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Abstract: This paper presents a practical study on how to improve the H∞ performance and meet
the input–output constraints of the two-degrees-of-freedom (DOF) flexible-joint manipulator system
(FJMS) with parameter uncertainties and external disturbances. For this reason, a robust constrained
moving-horizonH∞ controller is designed to improve the systemH∞ performance while still satisfy-
ing the input–output constraints of the uncertain system. First, the uncertain controlled system model
of the two-DOF FJMS is established via the Lagrange equation method, Spong’s assumption, and the
linear fractional transformation (LFT) technique. Then, the control requirements and input–output
constraints of the uncertain system are transformed into the linear matrix inequality (LMI) via the
theory ofH∞ control and the full-block multiplier technique. Next, the LMI optimization problem
refreshed by the current state is addressed at each sample moment with the idea of the moving-
horizon control of the model predictive control (MPC), and the calculated gain is implemented to the
nonlinear closed-loop system under the state feedback structure. The validity and feasibility of the
designed control scheme is finally verified via the results of simulation experiments.
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1. Introduction

In recent years, due to the advantages of the lighter weight, higher flexibility, lower en-
ergy consumption, and higher load ratio of the FJMS compared with the traditional rigid-joint
manipulator, the proportion of industrial processing, medical treatment, aerospace engineer-
ing, living services, and other application scenarios has increased dramatically. Thus, the
control accuracy and robustness of the FJMS have become the key targets of researchers
and users [1–5]. For the flexible joints of the manipulator, actuator motors are installed
in the individual joints, driving each link to perform the specified actions. However, the
rotors inside the motors and links are equipped with harmonic gears for transmission,
which subsequently leads to extra errors and vibrations in the angles of the joints, and ulti-
mately greatly influences the control accuracy of the FJMS [6,7]. In addition, because of the
objective existence of external disturbances and parameter uncertainties, the conventional
dynamic model of the manipulator is frequently impractical, and the above-mentioned
factors must be considered when establishing the dynamic model of the FJMS in order to
enhance theH∞ performance of the controlled system with constraints.

With the improvement in the control accuracy requirements, the existence of the
manipulator joint flexibility has already become a non-negligible matter, and a series of
methods have been adopted by international scholars to control the FJMS. For example,
L. Zouari et al. designed a sliding-mode controller to address the problem of uncertain-
ties in the joint flexibility of the manipulator [8]. The robust controller was designed
for the tracking control of the FJMS with the help of the voltage control strategy in [9].
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I. Hassanzadeh et al. invoked an approach to the model following adaptive control when
controlling a nonlinear FJMS [10]. The reason why the control performance is not good
enough is that the system modeling is not modeled and analyzed for flexible joints. In the
process of targeted modeling for the flexible joints of the manipulator, the order of the model
is greatly increased to double, and thus the sophistication of the model is strengthened,
which has attracted many scholars to explore this issue. The method of M. Spong has been
the most broadly adopted and convenient in recent years [11–13]. His assumption is that
there exists a linear-torsion spring, and the flexible deformation of the joint is equivalently
replaced by the torsional deformation of the spring [14].

Up to now, numerous international scholars have conducted in-depth research to
explore the control problem of suppressing perturbations for the FJMS, achieving some
research results. L. Sun et al. proposed a PD control method with the help of online
gravity compensation to achieve the position control of the FJMS [15]. Y. Pan et al. de-
signed a simplified, adaptive command-filtered backstepping controller for the FJMS [16].
K. Rsetam et al. specifically designed the optimal second-order integral sliding-mode con-
troller in order to improve the robustness of a single-link FJMS [17]. In addition, optimal
controllers were designed for the discrete controlled systems in [18–20], and optimization
control algorithms were designed to improve the control performance of the controlled
systems while taking into account the existence of external disturbances and uncertainties
in [21–23]. Z.H. Jiang et al. designed a linear-feedback- and neural-network-based con-
troller to handle the control problem caused by the nonlinearity and dynamic instability of
the FJMS [24]. Although several of the above approaches have suppressed the perturbations
to some extent, they do not take into account the modeling errors due to the uncertainties
of the model parameters. Z. Yan et al. proposed a robust control method based on the
equivalent-input-perturbation method to achieve the high-precision motion control of an
uncertain FJMS with a single link [25]. Although this method considers the errors caused
by parameter inaccuracies, obtaining the real values of the parameters is required in the
design of this controller, without realizing the true sense of considering the uncertainties
of the system. For the problem of parameter uncertainties, the most realistic case is to be
aware of the nominal values of the parameters and the possible variation ranges.

To this day, several control methods have been proposed to overcome the modeling
uncertainties of the FJMS. K. Rsetam et al. designed a sliding-mode controller based on a
cascaded extended state observer for the under-driven FJMS, where the sliding-mode con-
trol method was mainly used to diminish the error caused by uncertainties [26]. W. He et al.
introduced the full-state feedback strategy in the neural network, which subsequently was
used to respond to the uncertainties of the FJMS for guaranteeing the robustness of the
system [27]. H. Ma et al. designed an adaptive fuzzy controller to improve the performance
of the single-link FJMS via the performance functions, in which the dynamic signals were
applied to replace the uncertainties of the system modeling [28]. F. Dong et al. designed
a robust controller based only on the possible bounds of the system uncertainties and a
consistent positive characterization of the inertia matrix to guarantee the robustness of the
FJMS with uncertainties [29]. J.G. Yim et al. proposed a robust nonlinear recursive-control
approach to design a virtually robust control for the FJMS, utilizing nonlinearH∞ control
with energy dissipation to attenuate the L2 gain from the performance impact of uncer-
tainties [30]. In addition, designed control optimization algorithms were implemented on
the real two-DOF manipulator to verify the controllers’ effectiveness in [31,32]. However,
several of the above methods are not effective at achieving the control performance en-
hancement of the FJMS with constraints while dealing with the parameter uncertainties of
the manipulator.
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Most process models are nonlinear, but they are often linearized to perform the simula-
tion and stability analysis. Linearization is the procedure of approximating and eliminating
the higher-order nonlinear terms existing in the mathematical equations. Linear models
are easier to understand than nonlinear models and are necessary to design the controllers
for the controlled systems. T.T Do et al. established the dynamic equations of a gen-
eral flexible-joint robot using the Lagrange formulation and linearized them on the basis
of the Taylor series [33]. X.Z. Lai et al. divided the motion space of an underactuated
two-link manipulator into two areas: the swing area and attractive area, and designed
control laws for each system, where the controlled model in the attractive area was ap-
proximately linearized, while its controller was designed based on optimal control [34].
E. Spyrakos-Papastavridis et al. linearized an n-DOF flexible-joint robot at a desired op-
erating point, and then utilized the LQR controller to obtain the full-state feedback gain
of this system [35]. D. Richiedei et al. rationally performed the model linearization in
the case of a two-DOF, two-link planar manipulator, producing small displacements to
the configuration [36]. X.Z. Lai et al. approximately linearized the dynamic equations of
an underactuated three-link gymnast robot in the attractive area and stabilized it at the
straight-up equilibrium position using the balancing-control law [37]. A.G. Lynch et al.
linearized nonlinear equations of the multibody dynamic systems around the equilibrium
point [38]. A. Ghoreishi et al. linearized a single-link flexible robot around the origin
(equilibrium point) [39]. One tends to linearize the nonlinear dynamic model around the
equilibrium point, illustrating the fact that the nonlinear systems are locally linear at the
equilibrium point. Motivated by the literature mentioned above, we selected the controlled
system to be the two-DOF FJMS in the vicinity of the vertical equilibrium position.

As a matter of fact, there are inevitably constraints on the manipulator during the
movement process, such as the control input constraints, joint angle constraints [40], etc.
Accordingly, a controller that could improve the systemH∞ performance while still satisfy-
ing the input–output constraints of the system is necessary for this paper. For this paper, a
robust constrained moving-horizonH∞ controller is designed to enable the two-DOF FJMS
to achieve the above control objectives under the consideration of external disturbances
and parameter uncertainties.

The main contributions of this paper are as follows:

1. By means of the LFT technique, the LFT uncertain system of the two-DOF FJMS
is constructed, which takes into account the parameter uncertainties of the spring-
stiffness coefficients;

2. TheH∞ norm of system disturbances to the performance output and the input–output
constraints of the two-DOF FJMS are transformed into the LMIs via the theory ofH∞
control and the full-block multiplier technique;

3. The robust constrained moving-horizonH∞ controller is designed for this LFT uncer-
tain system, which can improve theH∞ performance of the controlled system while
ensuring that the input–output constraints of this system are satisfied.

The remainder of this paper is organized as follows. In Section 2, the dynamics of
the two-DOF FJMS is modeled and converted to the state-space expression after lineariza-
tion. In Section 3, the uncertainties of the spring coefficients in the two-DOF FJMS are
investigated by means of the LFT technique, and the LFT uncertain model of this system
is constructed. In Section 4, the robust constrained moving-horizon H∞ controller is de-
signed for the LFT uncertain system. In Section 5, the properties of the closed-loop system
under the action of the optimization algorithm are given. In Section 6, the above controller
implemented on the two-DOF FJMS for the simulation is described, and the experimental
results are compared and analyzed. The conclusions are presented in Section 7.
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2. Problem Statement
2.1. Dynamic Modeling of the Two-DOF FJMS

In this section, the dynamic characteristics of the studied two-DOF FJMS are discussed
in detail. The simplified physical model of the two-DOF FJMS studied in this paper is
established as shown in Figure 1. The manipulator system has two rotatable homogeneous
links driven by motors at the shoulder joint and elbow joint, which can be moved in the
vertical plane around their respective joints. The two-DOF FJMS moves around the vertical
equilibrium position. The shoulder joint of the two-DOF FJMS is fixed, and the origin of the
coordinate axis (O) is the point where the shoulder joint is located. After establishing the
coordinate frame for the system, the horizontal plane where the O axis is located is taken to
be the surface of zero gravitational potential energy. In addition, due to the fact that both
joints of the two-DOF FJMS considered in this paper are flexible joints, which are conceived
as the linear springs between the motors and the links based on Spong’s assumption [14],
the internal parts of the flexible joints are especially expanded, as shown in Figure 1, so
that this relationship can be visualized.
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Figure 1. The simplified model of the two-DOF FJMS.

The physical significances of the model parameters in Figure 1 are shown in Table 1.
The q1 and q2 are the rotation angles of the first and second links, respectively, with the
positive direction of the Y axis. As well, the θ1 and θ2 are the rotation angles of the first and
second motor rotors, respectively, with the positive direction of the Y axis. The angle value
formed by the clockwise rotation is set to be positive, and the angle value formed by the
counterclockwise rotation is set to be negative.

Table 1. The parameters of the two-DOF FJMS.

Symbol Description

L1, L2 Lengths of manipulator links (m)
Lc1, Lc2 Distances between center-of-mass positions and joints (m)
m1, m2 Masses of manipulator links (kg)
I1, I2 Rotational inertias of manipulator links (kg·m2)
J1, J2 Rotational inertias of motor rotors (kg·m2)
k1, k2 Spring-stiffness factors of flexible joints (N·m/rad)
τ1, τ2 Output torques of motors (N·m)

g Gravitational acceleration (m/s2)
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At present, there are mainly two kinds of methods commonly used to establish the dy-
namic model for the system: the Lagrange equation method [41,42] and the Newton–Euler
method [43]. In contrast to the latter method, the Lagrange equation method dramatically
simplifies the complex dynamic equations due to the fact that it does not account for the in-
ternal binding forces of the system, and it allows the dynamic equations of the manipulator
system to be expressed in a straightforward and concise manner. Therefore, the Lagrange
equation method is chosen here in this paper.

The Lagrange equation method is based on the law of the conservation of energy by
calculating the kinetic and potential energy of the system to accomplish the modeling. The
system’s Lagrange function (L ∈ R) is defined as the difference between the kinetic energy
(K ∈ R) and the potential energy (P ∈ R) of the system [44]:

L = K− P. (1)

The Lagrange equation is as follows:
d
dt

∂L
∂

.
qi
− ∂L

∂qi
= τi

d
dt

∂K
∂

.
qi
− ∂K

∂qi
+ ∂P

∂qi
= τi

(i = 1, 2), (2)

where qi is the rotation angle of the joint, and τi is the torque of the actuator.
In the two-DOF FJMS, how the flexible joints are handled is critical. Based on Spong’s

simplified model, the flexible joint might be considered as a linear-torsion spring with zero
inertia between the motor rotor and the link [13]. The simplified model of the flexible joint
is shown in Figure 2, where ki is this spring’s stiffness factor. In this case, the motor rotor’s
rotation angle (θi) will not always equal the link’s rotation angle (qi) (i.e., θi 6= qi).
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Figure 2. The simplified model of the flexible joint.

According to Lagrange’s second type Equation (2), the dynamic equations of the
two-DOF FJMS are identified as follows [45,46]:{

M(q)
..
q + C(q,

.
q)

.
q + G(q) = k(θ − q)

J
..
θ + k(θ − q) = τ

, (3)

where θ =
[
θ1 θ2

]T ∈ R2×1, q =
[
q1 q2

]T ∈ R2×1, J = diag{J1, J2} ∈ R2×2 is the diago-
nal and positive definite inertia matrix of the motors; k = diag{k1, k2} ∈ R2×2 is the sim-
plified linear-torsion spring-stiffness-coefficient matrix of the flexible joints; M(q) ∈ R2×2

is the manipulator’s symmetric and positive definite inertia matrix; C(q,
.
q)

.
q ∈ R2×1 is

a column vector incorporating the Coriolis force and the centrifugal force; G(q) ∈ R2×1

represents the vector of the gravity; τ =
[
τ1 τ2

]T ∈ R2×1 is the output torque of the
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motors. The specific forms of M(q), C(q,
.
q), and G(q) in Equation (3) are shown as follows:

M(q) =
[

α1 + α2 + 2α3 cos q2 α2 + α3 cos q2
α2 + α3 cos q2 α2

]
C(q,

.
q) =

[
− .

q2α3 sin q2 −( .
q1 +

.
q2)α3 sin q2.

q1α3 sin q2 0

]
G(q) =

[
−α4 sin q1 − α5 sin(q1 + q2)

−α5 sin(q1 + q2)

] , (4)

where α1 = m1L2
c1 + m2L2

1 + I1, α2 = m2L2
c2 + I2, α3 = m2L1Lc2, α4 = (m1Lcl + m2L1)g,

and α5 = m2gLc2.

2.2. LFT Technique

LFT was proposed by Redheffer scholars in 1960 and has been widely applied in the re-
search of robust control, as well as in the research of the control of linear parameter-varying
systems [47]. LFT is a powerful technique for representing the uncertainties in matrices and
systems that is able to perform structural analyses for uncertain systems, and to directly
represent systems with uncertainties in the form of state-space expressions. This method
has the advantage of decoupling the systems into deterministic and uncertain parts, and it
provides an effective tool to construct parameter-uncertain system models. Ultimately, it
is possible to make explicit considerations for such uncertainties during the designing of
the system controllers [48,49]. The LFT contains the lower LFT and the upper LFT, and the
upper LFT structure is highlighted here.

Consider the complex matrix M, the partition form of which is in [50]:

M =

[
M11 M12
M21 M22

]
∈ C(p1+p2)×(q1+q2), (5)

where each matrix has the appropriate dimension, and δu ∈ Cq1×p1 is also a complex matrix.
Assuming that there exists an inverse matrix of (I −M11δu), then the upper LFT of the
mapping corresponding to the matrix δu could be expressed as follows:

Fu(M, δu) = M22 + M21δu(I −M11δu)
−1M12 : Cq1×p1 → Cp2×q2 . (6)

The graphical representation of the upper LFT is shown in Figure 3, where M repre-
sents the known part of the system, the matrix δu represents all the uncertain components
(including structural parameters, non-structural parameters, modeling uncertainties, etc.)
with δu ∈ Yδ, where Yδ = diag{δ1 I1, . . . , δs Is} and |δi| ≤ 1(i = 1, . . . , s). In addition, η0
and υ0 represent, respectively, the auxiliary input and output of the system, and ω0 and z0
represent, respectively, the real input and output of the system.
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The mathematical description of Figure 3 is as follows:[
υ0
z0

]
= M

[
η0
ω0

]
=

[
M11 M12
M21 M22

][
η0
ω0

]
, (7)

η0 = δuυ0. (8)

By means of LFT, the uncertain part of the system model is separated and the connec-
tion with the known exact model part is established, which is convenient to analyze and
design the system controller effectively.

2.3. State Transformation Procedure of the Two-DOF FJMS

The equation x =
[
q1

.
q1 q2

.
q2 θ1

.
θ1 θ2

.
θ2

]T
∈ R8×1 is selected as the state

of the two-DOF FJMS, and u =
[
u1 u2

]T
=
[
τ1 τ2

]T ∈ R2×1 is selected as the control
input of this system. This manipulator system is known to be nonlinear according to
Equations (3) and (4). As the angles and angular velocities of the first and second links are
both close to zero in the attraction domain, the system may be approximately linearized
around the equilibrium point, where the values of the variables are q1 = 0, q2 = 0,

.
q1 = 0,

and
.
q2 = 0. The approximate linearization process via Taylor series expansion is performed

as follows [33,34,37,39]: 
cos q1 ≈ 1, sin q1 ≈ q1,

.
q1 ≈ 0

cos q2 ≈ 1, sin q2 ≈ q2,
.
q2 ≈ 0

sin(q1 + q2) ≈ q1 + q2

. (9)

Remark 1. The controlled system investigated in this paper is the two-DOF FJMS moving around
the vertical equilibrium position, and the types of control problems are addressed via the control
algorithms designed in this paper when the manipulator is moving in the vicinity of the equilibrium
point. Because the dynamic equation of this manipulator is nonlinear in nature, it thus requires
linearization about the equilibrium point. Hereby, the higher-order nonlinear terms are eliminated
to attain the linear model by using Taylor series expansion. Of course, considering that there are
certain conditions for linearizing the two-DOF FJMS using Taylor series expansion, we have given
some constraints on the two joint angles to ensure that this manipulator system moves around the
equilibrium point.

Then, dynamic Equation (3) of the two-DOF FJMS is linearized and rewritten as a
state-space expression with the following form:

.
x = Ax + Buu, (10)

where the coefficient matrices A and Bu are as follows:

A =



0 1 0 0 0 0 0 0
A21 0 A23 0 A25 0 A27 0
0 0 0 1 0 0 0 0

A41 0 A43 0 A45 0 A47 0
0 0 0 0 0 1 0 0

A61 0 0 0 A65 0 0 0
0 0 0 0 0 0 0 1
0 0 A83 0 0 0 A87 0


, Bu =



0 0
0 0
0 0
0 0
0 0
b6 0
0 0
0 b8


, (11)
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where Aij are represented as follows:

A21 = α2α4−α3α5−k1α2
α1α2−α2

3
, A23 = −α3α5+k2(α2+α3)

α1α2−α2
3

A25 = k1α2
α1α2−α2

3
, A27 = −k2(α2+α3)

α1α2−α2
3

A41 = α1α5−α3α4−α2α4+α3α5+k1(α2+α3)

α1α2−α2
3

A43 = (α1+α3)α5−k2(α1+α2+2α3)

α1α2−α2
3

A45 = −k1(α2+α3)

α1α2−α2
3

, A47 = k2(α1+α2+2α3)

α1α2−α2
3

A61 = k1
J1

, A65 = −k1
J1

, b6 = 1
J1

A83 = k2
J2

, A87 = −k2
J2

, b8 = 1
J2

. (12)

3. Analysis of the LFT Uncertain System

The spring-stiffness coefficients are the key parameters of the flexible joints for the
two-DOF FJMS, and the accuracy of their values plays a highly significant role in the
overall controlled system. If there are fluctuations in the stiffness coefficients of the flexible
joints, then this nominal manipulator system will become an uncertain dynamic system.
The uncertainties of the k1 and k2 are described via the nominal values of the parameters
themselves and their possible ranges of variation, as shown in the following equation:{

k1 = k1(1 + Wk1 δk1)

k2 = k2(1 + Wk2 δk2)
, (13)

where k1 and k2 represent, respectively, the nominal values of k1 and k2; Wk1 and Wk2 are
the normalized weighted coefficients of uncertainties; δk1 and δk2 are used to describe the
fluctuation ranges of the corresponding parameters; and |δi| ≤ 1(i = k1, k2).

To handle the problem of parameter uncertainties, the LFT technique is used to
separate the uncertain part and the definite part of the system. Through the upper LFT, the
k1 and k2 in Equation (13) are converted into the upper linear fraction structure described
in Equation (6):{

k1 = k1(1 + Wk1 δk1) = k1 + Wk1 δk1(I − δk1 · 0)
−1k1 = Fu(Mk1 , δk1)

k2 = k2(1 + Wk2 δk2) = k2 + Wk2 δk2(I − δk2 · 0)
−1k2 = Fu(Mk2 , δk2)

, (14)

where

Mk1 =

[
0 k1

Wk1 k1

]
, Mk2 =

[
0 k2

Wk2 k2

]
. (15)

The LFT uncertain model of the two-DOF FJMS considering parameter uncertain-
ties and external disturbances can be obtained from Equations (10) and (14), as shown
in Figure 4.

The uncertainties of the system considered during this research are categorized into
internal and external uncertainties, where the parameter uncertainties are the internal
uncertainties, and the external disturbances are the external uncertainties. Both of these
have been considered and are presented in our system model. The approach of this
research is capable of dealing with a class of control problems that consider the system’s
uncertainties. The reason why only the spring-stiffness coefficients are considered with
parameter uncertainties is that they have somewhat more inaccuracy compared to the
other parameters.
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Figure 4. The LFT uncertain model of the two-DOF FJMS.

In the case of the real system, this manipulator system is naturally subject to angular
constraints and drive-torque constraints. This is why a new variable (z∞) is introduced to
represent the constrained output of the uncertain system. The angular accelerations of the
two joints are selected as the performance output of the system. Hence, the performance
output and constrained output of this system are defined as follows:

z2 =
[ ..

q1
..
q2
]T

=
[ .

x2
.
x4
]T

z∞ =
[

u1
u1max

u2
u2max

q1
q1max

q2
q2max

]T . (16)



Mathematics 2023, 11, 3593 10 of 25

It can be derived from Figure 4 that the state space and the corresponding mapping
relationships between υi(i = 1, 2) and ηi(i = 1, 2) are as follows:

.
x
υ
z2
z∞

 =


A Bη Bu Bω

Cυ 0 0 0
C2 D2η D2 0
C∞ 0 D∞ 0




x
η
u
ω

, (17)

η = δυ =

[
δk1 0
0 δk2

]
υ, (18)

where ω =
[
ω1 ω2

]T ∈ R2×1 is the external disturbance vector of the uncertain system;

η =
[
η1 η2

]T ∈ R2×1 and υ =
[
υ1 υ2

]T ∈ R2×1 are auxiliary vectors that represent, re-
spectively, the uncertainty input and output vectors of this system; δ = diag

{
δk1 , δk2

}
∈ Yδ

represents the uncertainty matrix; and Yδ is the collection of uncertainties.
Equations (17) and (18) could be transformed into state-space equations in which the

uncertain and definite components of this system are separated, as follows:
.
x = (A + ∆A)x + (Bu + ∆Bu)u + Bωω
z2 = (C2 + ∆C2)x + (D2 + ∆D2)u
z∞ = C∞x + D∞u

, (19)

where A, Bu, Bω , C2, D2, C∞, and D∞ are the known-constant-coefficient matrices describing
the nominal system model of this manipulator; ∆A, ∆Bu, ∆C2, and ∆D2 are the uncertainty
matrix functions of appropriate dimensions, representing the parameter uncertainties of
the system model. Therefore, in order to extract the variables in the uncertainty matrices
∆A, ∆Bu, ∆C2, and ∆D2 containing δk1 and δk2 , ∆A, ∆Bu, ∆C2, and ∆D2 could be written in
the form of a bounded norm based on Equations (17) and (18), as follows:{ [

∆A ∆Bu
]
= E1δ

[
F1 F2

][
∆C2 ∆D2

]
= E2δ

[
F1 F2

] , (20)

where E1, E2, F1, and F2 are uncertain matrices of appropriate dimensions in the following
forms, respectively:

E1 =

 0
−α2Wk1
α1α2−α2

3
0

(α2+α3)Wk1
α1α2−α2

3
0

Wk1
J1

0 0

0
(α2+α3)Wk2

α1α2−α2
3

0
−(α1+α2+2α3)Wk2

α1α2−α2
3

0 0 0
Wk2

J2


T

, F2 =

[
0 0
0 0

]

E2 =


−α2Wk1
α1α2−α2

3

(α2+α3)Wk2
α1α2−α2

3

(α2+α3)Wk1
α1α2−α2

3

−(α1+α2+2α3)Wk2
α1α2−α2

3

, F1 =

[
k1 0 0 0 −k1 0 0 0
0 0 k2 0 0 0 −k2 0

] .

(21)

4. Robust Model Predictive Control with Constraints

The solution to the optimization control problem addressed in this paper is to pur-
posely design a controller that firstly ensures that this manipulator system maintains strong
robustness and stability under the dual influence of parameter uncertainties and external
disturbances, and secondly, that minimizes theH∞ norm of system perturbation ω to per-
formance output z2 while ensuring that all the constraints of this system are satisfied. The
final control goal is to design a controller to stabilize the two-DOF FJMS at the equilibrium
point under the influence of a series of factors. In addition, the state feedback structure
with u = Kx is considered in the design process of the controller to ensure that a good
control performance can be obtained. Therefore, the key point of our designed controller is
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how to calculate the feedback gain that satisfies the system constraints while guaranteeing
the system performance.

4.1. Robust ConstrainedH∞ Control

For the LFT uncertain system with constraints, this subsection focuses on the design of
a robust constrainedH∞ controller to ensure the improvement in theH∞ performance and
the fulfillment of the input–output constraints. With the application of the LMI technique,
the constrainedH∞ control problem can be converted into the convex optimization problem
with LMIs as constraints to make it easier to solve. The lemmas about the LMIs used in this
procedure are as follows:

Lemma 1 ([51,52]). Suppose that S =

[
M N
NT L

]
∈ R(k+l)×(k+l) is non-singular and its inverse

matrix is recorded as S−1 =

[
M̃ Ñ
ÑT L̃

]
∈ R(k+l)×(k+l). Then, the nonlinear matrix inequality

L ≥ 0,
[

I
F

]T[M N
NT L

][
I
F

]
≤ 0, (22)

is equivalent to the following LMI:

M̃ ≤ 0,
[
−FT

I

]T[ M̃ Ñ
ÑT L̃

][
−FT

I

]
≥ 0. (23)

Lemma 2 ([53,54]). Suppose that there are three constant matrices, E, F, and G, and four affine-
function matrices, K(β), L(β), M(β) = M(β)T, and N(β), with the independent variable β.
Which L(β) can be decomposed into YTU(β)−1Y and U(β) < 0 is also affine depending on the
variable β. Then, the nonlinear matrix inequality E[

K(β)
F

]T M(β)
[
G N(β)

][
GT

N(β)T

]
L(β)

 E[
K(β)

F

] ≤ 0, (24)

is equivalent to the following LMI:ETM(β)E + ET(GK(β) + N(β)F) + (GK(β) + N(β)F)TE
[
K(β)T FT

]
Y

YT
[

K(β)
F

]
−U(β)

 ≤ 0. (25)

Lemma 3 ([55,56]). Suppose that S0, S1, · · · , Sj ∈ Rn×n are the symmetric matrices. If there

exists ϕ1, ϕ2, . . . , ϕj ≥ 0 such that S0 −
j

∑
i=1

ϕiSi > 0 holds, then it is obtained as follows:

ζTS0ζ > 0 for all ζ 6= 0 such that ζTSiζ ≥ 0(i = 1, . . . , j). (26)
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Due to the fact that the discrete-time model is applied to the conventional MPC, it
is necessary to discretize the system (17), and the results are processed via the method of
Equations (17)–(21), as follows:

x(k + 1) = (Ad + ∆Ad)x(k) + (Bud + ∆Bud)u(k) + Bωdω(k)

z2(k) = (C2d + ∆C2d)x(k) + (D2d + ∆D2d)u(k)

z∞(k) = C∞dx(k) + D∞du(k)

, (27)

where Ad = eATs , ∆Ad = E1dδF1d, E1d = A−1(eATs − I)E1, F1d = F1, Bud = A−1(eATs − I)Bu,
∆Bud = E1dδF2d, F2d = F2, Bωd = A−1(eATs − I)Bω, C2d = C2, ∆C2d = E2dδF1d, E2d = E2,
D2d = D2, ∆D2d = E2dδF2d, C∞d = C∞, D∞d = D∞, and Ts is the sample period. In
addition, |z∞i(k)| ≤ z∞i,max = 1(i = 1, 2, 3, 4) represents the four normalized constrained
output values of this system. The state feedback control law u(k) = Kx(k) is substituted
into (27), and the closed-loop system can be written as follows:

x(k + 1) = Aδx(k) + Bωdω(k)

z2(k) = Cδx(k)

z∞(k) = (C∞d + D∞dK)x(k)

, (28)

where Aδ = Ad + BudK + E1dδ(F1d + F2dK) and Cδ = C2d + D2dK + E2dδ(F1d + F2dK).
If there exists a non-negative value of λ such that the system (28) satisfies the dissipa-

tion inequality shown below:

x(k + 1)THx(k + 1)− x(k)THx(k) ≤ λ2‖ω(k)‖2
2 − ‖z2(k)‖2

2, (29)

where H ∈ R8×8 is a positive definite symmetric matrix, and if the system is steady when
k→ ∞ , then lim

k→∞
x(k + 1) = 0 is true. This could be further deduced as follows:

max
δ∈Yδ

(
∞

∑
k=0

(
‖z2(k)‖2

2 − λ2‖ω(k)‖2
2

))
≤ x(0)THx(0), (30)

where it is marked by the establishment of (30) that theH∞ norm of this system from ω to
z2 is less than λ.

Replacing with the components of (29) by the closed-loop system (28) gives the following:

(Aδx(k) + Bωdω(k))TH(Aδx(k) + Bωdω(k))− x(k)THx(k) ≤ λ2‖ω(k)‖2
2 − ‖Cδx(k)‖2

2. (31)

The above inequality is organized and transformed into the quadratic form as follows:[
x(k)
ω(k)

]T[AT
δ HAδ − H + CT

δ Cδ AT
δ HBωd

BT
ωd HAδ BT

ωd HBωd − λ2 I

][
x(k)
ω(k)

]
≤ 0. (32)

The inequality (32) is equivalent to the following:[
I AT

δ
0 BT

ωd

][
−H 0

0 H

][
I 0

Aδ Bωd

]
+

[
0 CT

δ
I 0

][
−λ2 I 0

0 I

][
0 I

Cδ 0

]
≤ 0. (33)

In order to separate δ from Aδ and Cδ, the inequality (33) is modified into the follow-
ing form:
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 I 0
0 I

δ(F1d + F2dK) 0

T[
I 0 0

Ad + BudK Bωd E1d

]T[ −H 0
0 H

][
I 0 0

Ad + BudK Bωd E1d

] I 0
0 I

δ(F1d + F2dK) 0


+

 I 0
0 I

δ(F1d + F2dK) 0

T[
0 I 0

C2d + D2dK 0 E2d

]T[ −λ2 I 0
0 I

][
0 I 0

C2d + D2dK 0 E2d

] I 0
0 I

δ(F1d + F2dK) 0

 ≤ 0

. (34)

Then, with the application of the full-block multiplier technique [57–59], it could be
deduced that the holding of (33) is equivalent to the existence of an invertible multiplier
matrix (T̃) such that [

δ
I

]T[ T̃a T̃b
T̃T

b T̃c

][
δ
I

]
≥ 0, (35)

where T̃a < 0. Due to the invertibility of the multiplier matrix (T̃), the application of Lemma
1 to (35) results in the following:[

I
−δT

]T[Ta Tb
TT

b Tc

][
I
−δT

]
≤ 0 and T = T̃−1 =

[
Ta Tb
TT

b Tc

]
, (36)

where Tc is a positive definite diagonal matrix and Ta = −Tc, Tb is a diagonal matrix, and all
the elements of Tb are antisymmetric matrices. Moreover, there is one thing worth noting:

[
δ 0
I 0

]
(F1d + F2dK) =

[
0 0 I

F1d + F2dK 0 0

] I 0
0 I

δ(F1d + F2dK) 0

. (37)

The following inequality could be further reasoned from (34)–(37):

I 0 0
Ad + BudK Bωd E1d

0 I 0
C2d + D2dK 0 E2d

0 0 I
F1d + F2dK 0 0



T

−H 0 0 0 0 0
0 H 0 0 0 0
0 0 −λ2 I 0 0 0
0 0 0 I 0 0
0 0 0 0 T̃a T̃b
0 0 0 0 T̃T

b T̃c





I 0 0
Ad + BudK Bωd E1d

0 I 0
C2d + D2dK 0 E2d

0 0 I
F1d + F2dK 0 0

 ≤ 0. (38)

Then, the inequality (38) is subjected to the simple elementary matrix transformation,
resulting in the following:

I 0 0
0 I 0
0 0 I

Ad + BudlK Bωd E1d
C2d + D2dK 0 E2d
F1d + F2dK 0 0



T

−H 0 0 0 0 0
0 −λ2 I 0 0 0 0
0 0 T̃a 0 0 T̃b
0 0 0 H 0 0
0 0 0 0 I 0
0 0 T̃T

b 0 0 T̃c





I 0 0
0 I 0
0 0 I

Ad + BudK Bωd E1d
C2d + D2dK 0 E2d
F1d + F2dK 0 0

 ≤ 0. (39)

Because T̃a < 0 and H > 0, the diag
{
−H,−λ2 I, T̃a

}
< 0 holds. Applying Lemma 1 to

(39) and performing the elementary matrix transformation, the result would be as follows:



Mathematics 2023, 11, 3593 14 of 25



I 0 0
0 I 0
0 0 I

−(Add + BudlK)
T −(C2d + D2dK)T −(F1d + F2dK)T

−BT
ωd 0 0

−ET
1d −ET

2d 0



T

N 0 0 0 0 0
0 I 0 0 0 0
0 0 Tc 0 0 TT

b
0 0 0 −N 0 0
0 0 0 0 −λ−2 I 0
0 0 Tb 0 0 Ta


 ∗∗
∗

 ≥ 0, (40)

where N = H−1. Due to Ta < 0 and N > 0, the diag
{
−N,−λ−2 I, Ta

}
< 0 holds. With the

help of Lemma 2, the nonlinear matrix inequality (40) is equivalent to the specific form of
LMI, as follows:

N 0 −E1dTb −Ad − BudK −Bωd −E1d
0 I −E2dTb −C2d − D2dK 0 −E2d

−TT
b ET

1d −TT
b ET

2d Tc −F1d − F2dK 0 0
−(Ad + BudK)T −(C2d + D2dK)T −(F1d + F2dK)T N−1 0 0

−BT
ωd 0 0 0 λ2 I 0

−ET
1d −ET

2d 0 0 0 −T−1
a


≥ 0. (41)

Then, the above inequality (41) is subjected to the congruence transformation with
diag{I, I, I,−N, I, Ta}, and defining R = KN results in the following:

N 0 −E1dTb AdN + BudR −Bωd −E1dTa
0 I −E2dTb C2dN + D2dR 0 −E2dTa

−TT
b ET

1d −TT
b ET

2d Tc F1dN + F2dR 0 0
(AdN + BudR)T (C2dN + D2dR)T (F1dN + F2dR)T N 0 0

−BT
ωd 0 0 0 λ2 I 0

−TT
a ET

1d −TT
a ET

2d 0 0 0 −Ta


≥ 0. (42)

In summary, if there are variables (R, N, λ2) and multipliers (Ta, Tb, Tc) making the
LMI (42) be established, then theH∞ norm of the controlled system (27) from ω to z2 must
be less than λ under the action of the controller K = RN−1 and u(k) = Kx(k). Meanwhile,
the above LMI also guarantees that Ad + BudK is quadratically stable.

The treatment of the constraints existing in the system is discussed in this section.
Firstly, an elliptic domain is defined as Ω(H, ρ f ) :=

{
x(k)THx(k) ≤ ρ f

}
. If x(k) ∈ Ω(H, ρ f ),

then it could be deduced from the closed-loop system (28) as follows:

|z∞i(k)|2 =
∣∣∣eT

i (C∞d + D∞dK)x(k)
∣∣∣2 ≤ max

x(k)∈Ω(H,ρ f )

∣∣∣eT
i (C∞d + D∞dK)x(k)

∣∣∣2(i = 1, 2, 3, 4), (43)

where ei(i = 1, 2, 3, 4) are the standard basis vectors in the four-dimensional space. If∣∣eT
i (C∞d + D∞dK)x(k)

∣∣2 ≤ z2
∞i,max(i = 1, 2, 3, 4), then |z∞i(k)| ≤ z∞i,max(i = 1, 2, 3, 4)

is valid, and it means that the constraints of the controlled system are satisfied. Let
S0 = z2

∞i,max −
∣∣eT

i (C∞d + D∞dK)x(k)
∣∣2 and S1 = ρ f − x(k)THx(k). Applying Lemma 3, it

is equivalent to the existence of ϕ > 0, which enables (44) to hold for all δ ∈ Yδ:

z2
∞i,max − x(k)T(eT

i (C∞d + D∞dK))
T

eT
i (C∞d + D∞dK)x(k)− ϕρ f + ϕx(k)THx(k) ≥ 0(i = 1, 2, 3, 4). (44)

And let ϕ =
z2

∞i,max
ρ f

, then inequality (44) can be transformed into the following:

[
I

eT
i (C∞d + D∞dK)

]T
[
−H 0

0
ρ f

z2
∞i,max

][
I

eT
i (C∞d + D∞dK)

]
≤ 0. (45)
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Using the technique of the full-block multiplier again, the holding of the above inequal-
ity is equivalent to the existence of four invertible multiplier matrices (Ṽi(i = 1, 2, 3, 4)),
satisfying the following:


I 0

eT
i (C∞d + D∞dK) 0

0 I
F1d + F2dK 0


T
−H 0 0 0

0
ρ f

z2
∞i,max

0 0

0 0 Ṽai Ṽbi
0 0 ṼT

bi Ṽci




I 0
eT

i (C∞d + D∞dK) 0
0 I

F1d + F2dK 0

 ≤ 0, (46)

where Ṽai < 0. Then, the inequality (46) after the elementary matrix transformation is
as follows:

I 0
0 I

eT
i (C∞d + D∞dK) 0

F1d + F2dK 0


T

−H 0 0 0

0 Ṽai 0 Ṽbi

0 0
ρ f

z2
∞i,max

0

0 ṼT
bi 0 Ṽci




I 0
0 I

eT
i (C∞d + D∞dK) 0

F1d + F2dK 0

 ≤ 0. (47)

Owing to Ṽai < 0 and H > 0, the diag
{
−H, Ṽai

}
< 0 holds. Applying Lemma 1 and

performing the elementary matrix transformation, the inequality (47) is equivalent to the
nonlinear matrix inequality shown below:


I 0
0 I

−(C∞d + D∞dK)Tei −(F1d + F2dK)T

0 0


T

z2
∞i,max

ρ f
0 0 0

0 Vci 0 VT
bi

0 0 −H−1 0
0 Vbi 0 Vai


 ∗∗
∗

 ≤ 0. (48)

where Vci(i = 1, 2, 3, 4) are four positive definite diagonal matrices and Vai = −Vci,
Vbi(i = 1, 2, 3, 4) are four diagonal matrices, and all elements of Vbi are antisymmetric
matrices. Because Vai < 0 and H > 0, the diag

{
−H−1, Vai

}
< 0 holds. Applying Lemma 2,

the inequality (48) is equivalent to the following LMI:
z2

∞i,max
ρ f

0 −eT
i (C∞d + D∞dK) 0

0 Vci −F1d − F2dK 0
−(C∞d + D∞dK)Tei −(F1d + F2dK)T H 0

0 0 0 −V−1
ai

 ≥ 0. (49)

Then, the inequality (49) is congruent transformed with diag{I, I, N, Vai}, which results
in the following:

z2
∞i,max

ρ f
0 −eT

i (C∞dN + D∞dR) 0

0 Vci −F1dN − F2dR 0
−(C∞dN + D∞dR)Tei −(F1dN + F2dR)T N 0

0 0 0 −Vai

 ≥ 0(i = 1, 2, 3, 4). (50)

Therefore, if the variables that enable LMI (42) to be feasible also make LMI (50) hold,
then |z∞i(k)| ≤ z∞i,max(i = 1, 2, 3, 4), which indicates that all constraints are satisfied for
the uncertainties considered by the system.

In summary, the robust constrainedH∞ controller with the state feedback structure is
constructed by addressing the LMI optimization solution problem for the given ρ f > 0, as
shown below:

min
λ2,N,R,Ta ,Tb ,Tc ,{Vai ,Vci}

λ2 subject to (42) and (50). (51)
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In order to reduce the number of independent variables for this controller and the
online computational burden of the algorithm, we may set Tb = 0.

The method described above guarantees the H∞ performance of the system with
parameter uncertainties while satisfying the four constraints by addressing multiple LMIs.
In addition, the trade-off between a good system performance and the satisfaction of the
constraints can be achieved by defining the state elliptic domain (Ω(H, ρ f )) and selecting
the appropriate controller parameter (ρ f ).

4.2. Robust Constrained Moving-HorizonH∞ Control

The concept of the control algorithm designed above highlights the inherent com-
promise between ensuring all the constraints and enhancing the control performance of
the uncertain system. However, there might be a few large perturbations that cannot be
anticipated in advance in the actual system, and it is possible to guarantee the system
performance only by increasing the value of ρ f to expand the range of the elliptic domain
Ω(H, ρ f ), yet the consequence of doing so would be extremely limited values of N and
R, ultimately resulting in the larger value of the performance index (λ), which, in turn,
decreases the performance of the system. In contrast, the pursuit of a better performance
could be achieved by lowering the value of ρ f . But if the controlled system is subjected
to larger external perturbations, there is no guarantee that the system constraints can be
satisfied. Therefore, how to modify the LMI optimization control problem based on (51) is
the top priority.

The stationarity and strong conservativeness of ρ f , H, and λ prompt us to incorporate
the idea of the moving-horizon control of MPC to overcome the weaknesses of the current
algorithm and to coordinate online the conflict between satisfying the constraints and
improving the performance of the uncertain system. The moving-horizon control principle
of predictive control is to address the objective optimization problem online at each sample
moment, which is constantly renewed by the latest measurements of the controlled system,
and the calculated control input is actioned on this system until the next sample moment.

The conflict between constraints and performance could be nicely settled by altering
the range of the elliptic domain Ω(H, ρ f ) at any moment according to the extent of the
disturbances to the uncertain system. Hence, the following LMI optimization problem is
constantly refreshed with the latest state (x(k)) at each sample moment (k) and addressed:

min
ρk ,λ2

k ,Nk ,Rk ,Tak ,Tbk ,Tck ,{Vaik ,Vcik}
χ1ρk + χ2λ2

k subject to, (52)



Nk 0 −E1dTbk AdNk + BudRk −Bωd −E1dTak
0 I −E2dTbk C2dNk + D2dRk 0 −E2dTak

−TT
bkET

1d −TT
bkET

2d Tck F1dNk + F2dRk 0 0
(AdNk + BudRk)

T (C2dNk + D2dRk)
T (F1dNk + F2dRk)

T Nk 0 0
−BT

ωd 0 0 0 λ2
k I 0

−TT
akET

1d −TT
akET

2d 0 0 0 −Tak


≥ 0, (53)


z2

∞i,max
ρ f

0 −eT
i (C∞dNk + D∞dRk) 0

0 Vcik −F1dNk − F2dRk 0
−(C∞dNk + D∞dRk)

Tei −(F1dNk + F2dRk)
T N 0

0 0 0 −Vaik

 ≥ 0(i = 1, 2, 3, 4), (54)

[
ρk x(k)T

x(k) Nk

]
≥ 0, (55)

[
x(k)THk−1x(k) + h0 − hk−1 x(k)T

x(k) Nk

]
≥ 0, (56)

ρk ≤ ρ f , (57)
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where χ1 and χ2 are the weighting factors, which are used to adjust the weights between
the minimization of the H∞ norm from ω to z2 and the minimization of the range of the
elliptic domain Ω(Hk, ρk) while maintaining the constraints satisfied, thereby meeting the
multifaceted requirements of the controlled system. The LMI (56) is an additional dissipa-
tion inequality that is implemented to ensure the dissipativity of the closed-loop system
that is destroyed under the moving-horizon control scheme. Moreover, it is determined by
the Hk−1 and dissipation index hk−1 at the last moment, and the iterative updates of the
Hk and hk are calculated via Hk := N−1

k and hk := hk−1 − [x(k)THk−1x(k)− x(k)THkx(k)]
with h0 := x(0)TH0x(0).

At the moment k, if the semi-definite programming (52) can be addressed online for a
given ρ f , resulting in ρk, λk, Nk, Rk, and several multipliers, then the feedback gain at the
current moment is considered as K(k) = Rk N−1

k , and thus the closed-loop control input of
the controlled system can be specified as follows:

u(k) = K(k)x(k), ∀k ≥ 0. (58)

At each sample moment, the values of the variables Rk and Nk are obtained by solving
the LMI optimization problem (52), where Nk is a positive definite symmetric matrix and
Rk = K(k)Nk. Then, the feedback gain K(k) = Rk N−1

k at the current moment can be
calculated after obtaining the values of the above variables. In addition, the state feedback
structure is chosen in this paper during the controller design process, so the control input
of the system is thus calculated with u(k) = K(k)x(k).

The state x(k) includes the information about the external disturbances to the system
and the modeling mistakes caused by the parameter uncertainties. As a matter of fact, the
x(k) is used to calculate the value of the feedback gain K(k) at the current moment, and
it is also used as the feedback information of the closed-loop system. It should be noted
here that the system state x(k) in the control input u(k) = K(k)x(k) and in the LMIs (55)
and (56) are the state of the nonlinear system of the two-DOF FJMS. And it needs to be
made clear that the purpose of linearizing the controlled system (3) is only to calculate the
control feedback gain by solving the LMI optimization problem, and the feedback gain
is subsequently used to calculate the control input of the two-DOF FJMS to act on the
nonlinear system (3).

In addition to the introduction of the moving-horizon control strategy, another inge-
nious feature of the algorithm (52) is the treatment of ρk as an independent variable and as a
portion of the objective optimization function. Moreover, the coupling between the system
constraints and the performance index is separated by the constant ρ f , which consequently
makes the optimization problem easily solvable numerically.

For the algorithm described above, the feasibility of the optimization problem at
every sample moment is crucial. However, the feasibility of the above online optimization
algorithm would not be guaranteed in the case of strong disturbances increasing suddenly
at some random moment. Accordingly, borrowing the idea of the scaling method, a non-
negative number (σ ≥ 0) is introduced in this paper. The purpose of this improvement is
simply to diminish the conservativeness of the algorithm (52) and to enhance its feasibility
so that it is capable of coping with larger external disturbances. The robust constrained
moving-horizonH∞ control optimization algorithm is as follows:

min
ρk ,λ2

k ,Nk ,Rk ,Tak ,Tbk ,Tck ,{Vaik ,Vcik}
χ1ρk + χ2λ2

k subject to (53), (54), (55), (56) and, (59)

ρk ≤ ρ f (1 + σ). (60)

Therefore, the robust constrained moving-horizonH∞ control algorithm specifically
addresses the LMI optimization problem (59) refreshed by the current moment state x(k) at
each sample moment, and if infeasibility occurs, then the value of σ is augmented and the
optimization problem is recalculated. For one moment, the process of expanding the range
of the elliptic domain is diagrammed in Figure 5.
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In the theory of robust model predictive control, we resort to the LMI technique to
transform the constrainedH∞ control problem into a convex optimization problem with
LMIs as constraints. In this way, multiple objectives in the controller design requirements
could be transformed into multiple LMIs that are used as constraints on the objective
function. Secondly, the optimization problem is solved to obtain the optimal control input
at the current moment, which is implemented on the nonlinear controlled system, and then
the optimization problem is refreshed with the latest state and is resolved again at the next
moment, and ultimately the system performance is improved, and the system requirements
are fulfilled through continuous moving-horizon optimization control.

5. Properties of the Closed-Loop System

In this section, the closed-loop characteristics of this system are discussed by imple-
menting the above optimization algorithm (59) on the controlled system. The closed-loop
system is mainly confronted with two situations: when the external disturbances in the
system are relatively small, the optimization algorithm (52) is feasible at each sample
moment, and when the external disturbances are sudden or large, it is only necessary to
enlarge the value of σ to guarantee the feasibility of the optimization algorithm (59) to
achieve some degree of relaxation so that the controlled system can handle unpredictable
and large disturbances.

Theorem 1. Suppose the following:

1. At every moment, the semi-definite programming (52) based on the state x(k) at the current
moment has the results as ρk, λk, Nk, Rk, and several multipliers;

2. The performance optimization metric{λ0, λ1, · · · , λk−1, λk}is bounded.

Then, for all δ ∈ Yδ, the closed-loop controlled system under the action of u(k) = K(k)x(k)would
have the following properties:

1. The constraints of the controlled system are all fulfilled;
2. Under the perturbations of external limiting energy, the state x(k)of the system will converge

to zero when k→ ∞ ;

3. The dissipation inequality
k
∑

i=0

(
‖z2(i)‖2

2 − λ
2‖ω(i)‖2

2

)
≤ x(0)TH0x(0) is valid for any

moment (k), where λ = max{λ0, λ1, · · · , λk−1, λk};
4. The H∞ norm from the system perturbation ω to the performance output z2 is always no

greater than λ∞, where λ∞ = lim
k→∞

max{λ0, λ1, · · · , λk−1, λk}.

Proof of Theorem 1. If there is an appropriate ρ f such that LMIs (55) and (57) are valid,
then it also means that the closed-loop system state x(k) is within the elliptic domain
Ω(Hk, ρk) =

{
x(k)THkx(k) ≤ ρk

}
. For all δ ∈ Yδ, the inequalities (43), (45), (50), and (54)

are all equivalent to each other, which subsequently leads to |z∞i(k)| ≤ z∞i,max(i = 1, 2, 3, 4),
and the first property is proved.
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At any moment (k), if the optimization solution (ρk, λk, Nk, Rk and several multipliers)
is valid by substitution in the LMIs (42) and (53), then the dissipative inequality (29) is
expressed to work. Therefore, the following may be obtained:

x(k + 1)THkx(k + 1)−
k

∑
i=1

(
x(i)THix(i)− x(i)THi−1x(i)

)
− x(0)TH0x(0) ≤

k

∑
i=0

(
λ2

i ‖ω(i)‖2
2 − ‖z2(i)‖2

2

)
. (61)

The (56) formed by the dissipation constraint satisfies
k
∑

i=1

(
x(i)THix(i)− x(i)THi−1x(i)

)
≤ 0.

Letting λ = max{λ0, λ1, · · · , λk−1, λk}, the inequality (61) can be simplified as follows:

x(k + 1)THkx(k + 1)− x(0)TH0x(0) ≤
k

∑
i=0

(
λ

2‖ω(i)‖2
2 − ‖z2(i)‖2

2

)
. (62)

Due to the fact that Hk is positive definite and {λ0, λ1, · · · , λk−1, λk} is bounded, then the
third property is proved to be permanent. If there is finite energy of the perturbations to the

controlled system, then it is obtained that
∞
∑

i=0
‖z2(i)‖2

2 ≤ x(0)TH0x(0)+λ2
∞

∞
∑

i=0
‖ω(i)‖2

2 when the

limit of the inequality (62) at k→ ∞ is considered, where λ∞ = lim
k→∞

max{λ0, λ1, · · · , λk−1, λk}.
Thus, the second property is evidenced by the above procedure. As for the last property, it
is proved when the zero initial state is selected. �

Considering the circumstances of the optimization control algorithm (59) to be imple-
mented, the following findings would be produced with less conservatism.

Theorem 2. Suppose the following:

1. The LMI (53) and LMI (54) are all feasible;
2. The amplitude of the perturbations at any moment is not infinite;
3. The performance optimization metric {λ0, λ1, · · · , λk−1, λk} is bounded.

Then, for all δ ∈ Yδ, the controlled system with the effect of the robust constrained moving-horizon
H∞ controller would have the following properties:

1. At every moment (k), there is
∣∣eT

i (C∞d + D∞dK(k))x(k)
∣∣ ≤ z∞i,max(i = 1, 2, 3, 4), and this

relationship is established to symbolize that the constraint requirements of this controller
are fulfilled;

2. The last three properties of Theorem 1 are also present.

Proof of Theorem 2. The feasibility of the optimization algorithm (59) at any sample
moment is guaranteed by the introduced factor σ ≥ 0. The control gain is calculated
with K(k) = Rk N−1

k , and the first property is clearly well established. The proofs of the
remaining properties are analogous to those of Theorem 1. �

6. Simulation Results

In this section, the robust constrained moving-horizon H∞ control algorithm is im-
plemented for the dynamic model of the two-DOF FJMS, and theH∞ performance of this
controlled system is tested. The nominal values of the parameters of this manipulator
system are shown in Table 2 [46], selecting the sample time as Ts = 0.01s, and discretizing
the two-DOF FJMS. In order to accomplish the stabilization of this system at the equilibrium
point under the influence of external disturbances and parameter uncertainties, the whole
system should have certain constraints on the sizes of both the joint angles of the two-DOF
FJMS: q1,max = 0.15 and q2,max = 0.15. The main reason for constraining the maximum
value of the two joint angles to be so small is mainly because of the consideration that there
are certain conditions for linearizing the two-DOF FJMS using Taylor series expansion.
Moreover, due to the saturation of the actuators, the torque values as the control input
are also constrained: u1,max = 100 and u2,max = 50. To simplify the calculation procedure,
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the normalized control torques and joint angles are chosen as the constrained output here,
where the system constraints are bounded by z∞i,max = 1(i = 1, 2, 3, 4).

Table 2. The nominal values of the parameters of the two-DOF FJMS.

Symbol Values

L1, L2 0.5 m, 0.5 m
Lc1, Lc2 0.25 m, 0.25 m
m1, m2 20 kg, 10 kg
I1, I2 5.6 kg·m2, 2.8 kg·m2

J1, J2 6.183 kg·m2, 0.858 kg·m2

k1, k2 1000 N·m/rad, 1000 N·m/rad
g 9.81 m/s2

As for the parameter uncertainties, what are considered here are the spring-stiffness co-
efficients shown in Equation (13), where the normalized weighted coefficients are Wk1 = 0.2
and Wk2 = 0.2. In order to verify the feasibility and robustness of the designed control
algorithm, the real values of the two uncertain parameters are set to different values at
different time periods, as shown below:

k1 =


k1(1− 0.2), 0 ≤ k ≤ 30
k1(1 + 0.2), 30 ≤ k ≤ 70
k1(1 + 0.6), 70 ≤ k ≤ 150

, k2 =


k2(1− 0.2), 0 ≤ k ≤ 30
k2(1 + 0.2), 30 ≤ k ≤ 70
k2(1 + 0.6), 70 ≤ k ≤ 150

, (63)

The external disturbances to the controlled system are assumed to be as follows:

ω1 = ω2 =


π
6 sin( kπ

10 ), 0 ≤ k ≤ 20
−π

6 sin( kπ
10 ), 60 ≤ k ≤ 80

0, else
, (64)

For the design of the robust constrained moving-horizon H∞ controller, the weight
factors are selected as χ1 = 0.1 and χ2 = 1 to achieve a greater system performance and
less energy consumption. Moreover, the size of the fixed elliptic domain Ω(H, ρ f ) is chosen
as ρ f = 10. The RCHC (the LMI optimization algorithm (52))and RCMHHC (the LMI
optimization algorithm (59)) were implemented on the two-DOF FJMS for simulation, and
the comparative outputs of the experiments are shown in Figures 6–12.
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In Figure 10, it can be seen that the system under the action of RCHC has violated the 
control input constraint of 1u  at 74 77k   and 82 85k   . The only way to make the 
system constraints satisfied is to increase the value of f  to expand the elliptic domain. 
However, the result of doing so would make the performance of this system worse, which 
fully illustrates the disadvantages of RCHC. In contrast, the control input constraints of 
the controlled system are well satisfied with the action of RCMHHC. In addition, we can 
discover that both joint angles are not out of our constraints during the whole process, 
according to the simulation results in Figure 8 and Figure 9. It should be noted here that 
the normalized values of the joint angles are shown in both images. Therefore, the actual 
maximum value of the two joint angles during the simulation is just 
0.2478 0.15 0.03717rad  . In the later part of the simulation, the two joint angles of this 
system are basically stabilized around the X  axis, where the output curve of 2q  may 
not be as smooth as that of 1q  in the later stages, but the actual value of the joint angle of 

2q  at 136k   is 0.0975 0.15 0.014625rad  . It is possible to determine that the designed 
controller is capable of stabilizing the nonlinear two-DOF FJMS at the vertical equilibrium 
position after acting on it. In Figure 6 and Figure 7, the reason why the system perfor-
mance output under the action of RCMHHC does not perform as well as RCHC at some 
moments is caused by the concession of the system performance to the unsatisfied con-
straints due to the impact of larger disturbances. Figure 12 displays the variation curves 
of the performance indices of both algorithms. After the comparative analysis of the above 
output curves, the significant advantage of RCMHHC can be found in the online reconcil-
iation of the conflict between satisfying the system constraints and improving the control 
performance at any moment. The coordination mechanism of RCMHHC is to decrease the 
performance requirements when necessary to make sure that the hard constraints are sat-
isfied, and to enhance the performance requirements in time when the controlled system 
is far from the boundary of the constraints. 

Both algorithms work by solving the LMI optimization problem. All the LMIs in the 
LMI optimization problem are derived based on the linear system, and the problem is 
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In Figure 10, it can be seen that the system under the action of RCHC has violated the
control input constraint of u1 at 74 ≤ k ≤ 77 and 82 ≤ k ≤ 85. The only way to make the
system constraints satisfied is to increase the value of ρ f to expand the elliptic domain. How-
ever, the result of doing so would make the performance of this system worse, which fully
illustrates the disadvantages of RCHC. In contrast, the control input constraints of the con-
trolled system are well satisfied with the action of RCMHHC. In addition, we can discover
that both joint angles are not out of our constraints during the whole process, according to
the simulation results in Figures 8 and 9. It should be noted here that the normalized values
of the joint angles are shown in both images. Therefore, the actual maximum value of the
two joint angles during the simulation is just 0.2478× 0.15 = 0.03717 rad. In the later part
of the simulation, the two joint angles of this system are basically stabilized around the X
axis, where the output curve of q2 may not be as smooth as that of q1 in the later stages,
but the actual value of the joint angle of q2 at k = 136 is 0.0975× 0.15 = 0.014625 rad. It is
possible to determine that the designed controller is capable of stabilizing the nonlinear
two-DOF FJMS at the vertical equilibrium position after acting on it. In Figures 6 and 7, the
reason why the system performance output under the action of RCMHHC does not perform
as well as RCHC at some moments is caused by the concession of the system performance
to the unsatisfied constraints due to the impact of larger disturbances. Figure 12 displays
the variation curves of the performance indices of both algorithms. After the compara-
tive analysis of the above output curves, the significant advantage of RCMHHC can be
found in the online reconciliation of the conflict between satisfying the system constraints
and improving the control performance at any moment. The coordination mechanism of
RCMHHC is to decrease the performance requirements when necessary to make sure that
the hard constraints are satisfied, and to enhance the performance requirements in time
when the controlled system is far from the boundary of the constraints.

Both algorithms work by solving the LMI optimization problem. All the LMIs in the
LMI optimization problem are derived based on the linear system, and the problem is
solved through the toolbox of MATLAB and is thus less time-consuming. The value of
the feedback gain obtained by solving RCHC is fixed, and the LMI optimization problem
only needs to be solved once. However, the idea of moving-horizon control in RCMHHC
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makes the state of the system appear in the LMIs, so that its feedback gain value is not
fixed, and it is necessary to solve the LMI optimization problem at every sample moment.
In contrast, the real-time property of RCMHHC may not be as good as that of RCHC, but
RCMHHC can improve the H∞ performance of the two-DOF FJMS well while ensuring
that the system constraints are satisfied. In conclusion, the real-time property of solving the
LMI optimization problem at each moment can be satisfied for conventional PCs.

7. Conclusions

For the two-DOF FJMS, this paper designs a robust constrained moving-horizonH∞
controller to accomplish the control objectives of this system while considering external
disturbances, parameter uncertainties, and input–output constraints simultaneously. After
establishing the LFT uncertain system of the two-DOF FJMS, the semi-definite program-
ming problem with LMIs as constraints is developed via the full-block multiplier technique,
H∞ control, and MPC, for which the control feedback gain of the two-DOF FJMS can be
obtained after solving the LMI optimization problem. The feedback gain is subsequently
used to calculate the control input of the controlled system to act on the nonlinear two-DOF
FJMS under the state feedback structure. Based on the moving-horizon control principle
of MPC, this LMI optimization problem is refreshed with the current state of the system
at each sample moment and solved online, and so on, in a continuous iterative loop. The
simulation of the designed controller implemented on the two-DOF FJMS shows that the
proposed control algorithm is able to improve the system H∞ performance while ensuring
that the system constraints are satisfied, and it could coordinate online the conflict between
both requirements.
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