, α) with α = 3.25 (solid line), 2.5 (dashed line),
1.75 (dotted line); (d) θ = (1.25, 0.5, 1.0, α) with α = 0.25 (solid line), 0.5 (dashed line), 0.75 (dotted
line); (e) θ = (2.25, 1.0,−1.0, α) with α = 3.25 (solid line), 2.5 (dashed line), 1.75 (dotted line) and
(f) θ = (2.25, 1.0,−1.0, α) with α = 0.25 (solid line), 0.5 (dashed line), 0.75 (dotted line).
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2.4. Expected Information Matrix

Under the assumption that the regularity conditions are satisfied, the elements of the
expected information matrix can be calculated by multiplying by n−1, the expected value
of the corresponding elements of the observed information matrix, that is,

Iθrθp = n−1E
{
−∂2`(θ; y)

∂θr∂θp

}
, r, p = 1, 2, 3, 4,

In Appendix A, the explicit expressions of the elements of the expected information
matrix are presented. The expectations of the expressions involved in the components of
the information matrix must be calculated numerically. In the particular case where α = 1
and β = 0, so that

ϕ(y; ξ, η, 1, 0) =
1

yη
φ

(
log(y)− ξ

η

)
,

is the density function of the LN model of location-scale version, the information matrix
becomes

I(θ) =



1
η2 0

E[sgn(Z)W]

η

1
η

√
2
π

0
2
η2

E[sgn(Z)ZW]

η
0

E[sgn(Z)W]

η

E[sgn(Z)ZW]

η
1− 2(log 2)2 0

1
η

√
2
π 0 0

2
π


,

whose determinant |I(θ)| 6= 0, then the information matrix is non-singular in the neigh-
borhood of α = 1 and β = 0, that is, for the LN model. This is not the case for the model
of Azzalini and Dalla Valle [4] for which the Fisher information matrix is singular in the
neighborhood of λ = 0. Furthermore, the upper sub-matrix of size 2× 2 corresponds to the
Fisher information matrix of the LN model. Therefore, for n large

θ̂
D−→ N4(θ, I(θ)−1),

θ̂ is consistent and has asymptotic normal distribution with covariance matrix I(θ)−1.
Inferences based on confidence intervals and hypothesis testing for the location, scale
and shape parameters can be realized by using sampling properties for large samples of
the MLE.

3. Simulation Study

This section presents a Monte Carlo simulation study, which was carried out with the
objective of evaluating the behavior of the maximum likelihood estimators for the LABPN
distribution.

For this simulation, the maxLik function of the statistical software R Development Core
Team [17], version 4.2.3 was used and data from the LABPN distribution were generated,
considering the values of the parameters: ξ = 1.0 and η = 0.5, and different values of the
parameters β and α.

For each scenario, 5000 random samples from the LABPN distribution were gener-
ated with the sample sizes n = 40, 80, 150, 200 and 500. As quality measures to evaluate
the behavior of the MLEs; the bias and the mean square error (MSE) were used. These
measurements were calculated as

Bias(δ̂(j)) =
1

5000

5000

∑
i=1

(δ̂
(j)
i − δ(j)),
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and

MSE(δ̂(j)) =
1

5000

5000

∑
i=1

(δ̂
(j)
i − δ)2

where δ̂
(j)
i is the estimate of δ(j) for the ith sample. The results of the simulation study are

presented in the Table 1.

Table 1. Bias and mean square error (MSE) of maximum likelihood estimates.

β = −0.5, α = 2.5 β = 0.5, α = 2.5 β = −1.0, α = 4.0 β = 1.0, α = 4.0

n Estimator Bias MSE Bias MSE Bias MSE Bias MSE

40 ξ̂ −0.0204 0.0097 0.0214 0.0111 −0.0454 0.0096 0.0453 0.0105
η̂ −0.0553 0.0055 −0.0528 0.0057 −0.0602 0.0063 −0.0607 0.0063
β̂ 0.0536 0.0771 −0.0286 0.0994 −0.0507 0.1639 0.0551 0.1720
α̂ 0.9402 2.0237 0.9276 2.0091 0.6232 1.8534 0.6793 2.0535

80 ξ̂ −0.0196 0.0060 0.0207 0.0064 −0.0440 0.0065 0.0444 0.0064
η̂ −0.0458 0.0036 −0.0453 0.0036 −0.0554 0.0044 −0.0556 0.0044
β̂ 0.0253 0.0480 −0.0278 0.0505 −0.0360 0.0710 0.0237 0.0605
α̂ 0.5918 0.8999 0.5726 0.8761 0.3439 0.8127 0.3104 0.7778

150 ξ̂ −0.0189 0.0046 0.0205 0.0041 −0.0438 0.0053 0.0439 0.0051
η̂ −0.0435 0.0029 −0.0427 0.0029 −0.0547 0.0039 −0.0533 0.0038
β̂ 0.0233 0.0338 −0.0246 0.0321 −0.0226 0.0452 0.0234 0.0469
α̂ 0.4946 0.5760 0.4644 0.5701 0.2630 0.5238 0.2539 0.5615

200 ξ̂ −0.0179 0.0036 0.0203 0.0033 −0.0421 0.0042 0.0403 0.0041
η̂ −0.0414 0.0025 −0.0418 0.0026 −0.0530 0.0035 −0.0521 0.0034
β̂ 0.0202 0.0263 −0.0224 0.0245 −0.0164 0.0339 0.0202 0.0360
α̂ 0.4294 0.4353 0.4104 0.4471 0.2315 0.4298 0.2464 0.3938

500 ξ̂ −0.0176 0.0019 0.0201 0.0019 −0.0398 0.0027 0.0383 0.0024
η̂ −0.0401 0.0019 −0.0409 0.0020 −0.0496 0.0028 −0.0492 0.0027
β̂ 0.0155 0.0126 −0.0180 0.0123 −0.0103 0.0151 0.0113 0.0137
α̂ 0.3399 0.2192 0.3457 0.2251 0.1605 0.1672 0.1559 0.1709

From the table, it can be seen that in general, as the sample size increases, the bias and
the MSE of all parameter estimators tend to decrease and they approach zero. Thus, MLEs
are asymptotically consistent and large-sample theory can be used to perform interval
estimation of parameters as well as hypothesis testing based on likelihood ratio statistics.

4. Application to the Nickel Content in the Soil Data

For the illustration, we use a data set which was previously analyzed by Bolfarine
et al. [13], who fitted the LBSN model. The data consists of 86 samples of nickel content
(in Ni(µg g−1)) in soil samples analyzed at the Department of Mines of the University of
Atacama, Chile. The descriptive statistics for this data set are: n = 86, mean = 21.337,
standard deviation = 16.639, skewness = 2.440, and kurtosis = 12.0443. For this same
data set, the skewness and kurtosis coefficients of the logarithm of the nickel content for the
86 samples were also calculated, which were −0.4490 and 3.7344, respectively; therefore,
the assumption that the logarithm of the nickel content follows an LN model is inadequate.

Bolfarine et al. [13] found that the LBSN model fitted the nickel content data better
than the LN model. As an alternative to the LBSN model, we fitted the LABPN model. To
compare our proposal, we also fitted the LN and LSN Azzalini et al. [2] models. The MLEs
of the fitted models, which were obtained numerically using the optimal function of the
statistical package [17], are presented in the Table 2 with the respective standard errors in
parentheses. For obtaining the parameter estimates, we used the optim function from the
[17] package.
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To compare the fitted models, we computed the estimated values of the AIC Akaike [18],
which is given by AIC = −2ˆ̀(·) + 2k, BIC = −2ˆ̀(·) + log(n)k Schwarz [19], and the
modified AIC criterion [20], typically called the consistent AIC, namely, CAIC = −2ˆ̀(·) +
(1 + log(n))k, where k is the number of parameters for the considered model. The best
model is the one with the smallest AIC (or BIC or CAIC). According to the AIC, BIC and
CAIC statistics, the best models are the LBSN and LABPN.

Table 2. Estimated parameters (standard error) for the LN, LSN, LBSN and LABPN models.

Parameter LN LSN LBSN LABPN

ξ 2.828 (0.078) 3.486 (0.154) 1.784 (0.163) 1.689 (0.098)
η 0.728 (0.055) 0.979 (0.128) 0.778 (0.077) 0.937 (0.071)
α 4.958 (3.471) 6.111 (1.170)
β −1.596 (0.587) 1.253 (0.296) 1.567 (0.324)

AIC 671.6 671.0 665.6 665.6
BIC 676.4 678.3 675.3 675.3

CAIC 678.4 681.3 679.3 679.3

The bimodality hypothesis can also be formally tested from the system of hypotheses

H0 : α = 1 versus H1 : α 6= 1,

which is equivalent to compare the LSN and LABPN models. Since the Fisher information
matrix is non-singular, we used the likelihood-ratio statistic, namely,

Λ1 =
LLSN(ξ̂, η̂, β̂)

LLESPN(ξ̂, η̂, β̂, α̂)
,

where L(·) is the likelihood function.
After substituting the estimated values of the parameters, we have

−2 log(Λ1) = −2(−332.5 + 328.8) = 7.4,

which is greater than the 5% critical value of the chi-squared distribution, χ2
1,95% = 3.84.

This result leads to the rejection of the null hypothesis; therefore, we conclude that the
LABPN model fits best the nickel concentration data.

To compare the LN model with the LABPN model, we considered the system of
hypotheses

H0 : (α, β) = (1, 0) versus H1 : (α, β) 6= (1, 0),

which can be tested by using the likelihood-ratio statistic given by

Λ2 =
LLN(ξ̂, η̂)

LLABPN(ξ̂, η̂, α̂, β̂)
.

Considering the estimated values, we get −2 log(Λ2) = 10, which is greater than the
critical value of the chi-square distribution with two degrees of freedom, χ2

2,95% = 5.99.
Again, we rejected the null hypotheses H0, and we concluded that the LABPN model fits
the nickel content data better than the LN model.

Now, to compare the LBSN and LABPN models, it is necessary to consider a test for
non-nested models. Thus, we suppose that f (yi|xi, θ) and g(yi|xi, β) are the corresponding
non-nested densities to be compared. To test the hypothesis of no differences between these
densities, that is,

H0 : E
[

log
f (yi|xi, θ)

g(yi|xi, β)

]
= 0,
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Vuong [21] proposed the likelihood-ratio statistic given by

TLR,NN =
1√
n

LR(θ̂, β̂)

ω̂2 ,

where

ω̂2 =
1
n

n

∑
i=1

(
log

f (yi|xi, θ̂)

g(yi|xi, β̂)

)2

−
(

1
n

n

∑
i=1

(
log

f (yi|xi, θ̂)

g(yi|xi, β̂)

))2

,

is an estimator for the variance of 1√
n LR(θ̂, β̂). One can show that, under H0, if n→ ∞, then

TLR,NN
D−→ N(0, 1).

The null hypothesis of equivalence of the models is rejected at significance level δ in
favor of the LABPN model, that is, better fit (or worse fit) compared to the LBSN model,
if TLR,NN > zδ/2 (or TLR,NN < −zδ/2). For the nickel concentration data, we obtained
TLR,NN = −0.54, which is less than the critical value z0.025 = 1.96; therefore, there are no
statistical differences between the LBSN and LABPN models. In this way, the LABPN model
is a useful alternative to fit the nickel concentration data. Figure 2 shows the fitted densities
and QQplot plots for the LSN and LABPN models. These plots also show evidence that the
LABPN model fits better than the other considered models. The QQplot in Figure 2c also
shows that the LABPN model has a good fit.
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Figure 2. (a) Histogram for the nickel concentration variable. Densities fitted by maximum likelihood:
LN (dotted-dashed line), LSN (dotted line), BLSN (dashed line) and LABPN (solid line), (b) QQplot
LSN and (c) QQplot LABPN.
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5. Concluding Remarks

In this work, a new family of parametric distributions capable of fitting unimodal and
bimodal positive data is introduced. The main properties of the new family were studied.
This new family is obtained by considering the Arnold et al. [12] and Durrans [7] models
and extends some existing models in the literature, among them, the log-normal, log-skew
norm, log-bimodal-skew-normal and log-bimodal-power-normal. This new distribution
is also very flexible and can fit unimodal and bimodal data with high (or low) degrees of
skewness and kurtosis. To obtain the estimates of the parameters in the model, a classical
approach was considered by using the maximum likelihood method together with iterative
Newton–Raphson algorithms for the optimization of the likelihood function. The score
functions were presented and the Fisher information matrix was shown to be non-singular,
which allows statistical inference to be carried out through the theory of large samples and
the use of likelihood-ratio statistics. The applicability of the new family was illustrated by
considering a data set corresponding to nickel content in soil samples. The results showed
better fit of the proposed family compared to other existing models in the literature.
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Appendix A. Information Matrix Elements

If the elements of the observed information matrix are denoted by kξξ , kηξ , . . . , kββ,
. . . , kαα, then you have to

kξξ =
n
η2 +

α− 1
η2

n

∑
i=1

wi(wi + |zi|) +
β2

η2

n

∑
i=1

w1i(βzi + w1i),

kηξ =
2n
η2 z +

α− 1
η2

n

∑
i=1

sgn(zi)wi(−1 + |zi|(wi + |zi|))

− β

η2

n

∑
i=1

w1i(1− βzi(βzi + w1i)),

kβξ =
1
η

n

∑
i=1

w1i(1− βzi(βzi + w1i)),

kηη = − n
η2 +

3
η2

n

∑
i=1

z2
i +

α− 1
η2

n

∑
i=1
|zi|wi(−2 + |zi|(wi + |zi|))

+
β

η2

n

∑
i=1

ziw1i(−2 + βzi(βzi + w1i)),
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kβη =
1
η

n

∑
i=1

ziw1i(1− βzi(βzi + w1i)),

kββ =
n

∑
i=1

z2
i w1i(βzi + w1i), kαξ =

1
η

n

∑
i=1

sgn(zi)wi,

kαη =
1
η

n

∑
i=1
|zi|wi, kαβ = 0, kαα = n

(
α−2 − 2α(2α − 1)−2(log 2)2

)
,

where w1i = φ(βzi)/Φ(βzi). After making some calculations, the elements of the expected
information matrix are given by

Iξξ =
1
η2 +

(α− 1)
η2

(
E(|Z|W) +E(W2)

)
+

β2

η2

(
βE(ZW1) +E(W2

1 )
)
,

Iξη =
2
η2E(Z) +

(α− 1)
η2

(
E(sgn(Z)Z2W) +E(ZW2)−E(sgn(Z)W)

)
+

β

η2

(
β2E(Z2W1) + βE(ZW2

1 )−E(W1)
)
,

Iξα =
1
η
E
(
sgn(Z)W

)
,

Iξβ =
1
η

(
β2E(Z2W1) + βE(ZW2

1 )−E(W1)
)
,

Iηη = − 1
η2 +

3
η2E(Z2) +

(α− 1)
η2

(
−2E(|Z|W) +E(Z3W) +E(Z2W2)

)
+

β

η

(
β2E(Z3W1) + βE(Z2W2

1 )− 2E(ZW1)
)
,

Iηα =
1
η
E(|Z|W),

Iηβ =
1
η

(
β2E(Z3W1) + βE(Z2W2

1 )−E(ZW1)
)
,

Iββ =
1
η

(
βE(Z3W1) + βE(Z2W2

1 )
)
,

Iβα = 0,

Iαα =
1
α2 −

2α(log 2)2

(2α − 1)2 ,

where W = φ(|Z|)/Φ(|Z|) and W1 = φ(βZ)/Φ(βZ).
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