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Abstract: The discrete Shmaliy moment transform (DST) is a type of discrete orthogonal moment transform
that is widely used in signal and image processing. However, DST is not suitable for lossless image
applications due to its non-integer reversible nature. To overcome this limitation, we introduce the integer
discrete Shmaliy transform (IDST) that performs integer-to-integer encoding, leading to a perfect and
unique reconstruction of the input image. Next, a new 1D chaotic system model, the 1D multiparametric
piecewise linear chaotic map (M-PWLCM), is presented as an extension of the existing 1D PWLCM.
The M-PWLCM includes eight control parameters defined over an unlimited interval. To demonstrate
the relevance of IDST and M-PWLCM in reversible image processing applications, they are used in a
new scheme for lossless compression and encryption of medical images in the internet of medical things
(IoMTs). On the one hand, the simulation results show that our scheme offers a good compression ratio
and a higher level of security to resist differential attacks, brute force attacks and statistical attacks. On the
other hand, the comparative analysis carried out shows the overall superiority of our scheme over similar
state-of-the-art ones, both in achieving a higher compression ratio and better security when communicating
medical images over unsecured IoMTs.

Keywords: discrete orthogonal moments; integer discrete Shmaliy transform; secure communication;
lossless compression; encryption

MSC: 68P25

1. Introduction

The internet of medical things (IoMTs) is revolutionizing healthcare by interconnecting
objects, sensors and medical devices, enabling the remote monitoring of patients’ health
status and performing real-time diagnostics [1]. However, this connectivity is generally
accompanied by two major challenges: (i) The rapid expansion in the storage capacity
of medical data (images, videos, personal data, medical reports, etc.), which leads to an
increased need for storage devices and limits the transmission of such massive data over lim-
ited bandwidth [2,3]. (ii) Security and privacy are key challenges for the IoMTs ecosystem.
Indeed, patient data must be protected from any unauthorized access or manipulation [4].
To overcome the first limitation, compression techniques can be used, as such techniques
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reduce the medical data size [5]. This reduction optimizes the use of network bandwidth,
enabling fast data transmission [6]. To ensure confidential and secure transmission of
medical data in IoMTs, robust encryption techniques can be successfully utilized [7]. By
implementing such techniques, healthcare organizations can protect sensitive medical data
from potential misuse by cyber-attackers [8]. It is clear that the compression and encryption
techniques are essential in the internet of medical things (IoMT) systems, since they create a
secure and efficient environment for the storage and transmission of medical data. For this
purpose, researchers have recently provided some implementations of joint compression
and encryption schemes for medical images [9,10]. Modern medical imaging technologies
produce high-resolution image files [11], which can be costly in terms of storage space
and network transmission. Compression techniques are specifically designed to reduce
the size of medical image files, while preserving the clinical details of each image [12].
Medical images can be compressed by two methods: a lossy compression or a lossless one.
Lossy compression techniques usually offer the possibility of achieving a high compression
ratio, thus saving valuable storage space [13]. Commonly used lossy compression schemes
include JPEG-2000 [14,15], JPEG [16], and so on. However, until now, lossy compression
approaches are less acceptable in the field of medical imaging because they lead to the loss
of critical information details in medical images [17,18]. This is why lossless compression
techniques are more appropriate to the medical imaging field, as they avoid any visual in-
formation loss while reducing the size of the image file [13,19]. Lossless image compression
technologies can be implemented through two main approaches: predictive coding and
transform coding. Predictive coding-based compression algorithms such as JPEG-LS [20]
and CALIC [21] are generally implemented in the spatial domain [22]. However, these
predictor-based algorithms are independent of the image compression standard (JPEG)
structure [22]. To support the JPEG standard, lossless compression schemes have been
introduced in the transform coding domain [18,23,24]. Such schemes are essentially based
on the use of the integer discrete cosine transform (IDCT), which was introduced to the field
of image processing about 23 years ago [25]. This is why Xiao et al. are investigating a new
integer discrete orthogonal transform, namely the integer discrete Tchebichef transform
(IDTT), in lossless image compression [22]. In their work, IDTT has replaced IDCT in the
JPEG compatible lossless compression scheme. The authors conclude that the use of IDTT
improves the compression ratio over IDCT while employing the standardized JPEG scheme.
Consequently, it is desirable to investigate new reversible integer transforms for improving
the efficiency of transform-based lossless image compression. Once the medical images
have been compressed, they can be stored or transmitted via IoMTs devices. However, the
IoMT devices typically offer restricted storage capacity. To overcome this issue, cloud-based
data storage can be exploited [26]. Even more, the compressed images with the confidential
patient information (identity, name, diagnostic repots, etc.) can be communicated via
the IoMTs. However, uploading or transmitting compressed images via the IoMTs may
not be secure [27]. To guarantee a high level of security in IoMTs, cryptographic systems
can be used. [28,29]. Chaotic systems have proven to be very successful in the design of
cryptographic systems with high security in IoMTs [30,31]. Chaotic system models can
be categorized into two main classes: unidimensional (1D) [32,33] and multidimensional
(nD) [34,35]. Chaotic systems that are 1D are considered more implementation-friendly
than nD systems, either at the software or hardware level, given the simple nature of 1D
chaos models [36]. However, 1D chaotic systems are generally limited by certain well-
known weaknesses, namely: (i) the limited number of their control parameters, which are
generally used as secure keys in cryptographic systems; and (ii) the limited intervals of their
control parameters, in which 1D chaotic systems behave chaotically. To overcome these
limitations, it is possible to use 1D chaotic maps incorporating multiple control parameters
defined over unlimited ranges [33]. In this work, we introduce a new discrete reversible
transform called the integer discrete Shmaliy transform (IDST), which is able to perform
integer-to-integer encoding through the factorization of Shmaliy polynomials (SPs) into
single-row reversible matrices. To demonstrate the benefits of the proposed IDST in IoMTs,



Mathematics 2023, 11, 3619 3 of 28

it is used in a new scheme for lossless medical image compression–encryption. In this
scheme, IDST is used for encoding the input image into integer coefficients, which are
in turn encoded by Huffman coding to produce the compressed image. This process is
compatible with the JPEG standards. In order to provide a higher security level to our
scheme, we propose an extended version of the classical piecewise linear chaotic map
(PWLCM). The proposed version is called the multiparametric piecewise linear chaotic map
(M-PWLCM), which contains eight control parameters defined over R-domain. By contrast,
the classical PWLCM has only one control parameter defined over a limited interval. Next,
M-PWLCM is used to encrypt the compressed medical images, and its control parameters
are securely shared between authorized IoMT users as security keys. The main contribution
of the current work can be summarized in the following points:

• A new reversible integer discrete Shmaliy transform (IDST) is proposed for integer-to-
integer mapping in signal and image processing.

• A new 1D chaotic map called M-PWLCM incorporating eight control parameters
defined over an infinite range is proposed.

• IDST and M-PWLCM are used in a proposed lossless compression–encryption scheme
for IoMTs.

• The proposed lossless scheme provides an acceptable compression ratio with a high
security level.

• To the best of our knowledge, the proposed framework is the first attempt to use
reversible integer transforms in joint compression and encryption of medical images.

• Simulations and comparisons are provided to demonstrate the suitability of our
scheme for IoMTs.

The rest of the document is structured as follows:Section 2 deals with the related work
and discussion. Section 3 is devoted to presenting the preliminaries. Section 4 focuses
on the derivation of the proposed IDST and its inverse. Section 5 extends PWLCM to the
proposed M-PWLCM. Section 6 includes the design of the proposed lossless compression–
encryption scheme. Simulation and comparison outcomes are provided in Section 7 and
Section 8 concludes our work and gives its potential extensions in upcoming work.

2. Related Work with Discussion

This section briefly surveys some recent compression–encryption schemes in the field of
medical imaging. Indeed, Table 1 summarizes the essential aspects of each surveyed scheme,
including the used tools, as well as the advantages and disadvantages of these schemes.

Table 1. Literature survey on medical image compression–encryption schemes.

Scheme Used Tools Advantages Disadvantages

[37]
• Entropy encoding
• Deep neural learning

• Image noise filtering
• Compression ratio improvement
• Lossless compression

• Security analysis unavailable
• Implemented in the spatial do-

main

[38]

• Compressive sensing
• 1D chaotic Chebyshev map
• 1D chaotic logistic map

• Controlled compression ratio
• Resistance to brute-force and sta-

tistical attacks

• Lossy compression
• Time consumption
• Limited range of the security

key’s components

[9]

• Multiscale transforms
• Encoding techniques
• RSA algorithm

• Controlled compression ratio
• Decompressed–decrypted image

quality improvement

• Lossy compression
• Security analysis unavailable
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Table 1. Cont.

Scheme Used Tools Advantages Disadvantages

[39]

• Modified salp swarm algo-
rithm (SSA)

• Chaotic coupled map lattices
(CML)

• Entropy coding

• Resistance to brute-force and
statistical attacks

• Lossless compression

• Compression takes place after
encryption and performed in
the spatial domain

• The compression scheme’s
performance is unavailable

• Limited range of the security
key’s components

[40]

• Compressive sensing
• Discrete wavelet transform

(DWT)

• Resistance to brute-force at-
tacks

• Controlled compression ratio
• Acceptable quality of the

decompressed–decrypted im-
age

• Lossy compression
• Time consumption
• Some statistical results are

somewhat far from the de-
sired levels

Proposed work

• Integer discrete Shmaliy trans-
form (IDST)

• 1D M-PWLCM
• Entropy encoding

• Acceptable compression ratio
• High degree of security
• Lossless compression compat-

ible with JPEG standards

• Time-consuming for large-
sized images

• Uncontrolled compression ra-
tio

• Not robust against data loss or
noise

From Table 1, we can conclude that the main objectives of joint compression–encryption
schemes are as follows: (i) achieving a good compression ratio to benefit from maximum
storage space, and (ii) maximizing the security level for reliable communication of medical
images over IoMTs. To achieve the first objective, a compressive sensing approach can be
adopted [38,40]. This approach offers a high compression ratio with easy control of this ra-
tio. However, this approach is potentially inappropriate for medical images, as it performs
lossy compression, which can lead to the loss of sensitive visual data. Furthermore, the
reconstruction process in this approach is generally very time-consuming. Transform-based
methods (i.e., DWT, DCT, etc.), as presented in [9], can also be used to deliver a good
compression ratio. However, these methods involve visual information loss when recon-
structing the medical images. To overcome this issue, lossless compression–encryption
techniques can be implemented, as outlined in [37,39]. These schemes are implemented
in the spatial domain and the compressed image is produced through entropy coding.
However, image compression in the spatial domain using entropy coding is still limited, as
it is unable to achieve a good compression ratio. To achieve objective (ii), chaotic systems
are generally deployed where their initial conditions and control parameters are used as
safety keys. This is why the design of new multiparametric chaotic systems for use in
compression–encryption systems is of great interest for attaining higher security levels. It
is clear from the above discussion that there is a real need for further development of new
lossless compression–encryption schemes that can achieve higher compression ratios with
superior security levels, with the aim of improving the efficiency and reliability of data
storage and communication over IoMTs.

3. Preliminaries

This section provides definitions and preliminaries relevant for the present work,
including SPs and its transformation.

3.1. Discrete Shmaliy Polynomials

The discrete Shmaliy polynomials (SPs) are a type of discrete orthogonal polynomial.
SPs have a simpler definition than other discrete orthogonal polynomials (Tchebichef,
Krawtchouk, Hahn, Dual Hahn, and Racah) due to their independence from local parame-
ters and their linear weight function [41]. Only few works in the literature use SPs as basis
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kernel for defining discrete Shmaliy transforms. Indeed, Asli et al. introduced in [42] the
conventional 1D discrete Shmaliy transform (DST), which can be easily extended to 2D
and 3D domains. More recently, Daoui et al. [43] have extended the conventional DST
transform to the quaternion discrete Shmaliy transform (QDST) for the purpose of com-
pact color image analysis. However, both DST and QDST convert the input signal/image
function into floating-point values. Therefore, such transformations are less appropriate for
input functions of integer values. To overcome this limitation, the present work develops a
framework for deriving a new type of Shmaliy transform, namely IDST, which can be used
to perform integer-to-integer mapping. SPs are defined by the next equation [42]:

Sn(x) =
(−1)n(n + 1)(x− n)n(N − x)n

n!(N)n+1

∞

∑
k=0

(−n)k(x + 1)k(1− N + x)k
(x− n)k(1− N − n + x)kk!

; n, x = 0, 1, . . . , N − 1 (1)

where (p)k represents the Pochhammer symbol [44], which is expressed in terms of Gamma
function ( Γ(p)) as

(p)k = p(p + 1)(p + 2) . . . (p + k− 1) =
Γ(p + k)

Γ(p)
with k ≥ 0, p > 0 and (p)0 = 1 (2)

To ensure the numerical stability of SPs used for digital signal analysis, the next
orthonormalized SPs are used:

Ŝn(x) = Sn(x)
√

ωx

ρn
(3)

where ωx and ρn represent the weight and square-norm functions of SPs, respectively.
These functions are given by [42]:

ωx =
2x

N(N − 1)
and ρn =

(n + 1)(N − n− 1)n
N(N)n+1

(4)

For efficient computation of SPs, the three-term recurrence relation below is used [43]:

S̃n(x) = λS̃n−1(x) + υS̃n−2(x) for x = 1, 2, . . . , N and n = 2, . . . , N − 1

λ =

[
n2(2N − 1)

2n− 1
− x(2n + 1)

]√
4

n(N + n)(n + 1)(N − n− 1)

υ = − (2n + 1)
(2n− 1)

√
(N − n)(n− 1)(N + n− 1)
(N + n)(n + 1)(N − n− 1)

(5)

The initial terms of DSPs are computed via Equations (6) and (7), respectively.

Ŝ0(x) =
√

x
x− 1

S̃0(x− 1) for x > 2 with Ŝ0(1) =

√
2

N(N − 1)
(6)

Ŝ1(x) =
[−6x + 2(2N − 1)]

4

√
1

(N + 1)(N − 2)
Ŝ0(x) (7)

A typical 8 × 8 ortho-normalized SPs matrix is given as follows:
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Ŝ =



0.1666 0.3944 0.5351 0.5318 0.4122 0.2508 0.1154 0.0352
0.2357 0.4382 0.3243 −0.05373 −0.4164 −0.5321 −0.3964 −0.1745
0.2886 0.3903 0.0147 −0.3947 −0.3060 0.1931 0.5426 0.4274
0.3333 0.2817 −0.2548 −0.3418 0.2120 0.4181 −0.1649 −0.6170
0.3726 0.1259 −0.3988 0 0.4266 −0.1869 −0.4056 0.5518
0.4082 −0.0690 −0.3537 0.3721 0.0288 −0.4438 0.5251 −0.3022
0.4409 −0.2981 −0.0674 0.4020 −0.5298 0.4424 −0.2555 0.0932
0.4714 −0.5577 0.5045 −0.3760 0.2332 −0.1182 0.0466 −0.0124


3.2. Discrete Shmaliy Transform

The discrete Shmaliy transform (DST), commonly known as discrete Shmaliy moments
(DSMs), is increasingly used in signal and image analysis, including signal and image
reconstruction [42], texture classification [41], and bio-signal zero-watermarking [43]. The
2D DST of the order (n,m) is calculated by using the following formula:

DSTnm =
N−1

∑
x=0

M−1

∑
y=0

I(x, y)Ŝn(x)Ŝm(y) (8)

where I(x, y) and Ŝn(x) represent, respectively, the 2D image function and SPs matrix of
size N ×M. The next inverse DST formula is used to reconstruct the input image:

Ir(x, y) =
N−1

∑
n=0

M−1

∑
m=0

DSTnmŜn(x)Ŝm(y) (9)

where Ir(x, y) is the reconstructed form of I(x, y) image. The similarity between the original
image and its reconstructed version can be measured by using reconstruction error criteria
such as the mean square error (MSE) and the peak signal-to-noise ratio (PSNR).

MSE =
1

M× N

M−1

∑
x=1

N−1

∑
y=1

[I(x, y)− Ir(x, y)]2 (10)

PSNR(dB) = 10log10

(
2552

MSE

)
(11)

If MSE = 0 and PSNR = In f , the input image {I(x, y)}x,y=N
x,y=1 and its reconstructed

version
{

Î(x, y)
}x,y=N

x,y=1 are identical. As result, the reconstruction is considered lossless
(perfect). Otherwise, the image reconstruction process is lossy. Although DST continues to
attract growing interest in the field of digital signal processing, its applicability remains
limited in applications requiring lossless reconstruction of the input signal. These ap-
plications include reversible data hiding, lossless compression, reversible watermarking,
encryption, etc. Therefore, the extension of DST to support integer-to-integer mapping
is highly required. In the next section, a new type of discrete transform, called IDST, is
introduced.

4. Proposed Integer Shmaliy Transform

This section details the mathematical derivation of the proposed IDST, which is based
on the factorization of the DSPs matrix into a product of single-row elementary reversible
matrices (SERMs). A DSPs kernel matrix (Ŝ) of size N×N satisfies the following properties,
which are fundamental to perform SERMs factorization:

• ŜT .Ŝ = Ŝ.ŜT = I. That is, Ŝ is an N × N orthogonal matrix with (.)T is the transpose
symbol and I denotes the identity matrix of size N × N .
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• The transpose of Ŝ equals its inverse: ŜT = Ŝ−1. That is, Ŝ is invertible.
• Ŝ determinant is equals to 1: det(Ŝ) = 1.
• All minors of the lead sub-matrices of Ŝ are 1 s.

The above properties allow the factorization of Ŝ into (N + 1) SERMs as follows [45]:

Ŝ = PSN . . . .S2S1S0 (12)

where P is the permutation matrix of Ŝ with Sk(k = 0, 1, 2, . . . ., N) representing the SERMs
given by

S0 = I + eNsT
0

Sk = I + eksT
k , k = 1, 2, . . . , N

(13)

In Equation (13), ek denotes the k-th column of I matrix, and sk denotes the necessary
component vectors of SERMs with the k-th (k = 0, 1, 2, . . . ., N) component equal to zero.
The SERMs satisfy the following property:

S−1
0 = S0 = I + eNsT

0

S−1
k = I − eksT

k , k = 1, 2, . . . , N
(14)

The factorization of Ŝ into SERMs leads to the achievement of the following permuta-
tion matrix:

P =



0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0


with the vectors S0, S1, . . . ., S8 computed and then presented as follows:

sT
0

sT
1

sT
2

sT
3

sT
4

sT
5

sT
6

sT
7

sT
8


=



−0.92140 1.05128 1.24752 1.80687 −2.26269 0.30536 1.41220 0
0 −0.20606 −0.61469 −1.16643 0.74272 −0.50777 −0.77991 0.50452

−0.11952 0 1.01272 1.15012 −1.04730 0.04062 0.39632 −0.49746
0.10906 −0.41286 0 0.41043 −0.85013 0.60809 −0.03424 −0.23866
0.52778 −0.39710 0.32771 0 0.20959 0.09844 −0.14779 −0.26984
0.27546 −0.15613 0.82579 −0.63965 0 −0.59176 0.11802 −0.12787
0.15987 0.20260 −0.67963 0.87676 0.97392 0 0.22756 0.34311
0.33717 0.21335 0.52981 −0.48263 −0.98684 0.19278 0 −0.44249
−0.60962 0.19162 −0.61979 2.28800 2.01935 −1.43218 1.35138 0


The following formula defines the proposed one-dimensional IDST (1D IDST) for a

discrete signal x = (x0, x1, . . . , x7)
T of integer coefficients:

M = IDST(x) = PbS8 . . . bS1bS0xcc . . .c (15)

where b.c denotes the symbol of rounding arithmetic operation. The reconstructed signal x̂
is computed by applying the inverse of IDST that is defined as follows:

x̂ = iIDST(M) =
⌊

S−1
0 . . .

⌊
S−1

7

⌊
S−1

8 PT M
⌋⌋

. . .
⌋

(16)
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To extend the 1D IDST to the two-dimensional domain, first the 1D IDST is applied
to each column of the 2D signal function {I}x,y=8

x,y=1 . Next, the 1D IDST is applied to each
row of the resulting matrix. Mathematically, the two-dimensional integer discrete Shmaliy
transform (2D IDST) is calculated according to Equation (17).

M = IDST
(
(IDST(I))T

)
(17)

The inverse of 2D-IDST can be used to generate the reconstructed 2D function
{

Î
}x,y=8

x,y=1
as follows:

Î = iIDST
(
(iIDST(M))T

)
(18)

By performing an integer-to-integer transformation via IDST and its inverse, the input
image can be recovered without any information loss (lossless). To confirm this statement,
the similarity between the input image and its reconstructed version can be measured by
using the MSE and PSNR criteria.

Figure 1 illustrates an example where the proposed IDST is used for the reconstruction
of an integer-valued input matrix of size 8× 8 (Figure 1a). On the one hand, this example
shows that the forward IDST (Equation (17)) is able to produce an integer matrix (Figure 1b)
from an integer input matrix. Thus, the proposed IDST is able to perform an integer-to-
integer mapping. On the other hand, we can see that the inverse of the IDST (Equation (18))
results in a perfect reconstruction of the input matrix (Figure 1c). This is evident from
Figure 1d, which plots the difference in absolute value between the input matrix and its
reconstructed version using IDST.

Figure 1. (a) Integer-valued input matrix of size 8× 8. (b) The forward IDST of (a) matrix. (c) The
inverse IDST of (b) matrix. (d) The difference in absolute values between (a,c) matrices.

The practical utility of IDST in medical image analysis will be demonstrated by using
IDST in lossless compression–encryption of medical images. This application must also
offer a high level of security for resisting various cyber attacks.

5. Proposed Multiparametric Piecewise Linear Chaotic Map

The one dimensional (1D) chaotic maps are usually used in various crypto-systems
for their low complexity and easy-to-implement models.

5.1. Traditional Piecewise Linear Chaotic Map

The traditional 1D piecewise linear chaotic map (1D PWLCM) is widely used in
various encryption schemes. The original mathematical model of the 1D PWLCM is given
by the following formula [46] :

x(k + 1) = F(x(k), p) =


x(k)/p i f x(k) ∈ [0, p)

(x(k)− n)/(0.5− p) i f x(k) ∈ [p, 0.5)
F(1− x(k), p) i f x(k) ∈ [0.5, 1)

(19)

where p ∈ (0, 0.5) is the control parameter of PWLCM and its initial value is x(0) ∈ (0, 1).
Figure 2 shows the bifurcation diagram and Lyapunov exponent (LE) values of PWLCM.
This figure clearly shows that PWLCM behaves chaotically if p ∈ (0, 0.5), as all LE values
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are positive and the output of this map exhibits “bifurcation” within the range [0–1].
Such behavior indicates the potential suitability of PWLCM for use in security systems.
However, the PWLCM model contains only one control parameter, which is defined within
a restricted interval. These issues make PWLCM highly vulnerable to cyber attacks when it
is employed in security applications. To overcome these limitations, the next subsection
introduces a new version of PWLCM.

(a) (b)

Figure 2. (a) Bifurcation diagram and (b) LE of PWLCM for p ∈ (0, 0.5) and x(0) = 0.1.

5.2. Proposed M-PWLCM and Its Analysis

Within this section, the proposed multiparametric piecewise linear chaotic map (M-
PWLCM) is presented as an extension of the existing PWLCM. The M-PWLCM is defined
by the following model:

x(k + 1) =



2.5×
(

1−
∣∣∣10−2atan(λ1)

∣∣∣− ∣∣∣10−2 cos(λ2)
∣∣∣)× x(k) i f x(k) ∈ [0, 0.4)(

10−
∣∣∣10−2atan(λ3)

∣∣∣− ∣∣∣10−2 cos(λ4)
∣∣∣)× (x(i)− 0.4) i f x(k) ∈ [0.4, 0.5)(

10−
∣∣∣10−2atan(λ5)

∣∣∣− ∣∣∣10−2 cos(λ6)
∣∣∣)× (0.6− x(i)) i f x(k) ∈ [0.5, 0.6)

2.5×
(

1−
∣∣∣10−3atan(λ7)

∣∣∣− ∣∣∣10−3 cos(λ8)
∣∣∣)× (1− x(i)) i f x(k) ∈ [0.6, 1)

(20)

where (λ1, . . . , λ8) are the eight control parameters of the proposed M-PWLCM with its
initial value x(0), which should be given in (0, 1). atan(.) and cos(.) are the arctangent and
cosine trigonometric functions, respectively. |.| is the absolute value symbol.

Unlike to the original PWLCM, the proposed M-PWLCM contains eight control param-
eters that are defined over an unlimited interval since atan(.) and cos(.) functions are both
defined over the R-domain. Accordingly, we expect that the proposed model can provide
a high degree of security in terms of security key space. In addition, defining control
parameters on R not only boosts the security level, but also provides a great facility for
the user to select the authentication/security key, which is composed from the M-PWLCM
control parameters.

It is worth mentioning that it is easy to adapt the M-PWLCM model given by Equation (20)
to contain less than eight parameters by setting the terms |δatan(λ)| and/or |δ cos(λ)| to
zero with 10−3 ≤ δ ≤ 10−2. Reducing the number of M-PWLCM parameters can reduce
the implementation complexity, particularly in a hardware-based environment. However,
by reducing the number of M-PWLCM parameters, the security key space of M-PWLCM-
based systems is also reduced, which can make these systems vulnerable to cyber attacks
by brute force. It is also easy to adapt the proposed M-PWLCM model to contain more than
eight parameters. In fact, it is sufficient to add or subtract |δatan(λ)| and |δ cos(λ)| terms
in the proposed model’s equations. By increasing the number of the proposed model’s
parameters, it is possible to reinforce the security level of M-PWLCM-based systems. How-
ever, the large number of parameters (>8) can make the behavior of M-PWLCM either
non-chaotic or “poorly” chaotic (low LE values). Thus, each additional parameter in the
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M-PWLCM model requires an analysis of this model’s chaotic behavior. Thus, the reason
for using eight parameters in the M-PWLCM model is to preserve its excellent chaotic
behavior while guaranteeing a high level of security for M-PWLCM-based security systems.
The following analysis is provided to confirm this assumption.

Before exploiting M-PWLCM in security schemes, it is crucial to demonstrate its
chaotic behavior and sensitivity to its control parameters. To this end, Figures 3 and 4 are
presented. These figures show, respectively, the bifurcation diagrams and LE values of the
proposed map when varying its control parameters over a subinterval in R.

(a) (b)

Figure 3. Bifurcation diagrams of M-PWLCM when varying its control parameters (a) (λ1, . . . , λ4)

and (b) (λ5, . . . , λ8) in the interval [−1000, 1000] with x(0) = 0.3.

(a) (b)

Figure 4. LE values of M-PWLCM when varying its control parameters (a) (λ1, . . . , λ4) and
(b) (λ5, . . . , λ8) in the interval [−1000, 1000] with x(0) = 0.3.

Figure 3 shows that the proposed map exhibits significant bifurcations when its eight
parameters vary over the interval [−1000, 1000]. This figure graphically shows that the
proposed map exhibits chaotic behavior over the range displayed in the test. Furthermore,
the test results show that all the M-PWLCM parameters influence its output. These results
provide a clear indication of M-PWLCM’s chaotic behavior. It should be mentioned that
the interval [−1000, 1000] in the current test (Figure 3) is illustrative, whereas the findings
of this test are reproducible over R. To better prove the chaos of M-PWLCM, LE values
are computed for its control parameters over the interval [−1000, 1000]. The current test
results are then presented in Figure 4. It is evident from this figure that LE > 1 for the full
studied range. The same results can be obtained over R. Clearly, the proposed model’s
chaotic behavior is confirmed by this test.

The chaotic systems are generally of high sensitivity to their control parameters.
Therefore, it is necessary to test the sensitivity level of each parameter in the proposed
M-PWLCM to confirm its suitability for use in security systems. To this end, a chaotic
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sequence is initially generated by the proposed model while setting the control parameters
to the following values:

(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) = (7,5,0,1,8,9,10,2)

Then, in each case, one parameter is modified by adding a small ∆-value, and a new
chaotic sequence is re-generated via M-PWLCM according to the performed modification.
Afterwards, the original chaotic sequence and the re-generated one are plotted with their
absolute differences in the same graph shown in Figure 5. From this figure, it can be
observed that any small variation by ∆ ∈

[
10−12, 10−10

]
of the control parameters results

in a significant variation of the proposed map’s output. This evidence validates that the
M-PWLCM is very sensitive to its control parameters. Consequently, the output values
produced by the proposed chaotic system can be used in security information systems and
the control parameters of this system can be used as security keys.

(a) (b)

Figure 5. (a) M-PWLCM time series for 1000 iterations, and (b) the absolute difference (|D|)
between the original series (blue color) and the ones generated following a slight variation by

∆ ∈
[
10−12, 10−10

]
(red color) of the control parameters.
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The following section introduces a proposed lossless medical image compression–
encryption scheme based on IDST and M-PWLCM.

6. Proposed Lossless Compression–Encryption Scheme for IoMTs

The proposed lossless compression–encryption scheme for medical images consists of
two consecutive phases performed by the transmitter and the receiver, respectively. At the
transmitter level, the medical image is compressed based on IDST and Huffman Coding.
Then the compressed image is encrypted based on the proposed M-PWLCM. Finally, the
compressed–encrypted image can be transmitted securely over a public communication
channel. At the receiver level, the compressed–encrypted image is decrypted and decom-
pressed to retrieve its original form without any information loss. It should be mentioned
that the Transport Control Protocol (TCP) must be used when transmitting the compressed–
encrypted image from the transmitter to the receiver because TCP supports the lossless data
transmission. Figure 6 illustrates the key phases of the proposed compression–encryption
scheme and its details are presented below.

Figure 6. Proposed compression–encryption scheme.

6.1. Pre-Processing

In this step, the input I image of size N×M is divided into non-overlapping 8× 8 blocks
in order to apply the proposed IDST to each block. This step is a popular pre-processing
step used in various image processing schemes, as it reduces the overall computational
complexity of a transform-based algorithm.

6.2. Computation of the Forward IDST

The current step allows the calculation of the forward IDST of each 8× 8 image block,
which generates the N ×M matrix, noted M, which contains integer coefficients.

6.3. Huffman Coding

Huffman coding is based on the assignment of variable-length codes to the input
values. Depending on the occurrence frequency of each value, the length of the code
(bit sequence) assigned to that value is determined. Indeed, the smallest bit sequence is
assigned to the value of the highest frequency, and the largest bit sequence is allocated
to the value of the lowest frequency [47]. The generated Huffman codes are unique for
the input values. Thus, Huffman coding guarantees the absence of any kind of ambiguity
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during the decoding process on the coded bit stream [48]. Huffman coding therefore aims to
reduce the redundancy in the input values, resulting in a high compression ratio. Huffman
coding is generally implemented in the transform domain rather than the spatial one. This
is because there is less redundant information in the transform domain in comparison to
the spatial domain [49].

In the present step, Huffman coding is used as an entropy coding technique for exploit-
ing the statistical properties of IDST matrix data in order to assign shorter binary codes
to the most probable coefficients and longer binary codes to the less probable coefficients.
This process leads to an overall reduction in the size of the IDST matrix, producing the
compressed image. The latter is represented by a sequence of binary bits stored in a 1D
binary vector denoted as VB.

To evaluate the compression ratio using the proposed method, we can use the bits
per pixel (Bpp) criterion, which represents the average number of bits that are required for
encoding each pixel in the input image. Bpp can be considered as an absolute indicator of
the compression ratio. This criterion is defined by Equation (21).

Bpp =
LB
DI

(21)

where LB = length(VB) represents the length of the VB vector and DI = N×M denotes the
input image dimensions product. The lower Bpp value indicates a higher compression ratio.

6.4. Bit Stream Grouping and Coding

In this step, the VB vector is divided into groups of 8 bits. Then, each group is
converted into its decimal representation. This process creates grayscale values, which are
reshaped into a CI-labeled 2D matrix of size N×m. This matrix represents the compressed
grayscale form of the input I image. The compression ratio (CR) achieved by the proposed
method is determined by using the next CR criterion:

CR(%) =

(
1− Compressed image dimensions

Original image dimensions

)
× 100 (22)

The higher CR is an indicator regarding the effectiveness of the used compression
technique.

6.5. Compressed Image Encryption

The current phase is a key part of the proposed scheme for ensuring a secure com-
munication of the compressed images over IoMTs. Indeed, medical images need to be
communicated via IoMTs while guaranteeing the highest standards of security for prevent-
ing any third-party attacks. To achieve this goal, the proposed M-PWLCM is exploited
according to the steps described below.

Step 1: This step consists in generating a chaotic sequence denoted S of length
L = N ×m by using the proposed M-PWLCM model (see Equation (20)). Next, the gener-
ated sequence is rounded into grayscale levels as follows:

PS = bS× 255c (23)

Step 2: This step consists in reshaping the PS vector into a 2D matrix labeled as D of
size N ×m.

Step 3: Use the bitxor operator to encrypt the compressed image as follows:

EI = bitxor(CI, D) (24)

where EI represents the compressed–encrypted image of size N×m. It is worth mentioning
that at this step, the control parameters λ1, . . . , λ8, and x(0) the initial value of M-PWLCM
are given as security a key, noted as KEY = (x(0), λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8). This key is
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communicated between authorized IoMT users through a secure communication medium
such as Short Message Service (SMS). Without this key, the attacker is unable to obtain
any useful information from the compressed–encrypted image. It is also important to
mention that the proposed system is symmetric. That is, the reverse process to that used for
generating the compressed–encrypted image (EI) is performed to produce the decrypted-
decompressed image, which is exactly equivalent to the input image (I).

It should be noted that the use of the proposed scheme to color medical images requires
the conversion of these images from RGB to YCbCr color space. This pre-processing step
is adopted in lossless compression to achieve a higher compression ratio [22]. For this
purpose, Equation (25) is used to convert the input image from RGB to YCbCr space, and
the reverse conversion is accomplished by using Equation (26) [50].

Y = b(R + 2G + B)/4c
Cr = R− G

Cb = B− G

(25)


G = Y− b(Cr + Cb)/4c
R = Cr + G

B = Cb + G

(26)

In the following section, simulations and comparisons are reported to illustrate the
efficiency of the proposed medical image compression–encryption scheme in IoMTs.

7. Simulation Results

Within this section, extensive simulation and comparison results are provided to
confirm the suitability of IDST and M-PWLCM for lossless encryption–compression in
IoMTs. First, simulation and comparison experiments are carried out to demonstrate the
effectiveness of IDST in lossless medical image reconstruction and compression. Next, the
proposed scheme is subjected to a series of security analyses aimed at testing its ability to
withstand brute-force, statistical and differential attacks, which can occur in IoMTs. It is
noteworthy that all the simulations in this study are executed on a PC containing 4 GB of
RAM and a processor of 2.4 GHz and Matlab R2022b (v9.13) software (The MathWorks,
Inc., Natick, MA, USA) is used to perform the experiments in the present work.

7.1. Reconstruction Error Analysis

In the present test, the performance of the proposed IDST is evaluated in terms of lossless
reconstruction. To this end, MSE and PSNR are computed following image reconstruction
by using IDST. The image reconstruction is also performed by other discrete transforms,
including the conventional Shmaliy moments (SM) [43], Tchebichef moments (TM) [7], Char-
lier moments (CM) [51], Meixner moments (MM) [52], Hahn moments (HM) [53], Dual
Hahn moments (DHM) [54], Racah moments (RM) [55], Discrete Cosine Transform (DCT),
Discrete Wavelet Transform (DWT) with three wavelet basis functions (“db1”, “sym2” and
“coif1”), Integer Discrete Tchebichef Transform (IDTT) [22], Integer Discrete Cosine Transform
(IDCT) [23], and Integer Discrete Wavelet Transform (IDWT) [56]. To perform the current
analysis, we use grayscale CT medical images of size 512× 512, which are selected from
a dataset in [57]. These images are then reconstructed using the aforementioned discrete
transforms and the reconstruction error is evaluated by MSE and PSNR criteria. The results
of the current analysis are reported in Figure 7. The results in this figure show on the one hand
that IDST outperforms the conventional SM in terms of reconstruction error. On the other
hand, when using conventional orthogonal transforms (SM, TM, HM, DCT, DWT, etc.), the
MSE obtained is minimal for all the test images but this error is different from zero, indicating
that the use of these transforms does not result in a perfect reconstruction. This finding can
be explained by the fact that the conventional orthogonal transforms perform integer-to-real
encoding and real-to-integer decoding, respectively. These processes lead to rounding and



Mathematics 2023, 11, 3619 15 of 28

approximation errors when calculating conventional forward and backward transformations.
On the other hand, the results in the same figure show that the integer transforms including
the proposed IDST lead to perfect reconstruction (MSE = 0 and PSNR = In f ). This finding
reflects the fact that the integer transforms execute an integer-to-integer mapping during the
computation of the forward and backward transformations, which prevents the occurrence of
any approximation errors, leading to the ideal reversibility of the grayscale values of the input
image. Therefore, when designing reversible data applications such as reversible data hiding,
lossless compression, encryption, etc., the use of integer-type transforms (IDST, IDTT, IDCT,
etc.) is preferable in comparison to the conventional transforms (SM, DTM, DCT, etc.).

Figure 7. Reconstruction errors (MSE and PSNR) corresponding to grayscale medical images using
conventional and integer transforms, including the proposed IDST.

In the next analysis experiments, the performance of existing integer transforms will
be investigated in lossless image compression–encryption application that is composed
of two consecutive phases. The first one is the compression phase, which is performed
to significantly reduce the redundancy information in the input medical image, and the
second phase involves the encryption process to provide a high degree of security during
the exchange of medical images in IoMTs.
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7.2. Lossless Compression Performance Analysis

Lossless compression of medical images can be performed either in the spatial domain
or in the transform one. The current test compares lossless compression in the spatial
domain and in the IDST-based transform domain. For this, the test images are compressed
by Huffman coding in the spatial domain. In the transform-based domain, the lossless
compression is performed by using the proposed method.

To perform the current analysis, we use grayscale medical test images of size 512× 512,
which are selected from the dataset [57]. In addition, color medical images of size 2048× 1024
are also used in this analysis, which are selected from the same dataset. To compare the
compression performance, Bpp and CR criteria are used. The results presented in Figure 8
provide strong evidence that the use of the proposed IDST with Huffman coding offers
significant improvement in terms of CR and Bpp for all the test images in comparison to
the lossless compression in the spatial domain.

(a)

(b)

Figure 8. Bpp and CR values corresponding to (a) grayscale and (b) color medical images lossless
compressed in the spatial and IDST domains.

The following test is intended to compare the performance of the proposed IDST
versus existing integer transforms, namely, the integer discrete cosine transform (IDCT),
the integer discrete Tchebichef transform (IDTT), and the integer discrete wavelet transform
(IDWT). Our scheme illustrated in Figure 6 is used to carry out the current experiment. In
fact, each integer transformation type is applied to the input test image. Next, the same
steps illustrated in Figure 6 are followed to achieve the compressed image. Finally, the Bpp
value is computed for each image by using the various transformations. The test images in
the current test are the same ones seen in Figure 8. The current test outcomes are presented
in Figure 9. The latter show that the lowest Bpp scores for all the test images (both color
and grayscale) are achieved by using the proposed IDST and by the existing IDCT. In fact,
on the one hand, we can remark that the proposed IDST produces competitive results to
those achieved by IDCT. On the other hand, we can notice that IDST outperforms IDTT
and IWT in terms of Bpp. These results provide a clear sign of the effectiveness of the
proposed IDST for lossless image compression application.
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(a) (b)

Figure 9. Comparison in terms of Bpp values between the proposed IDST and existing integer-based
transformations used for lossless compression of (a) grayscale CT images and (b) color ones.

Once the effectiveness of the proposed IDST has been validated for lossless medical
image compression, subsequent experimental analyses are carried out to validate the
security level of the proposed scheme. To this end, several security analyses are performed
in terms of security key space, histogram analysis, and sensitivity analysis of the security
key components, etc.

7.3. Security Key Space Analysis

Key space analysis is conducted for showing the ability of our security scheme in
resisting brute-force attacks. Indeed, the key space must exceed 2100 to withstand strong
brute-force cyber attacks by using modern computers [58]. By considering the precision
215 of floating values as well as the sensitivity level of each component that composes the
security key of our scheme, the security key space of our scheme is about 1012×4+10×3+11 =
1089 ' 2295 . This space far exceeds the recommended security key space mentioned above.
Hence, the suggested compression–encryption scheme is able to provide a high degree of
robustness against brute-force attacks.

7.4. Histogram Analysis

The image histogram provides statistical information regarding an input medical
image. Indeed, such information can be analyzed by specific software in order to obtain
useful information regarding the content of this image without the need for displaying
its visual content. Therefore, the cancellation of input image statistical information is
considered as an essential characteristic to be satisfied by compression–encryption schemes
to prevent attacks based on statistics. In order to demonstrate the ability of our system
to hide statistical information of color and grayscale medical images, the current analysis
is established. For this purpose, grayscale medical images and color ones are selected
from the datasets in [59,60], respectively. These images are compressed–encrypted by our
scheme. Next, both the input images and their compressed–encrypted versions with the
corresponding histograms are shown in Figures 10 and 11.
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Figure 10. (a1–a4) Original grayscale medical images with size 512× 512 with their correspond-
ing histograms. (b1–b4) The compressed–encrypted versions of (a1–a4), respectively, and their
histograms.

Figure 11. (a1–a4) Original color medical images of size 512× 512 with their corresponding his-
tograms. (b1–b4) The compressed–encrypted versions of (a1–a4), respectively, and their histograms.
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The results shown in Figures 10 and 11 indicate that the compressed–encrypted
images have flat histograms. By comparing these histograms with those of the original
images, we can see the significant difference between them. Accordingly, our scheme
succeeds in concealing the statistical information of the input images, indicating that
no useful information can be obtained by analyzing the histograms of the compressed–
encrypted images. In other words, unauthorized IoMT users are unable to extract any
useful information via the analysis of the compressed–encrypted image histograms.

7.5. Correlation Analysis

Obviously, medical images include information redundancy, implying a high correla-
tion between adjacent pixels. Since the proposed scheme includes a lossless compression
phase, so it is assumed that this scheme is capable of greatly reducing the correlation be-
tween adjacent pixels. To quantify the correlation between neighboring pixels, the following
correlation coefficient (CC) criterion can be used:

CC =
C(x1, x2)√

V(x1)
√

V(x2)
(27)

where C(x1, x2) is the covariance value of two adjacent vectors (x1 and x2). V(x1) and
V(x2) are the variance of x1 and x2.

To assess the correlation between the original images with their encrypted–compressed
forms, 4000 samples are arbitrarily selected from adjacent pixels in the test images (Figure 12),
which are selected from the dataset in [59]. The results presented in Figure 13 and Table 2
show that the proposed scheme is able to break the existing correlation between adjacent
pixels in the original images. This indicates that our scheme not only offers lossless
compression, but also guarantees the low correlation between the pixels in its output
images.

Figure 12. Grayscale medical images used in the test.

Table 2. Absolute CC values in the horizontal, vertical and diagonal direction of the input medical
images and their compressed–encrypted forms.

Image Direction Img 1 Img 2 Img 3 Img 4 Ima 5 Img 6 Average

Input
Images

Horizontal 0.9880 0.9914 0.9814 0.9705 0.9780 0.9415 0.9751
Vertical 0.9903 0.9975 0.9850 0.9837 0.9910 0.9766 0.9874

Diagonal 0.9953 0.9902 0.9671 0.9806 0.9865 0.9659 0.9809
Compressed
–encrypted

images

Horizontal 0.0031 0.0011 0.0106 0.1054 0.0161 0.0335 0.0133
Vertical 0.0021 0.0121 0.0038 0.0320 0.0003 0.0085 0.0098

Diagonal 0.0206 0.0303 0.0232 0.0264 0.0149 0.0165 0.0132
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Figure 13. CC corresponding to the original Img 1–Img 6 (see Figure 12) and their compressed–
encrypted versions, respectively.

7.6. Key Sensitivity Analysis

The current analysis is performed to show the effect of any slight modification of
the proposed scheme’s key elements on the decompressed–decrypted image. To this
end, the test images shown in Figure 11 are compressed-decrypted by our scheme us-
ing the following key (x0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) = (0.4, 7, 5, 0, 1, 8, 9, 10, 2) . In the
decompression–decryption phase, the components of the key used are slightly varied, and
the decompressed–decrypted images are then shown in Figure 14. This figure visualizes
that any slight variation in the security key components by ∆ ∈

[
10−10 . . . 10−12

]
results in

the inability to retrieve the original images, which means that the proposed M-PWLCM
can guarantee the highest security standards when communicating medical compressed
images over IoMTs.
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Figure 14. (a) Decompressed–decrypted Img 1 using the valid security key. (b–i) Decompressed–
decrypted Img 1 using invalid security keys.

7.7. Differential Attack Analysis

Differential attacks can be used by IoMT attackers in their attempt to crack encryption
schemes. To evaluate the effectiveness of our scheme in resisting such attacks, the Number
of Pixels Change Rate (NPCR) and the Unified Average Modified Intensity (UACI) are used
as standard evaluation criteria. NPCR and UACI are defined by Equations (28) and (29),
respectively [61].

UACI =
∑i,j

∣∣∣Imgi,j − Img′ i,j
∣∣∣

255× H ×W
× 100; i = 1, . . . , N and j = 1, . . . , M (28)

NPCR = 100×
∑i,j Di fi,j

N ×M

with Di fi,j =

{
0 if Imgi,j = Img′ i,j
1 if Imgi,j 6= Img′ i,j

(29)

where Imgi,j is the input medical image and Img′ i,j is the compressed–encrypted version of
the input image.

The analysis test carried out in the previous subsection indicates that any minor
variation of the key components causes non-recuperation of the input image. This benefit
is exploited to resist brute-force attacks as follows:

• Set a constant of low value: ∆ = ∓10−10.
• Select a key parameter (e.g., λ3 ) and add ∆ to this parameter (λ∗3 = λ3 + ∆).
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• Use the proposed scheme for compression–encryption of the first medical image in the
dataset by using the user-selected security key containing the modified parameter (λ∗3).

• Update λ∗3 element by λ∗3 = λ∗3 + ∆ .
• Apply compression–encryption to the second medical image in the dataset, and so on

until the proposed scheme is applied to the entire dataset.

The above steps are designed to ensure that each image in the dataset is compressed–
encrypted with a unique security key. That is, the same image file produces entirely
different cipher-texts after being compressed–encrypted in two distinct iterations of our
algorithm.

To evaluate the validity of the above procedure to withstand differential attacks, the
test images shown in Figure 15 are compressed–encrypted in two consecutive iterations of
our scheme. Then, NPCR and UACI are computed for the output images. The comparison
of NPCR and UACI values produced through our scheme with those reported in [61],
leads to the conclusion that the proposed scheme is indeed effective in resisting differential
attacks.

Figure 15. Plain grayscale medical images of size 512× 512 and their corresponding compressed–
encrypted forms and the values of NPCR and UACI.
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7.8. Runtime Analysis

The aim of the current analysis is to measure the average execution time of the main
phases of the proposed scheme. To this end, 100 grayscale and color medical images of
different sizes (Figure 16) are selected from the [62] dataset and then used in the experiments.
Each test image is compressed–encrypted by the proposed scheme. Next, the average
runtime is measured for 10 executions of the next phases involved in the suggested scheme:
(i) pre-processing and IDST computation, (ii) Huffman and binary-to-decimal encoding,
and (iii) the encryption process. Table 3 lists details concerning the runtime of the proposed
compression–encryption core steps, and Figure 17 illustrates the percentage of these steps
for images of different dimensions.

Figure 16. Set of (a–b) grayscale and (c) color medical test images of various dimensions.

Table 3. Runtime (seconds) of core steps of the proposed compression–encryption scheme.

Size of Images

Compression–Encryption Phase

Pre-Processing and IDST
Huffman and

Binary-to-Integer
Coding

Encryption
Process Total Runtime

512 × 512 0.3283 5.7249 0.0472 6.1004
1024 × 1024 1.0310 15.4158 0.1106 16.5574

1024 × 1024 × 3 3.0532 46.2225 0.3320 49.6077

Figure 17. Detailed execution time percentage for the main compression–encryption steps
for grayscale medical images of size (a) 512 × 512, (b) 1024 × 1024, and color ones of size
(c) 1024 × 1024 × 3.
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Table 3 shows that the execution time increases with the increase in the input image
size, and from Figure 17, we can see that the most time-consuming step is the coding
process (Huffman and binary-to-integer coding), which takes up around 94% of the total
compression–encryption runtime. Accordingly, future work will focus on reducing the
runtime of our scheme to make it more cost-effective and responsive to real-time processing.

7.9. Comparison Analysis

The first comparison is performed between the security key capacity of the proposed
system and similar systems presented in [9,37–40]. The key spaces of the compared schemes,
including the suggested one, are listed in Table 4. The comparison provided in the table
shows that the work conducted in [9,37,40], omitted the key-space analysis. It is therefore
not possible to assess the security level of the presented compression–encryption schemes
against brute-force attacks. Furthermore, when comparing the proposed scheme with the
ones presented in citezhang2015medical,selvi2021modified, it becomes apparent that our
scheme provides a larger key space and therefore higher robustness to brute-force attacks
than [38,39].

Table 4. Comparison, in terms of key space, between the proposed scheme and other similar ones.

Scheme Proposed
Scheme [37] [38] [9] [40] [39]

Key space 2295 - 2202 - - 2128

The following comparison focuses on the comparison of PSNR values generated
by different compression–encryption schemes. For this purpose, we use the proposed
scheme for compression–encryption of test images, thus obtaining specific CR values. Next,
the compared compressive sensing-based schemes reported in [9,38,40] are adopted to
reach the same CR as that obtained by the proposed scheme. Finally, the PSNR values
corresponding to the decompressed–decrypted images are indicated in Table 5. This table
reveals that our scheme outperforms the comparative ones, achieving a PSNR = In f . This
finding is due to the fact that our scheme performs lossless image compression–encryption.
On the other hand, the compared schemes lead to certain degradation of the input image
after the decompression and decryption phases.

Table 5. Comparison in terms of PSNR between the proposed scheme and similar ones.

Images Img1 Img2 Img3 Img4 Img5 Img6 Average

CR(%) 51.47 52.04 50.27 49.02 58.63 55.33 52.79

PSNR

Proposed scheme Inf Inf Inf Inf Inf Inf Inf
Scheme [9] 35.36 34.15 35.16 35.66 36.17 37.96 35.74

Scheme [38] 34.12 33.69 36.15 35.78 35.02 36.98 35.29
Scheme [40] 57.16 58.17 60.02 59.16 58.16 57.06 58.28

The current comparison is also made between the suggested scheme and existing ones
implemented in the spatial domain. Indeed, the comparison between the proposed scheme
and those presented in [38,39] is carried out in terms of CR, as these schemes perform
lossless compression–encryption. The results of the current comparative test are presented
in Table 6. This table proves that our method outperforms the comparable schemes in terms
of CR. This result can be explained by the fact that the proposed system is implemented
in the transformation domain using IDST. In contrast, the comparable [38,39] schemes
are implemented in the spatial domain. The transformation-based implementation is
commonly known for its superior performance compared to the spatial-based compression.
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Table 6. Comparison in terms of CR between the proposed scheme and similar ones.

Images Img1 Img2 Img3 Img4 Img5 Img6 Average

CR
Proposed scheme 51.47 52.04 50.27 49.02 58.63 55.33 52.79

Scheme [37] 36.12 34.25 33.96 32.10 35.02 36.72 34.69
Scheme [39] 30.02 31.36 32.17 33.52 32.71 30.85 31.77

In the following comparison, the performance of the proposed IDST is compared with
existing integer discrete transforms, including IDCT, IDTT, and IDWT. The comparison
is carried out in terms of the Bpp criterion. To do this, standard 256 × 256 grayscale
images are selected from the dataset in [63]. Figure 18 shows the test images and their
corresponding Bpp values achieved by the compared methods. This figure shows that the
lowest Bpp values are obtained with both IDCT and the proposed IDST, confirming that
the suggested transform is not only useful for lossless compression of medical images, but
also for other types of images.

Figure 18. Comparison in terms of Bpp values between the proposed IDST and existing integer-based
transformations used for lossless compression of standard grayscale images.

8. Conclusions

In this work, we have introduced a new type of reversible transforms called IDST,
which enables integer-to-integer coding for reversible image processing applications. Next,
a new 1D chaotic system called M-PWLCM is developed as an extension of the existing
1D PWLCM. The introduced M-PWLCM has eight control parameters defined over an un-
limited range. In contrast, its original version contains only one control parameter defined
over a limited range. To demonstrate the pertinence of IDST and M-PWLCM, they are
deployed in a new scheme for joint lossless compression and encryption of medical images
in IoMTs. The proposed scheme has demonstrated an excellent performance in terms of
achieving higher compression ratios and higher levels of security when communicating
compressed medical images over IoMTs. Furthermore, the results of the comparative
analysis highlighted the superiority of our scheme over existing ones in terms of both
security level and compression ratio. Despite the good performance of our scheme, it is
still limited by certain drawbacks, notably the relatively high execution time due to the use
of Huffman coding. In addition, our scheme is not robust to noise and data loss. These
issues are open questions that require further investigation in future work. In addition,
other moment-based integer transformations should be introduced and studied in future
work for reversible data applications.
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