Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes
Abstract
:1. Introduction
2. Preliminary Results and Setting of the Problem
2.1. Preliminaries
2.2. Spectral Problem
2.3. Some Properties of Eigenfunctions
3. Approximate Spectral Problem
3.1. Spaces , , , and
3.2. Setting of the Approximate Spectral Problem
3.3. Some Properties of Eigenfunctions
- (1)
- and in .
- (2)
- and in .
- (3)
- The eigenfunction U satisfies the junction conditions in (16) in .
4. Formulation of the Main Results
5. Proof of Theorem 2
6. Proof of Theorem 3
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Panasenko, G. Method of asymptotic partial decomposition of domain. Math. Model. Methods Appl. Sci. 1998, 8, 139–156. [Google Scholar] [CrossRef]
- Panasenko, G.P. Asymptotic analysis of bar systems. I. Russ. J. of Math. Phys. 1994, 2, 325–352. [Google Scholar]
- Panasenko, G. Multi-Scale Modelling for Structures and Composites; Springer: Dordrecht, The Netherlands, 2005; 398p. [Google Scholar]
- Panasenko, G. Method of asymptotic partial domain decomposition for non-steady problems: Heat equation on a thin structure. Math. Commun. 2014, 19, 453–468. [Google Scholar]
- Panasenko, G.; Pérez, M.-E. Method of asymptotic partial decomposition of domain for spectral problems in rod structures. J. Math. Pures Appl. 2007, 87, 1–36. [Google Scholar] [CrossRef]
- Borisov, D.; Freitas, P. Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains. Ann. I.H.Poincaré - AN 2009, 26, 547–560. [Google Scholar] [CrossRef]
- Friedlander, L.; Solomyak, M. On the spectrum of the Dirichlet Laplacian in a narrow strip. Israel J. Math. 2009, 170, 337–354. [Google Scholar] [CrossRef]
- Gaudiello, A.; Gómez, D.; Pérez-Martínez, M.-E. Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure. J. Math. Pures Appl. 2020, 134, 299–327. [Google Scholar] [CrossRef]
- Gaudiello, A.; Gómez, D.; Pérez-Martínez, M.-E. A spectral problem for the Laplacian in joined thin films. Calc. Var. Partial Differ. Equ. 2023, 62, 129. [Google Scholar] [CrossRef]
- Kuchment, P.; Zheng, H. Asymptotics of spectra of Neumann Laplacians in thin domains. In Contemporary Mathematics; AMS: Providence, RI, USA, 2003; Volume 327, pp. 199–213. [Google Scholar]
- Molchanov, S.; Vainberg, B. Laplace operator in networks of thin fibers: Small diameter asymptotics. Comm. Math. Phys. 2007, 273, 533–559. [Google Scholar] [CrossRef]
- Nazarov, S.A.; Pérez, E.; Taskinen, J. Localization effect for Dirichlet eigenfunctions in thin non-smooth domains. Trans. Amer. Math. Soc. 2016, 368, 4787–4829. [Google Scholar] [CrossRef]
- Rubinstein, J.; Schatzmann, M. Variational problems on multiply connected thin strips I: Basic estimates and convergence of the Laplacian spectrum. Arch. Rat. Mech. Anal. 2001, 160, 271–308. [Google Scholar] [CrossRef]
- Arrieta, J.M. Rates of eigenvalues on a dumbbell domain. Simple eigenvalue case. Trans. Am. Math. Soc. 1995, 347, 3503–3531. [Google Scholar] [CrossRef]
- Gadyl’shin, R.R. On the eigenvalues of a “dumbbell with a thin handle”. Izv. Ross. Akad. Nauk Ser. Mat. 2005, 69, 45–110, Translation in Izv. Math. 2005, 69, 265–329. [Google Scholar]
- Melnik, T.A.; Nazarov, S.A. Asymptotic behavior of the solution of the Neumann spectral problem in a domain of “tooth comb” type. Tr. Semin. Im. I. G. Petrovsk. 1996, 19, 138–173, Translation in J. Math. Sci. 1997, 85, 2326–2346. [Google Scholar]
- Melnik, T.A.; Nazarov, S.A. Asymptotic analysis of the Neumann problem on the junction of a body and thin heavy rods. Algebra i Anal. 2000, 12, 188–238, Translation in St. Petersburg Math. J. 2001, 12, 317–351. [Google Scholar]
- Panasenko, G.; Viallon, M.-C. Method of asymptotic partial decomposition with discontinuous junctions. Comput. Math. Appl. 2022, 105, 75–93. [Google Scholar] [CrossRef]
- Brenner, S.C.; Scott, L.R. The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2008. [Google Scholar]
- Zhan, Q.; Sun, Q.; Ren, Q.; Fang, Y.; Wang, H.; Liu, Q.H. A discontinuous Galerkin method for simulating the effects of arbitrary discrete fractures on elastic wave propagation. Geophys. J. Int. 2017, 210, 1219–1230. [Google Scholar] [CrossRef]
- Amosov, A.A.; Panasenko, G.P. Partial dimension reduction for the heat equation in a domain containing thin tubes. Math. Methods Appl. Sci. 2018, 41, 9529–9545. [Google Scholar] [CrossRef]
- Szego, G. Inequalities for certain eigenvalues of a membrane of given area. J. Ration. Mech. Anal. 1954, 3, 343–356. [Google Scholar] [CrossRef]
- Schoen, R.; Yau, S.-T. Lectures on Differential Geometry; International Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Brenner, S.C. Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 2003, 41, 304–324. [Google Scholar] [CrossRef]
- Sanchez-Hubert, J.; Sanchez-Palencia, E. Vibration and Coupling of Continuous Systems; Asymptotic Methods; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Lazutkin, V.F. KAM Theory and Semiclassical Approximations to Eigenfunctions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Visik, M.I.; Lusternik, L.A. Regular degeneration and boundary layer for linear differential equations with small parameter. Trans. Am. Math. Soc. Ser. 2 1957, 20, 239–364. [Google Scholar]
- Lobo, M.; Pérez, E. On the local vibrations for systems with many concentrated masses near the boundary. Comptes Rendus Acad. Sci. Paris 1997, 324, 323–329. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amosov, A.; Gómez, D.; Panasenko, G.; Pérez-Martinez, M.-E. Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes. Mathematics 2023, 11, 3592. https://doi.org/10.3390/math11163592
Amosov A, Gómez D, Panasenko G, Pérez-Martinez M-E. Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes. Mathematics. 2023; 11(16):3592. https://doi.org/10.3390/math11163592
Chicago/Turabian StyleAmosov, Andrey, Delfina Gómez, Grigory Panasenko, and Maria-Eugenia Pérez-Martinez. 2023. "Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes" Mathematics 11, no. 16: 3592. https://doi.org/10.3390/math11163592
APA StyleAmosov, A., Gómez, D., Panasenko, G., & Pérez-Martinez, M. -E. (2023). Asymptotic Domain Decomposition Method for Approximation the Spectrum of the Diffusion Operator in a Domain Containing Thin Tubes. Mathematics, 11(16), 3592. https://doi.org/10.3390/math11163592