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Abstract: The detection of disease clusters in spatial data analysis plays a crucial role in public
health, while the circular scan method is widely utilized for this purpose, accurately identifying
non-circular (irregular) clusters remains challenging and reduces detection accuracy. To overcome
this limitation, various extensions have been proposed to effectively detect arbitrarily shaped clusters.
In this paper, we combine the strengths of two well-known methods, the flexible and elliptic scan
methods, which are specifically designed for detecting irregularly shaped clusters. We leverage the
unique characteristics of these methods to create candidate zones capable of accurately detecting
irregularly shaped clusters, along with a modified likelihood ratio test statistic. By inheriting the
advantages of the flexible and elliptic methods, our proposed approach represents a practical addition
to the existing repertoire of spatial data analysis techniques.

Keywords: spatial scan statistic; public health; disease cluster identification; candidate zones;
likelihood ratio test statistics

MSC: 62H11

1. Introduction

In public health, surveillance procedures that identify disease clusters play an im-
portant role in controlling and preventing disease outbreaks. Numerous methods can be
used for detecting clustering and clusters. For detecting spatial autocorrelation, methods
such as Moran’s I [1] and Geary’s c [2] are commonly used. These methods quantify a
global property over the entire study area and indicate whether response values are more
similar than they would be under the null hypothesis and that no spatial autocorrelation
is present. Therefore, Moran’s I and Geary’s c are global indices of spatial autocorrelation
and can be used in situations such as regression analysis when we want to check whether
uncorrelated error assumptions are satisfied or as evidence of clustering across the entire
study area. In order to detect local spatial clusters, other methods were proposed, e.g.,
the cluster evaluation permutation procedure [3], the Besag–Newell method [4], and the
circular spatial scan method [5,6] and its related extensions.

The circular spatial scan method [5,6] has gained remarkable popularity for finding
local clusters compared to the aforementioned methods due to its computational efficiency
and its power to detect disease clusters. This method is characterized by (i) the set of
candidate zones to be scanned and (ii) the likelihood ratio test (LRT) statistic for each
candidate zone. The capability of the spatial scan method in detecting disease clusters
inspired other researchers to propose extensions to improve its accuracy, specifically for
detecting non-circular (irregularly shaped) clusters. The circular scan method and its
extensions, generally, scan the entire study area and identify the candidate zones that
obtain the largest value of an LRT statistic.
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There are many different approaches for constructing the set of candidate zones and
for computing the LRT statistic. Tango and Takahashi [7,8] proposed the flexible scan
method, in which non-circular clusters can be detected more accurately by forming a set of
candidate zones from a set of connected regions satisfying certain constraints. In the flexible
scan method, each connected candidate zone is enclosed within a circle comprised of a
pre-specified set of nearest neighbors. Candidate zones coming from the connected regions
within the circle may not be large enough (or flexible enough) to include highly irregular
and long candidate zones. Additionally, the computational cost of this method becomes
increasingly great as the size of the circle is expanded, which may preclude more arbitrarily
shaped candidate zones from being considered [7]. The flexible scan method has recently
been used to detect high- and low-risk clusters of COVID-19 incidence in Florida [9], high-
risk clusters of La Crosse virus disease in the Appalachian region of the United States [10],
and high-risk clusters of thyroid cancer incidence in Fukushima, Japan [11].

Kulldorff et al. [12] proposed the elliptic scan method, which includes elliptical candidate
zones along with circular ones. Elliptical candidate zones allow the method to detect non-
circular clusters with different shapes and different angles when ellipses rotate around their
centers. The elliptic method indeed uses a variety of elliptical shapes and angles to identify
irregularly shaped clusters; however, its final results are conditional on the selected shapes. As
such, the set of elliptical zones may not have enough versatility to cover non-elliptical clusters.
The elliptic scan method has recently been used to identify high-risk clusters of paratuberculosis
in sheep and goats in southern Spain [13], high- and low-risk clusters of breast and cervical
cancer-related mortality in Brazil, and clusters of high nontuberculous mycobacteria infection
risk for persons with cystic fibrosis in United States counties [14].

Another extension of the circular scan method is the minimum spanning tree method
proposed by Assunção et al. [15], which attempts to construct candidate zones based on
the regions that result in the largest LRT statistic. The minimum spanning tree algorithm
may detect abnormal clusters that have a star-like shape because a new region can be
added to a current candidate zone regardless of whether the LRT increases or decreases in
relation to the current candidate zone. This tendency to detect star-shaped clusters is called
the “octopus effect”. Costa et al. [16] extended the minimum spanning tree algorithm by
imposing early stopping criteria on the method. Specifically, a new region can only be
added to the current candidate zone if it increases the current LRT statistic value. Moreover,
in order to avoid the octopus effect, Costa et al. [16] proposed additional stopping criteria,
specifically, selecting only the regions that share at least two connections with the current
candidate zone. A problem with these methods (and also the elliptic and flexible scan
methods) is that adding a low-risk region to an existing zone can increase the LRT of the
new zone. Philosophically, it seems unwise to include a low-risk region in a cluster, e.g.,
a region with low standardized mortality ratio (SMR), where SMR is the ratio of observed
to expected cases in a region.

In this study, we propose the flexible–elliptical scan method, which combines the flexible
and elliptic scan methods to address their respective limitations and leverage their advantages.
Our approach involves modifying the set of candidate zones and the likelihood ratio test
statistics. We compare the performance of the proposed flexible–elliptical method with the
established elliptic and rflex scan methods for identifying irregularly shaped disease clus-
ters. This evaluation includes benchmark data sets comprising 56 diverse irregularly shaped
cluster models, as well as real-world data sets such as the northeastern United States and
NTM data. Our findings demonstrate a balanced integration between the flexible and elliptic
scan methods in accurately detecting irregularly shaped clusters in disease surveillance. The
flexible–elliptical method exhibits better flexibility, inheriting the capabilities of the reflex and
elliptic methods, particularly in constructing the set of candidate zones. The proposed method
offers a streamlined and straightforward approach, eliminating the need for tuning parameters
and providing a more adaptable solution to capture irregular cluster shapes.

The structure of this paper is as follows. In Section 2, we describe the methodology of
the circular scan method, the elliptic scan method, and the restricted flexible scan method
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and then propose a new flexible–elliptical scan method. In Section 3, we benchmark
the performance of these scan methods and outline the results using simulated data sets
based on the breast cancer mortality of the northeastern United States made available by
Kulldorff [6]. In Section 4, we apply these methods to identifying clusters of the north-
eastern United States data set [17,18]. Additionally, in Section 5, we apply these methods to
identifying and comparing clusters of nontuberculous mycobacterial (NTM) cases in Colorado.
In Section 6, we draw specific conclusions about the proposed methodology from our study.
Finally, in Section 7, we more broadly discuss the strengths and weaknesses of the proposed
methodology and comment on future work.

2. Methods

Consider a geographical map (study area) that is partitioned into N regions (e.g., zip
codes). Each region is represented by its centroid i, i = 1, . . . , N, which is a geographical
location inside the region. For each region, we know (i) the population size, ni and (ii) the
number of cases, Yi. Let Z denote a candidate zone that is formed from the union of one
or more (typically connected) regions. Let Z be the set of candidate zones. Each Z ∈ Z is
a potential cluster for which we believe the risk of developing disease inside Z is higher
than the risk of developing disease outside Z. Let p denote the risk of developing disease
inside Z. Let q denote the risk of developing disease outside Z. Therefore, under the null
hypothesis of no clustering, p = q for all Z ∈ Z (the complete list of notation can be found
at the end of the paper before Appendix A). The alternative hypothesis states that there
is at least one cluster in the study area, i.e., there is at least one Z ∈ Z such that p > q.
More formally,

H0 : p = q for all Z ∈ Z versus H1 : p > q for some Z ∈ Z . (1)

In general, the scan methodologies described in this paper are characterized by (i) the
set of candidate zones to be scanned, Z , and (ii) the LRT statistic, λ. We will use different
subscripts after Z to indicate the specific method used to construct the set of candidate
zones, such as Zc, Ze, and Z f . Additionally, the LRT statistics used for different scan
methods are indicated by superscripts after λ, such as λc, λe, and λ f .

We now define a number of statistics that are common to the methods we discuss.
Let y+ = ∑N

i=1 Yi denote the total number of cases and n+ = ∑N
i=1 ni denote the total

population over the entire study area. For a candidate zone Z, let yin = ∑i∈Z Yi denote the
observed number of cases inside Z and nin = ∑i∈Z ni denote the population size inside
Z. The expected number of cases inside Z is denoted by Ein. Assuming that the risk is
constant across all regions, the expected number of cases inside Z is Ein = niny+/n+.
Alternatively, we can use other approaches such as generalized linear models to estimate
the expected number of cases in each region [19]. Additionally, we let yout = y+ − yin
denote the observed number of cases outside Z, nout = n+ − nin denote the population size
outside Z, and Eout = y+ − Ein denote the expected number of cases outside Z.

We discuss the circular, elliptic, flexible, restricted flexible, and the proposed flexible–
elliptical scan methods below. Additional discussion of the former methods can be found
in French et al. [20].

2.1. The Circular Scan Method

The circular scan method [5,6] overlays a circular window on each centroid i in the
study area. We successively add the nearest regions to the starting region until some
percentage of the total population is reached to create a sequence of candidate zones. This
percentage of the total population can be set by the user (the default value is 50%) or can be
estimated using the Gini [21] or elbow method [22]. We then do the same process for all
centroids in the study area to construct Zc.
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Kulldorff [6] modeled the case counts, Yi, using a (i) Binomial or (ii) Poisson distribu-
tion in order to derive the LRT statistic λc. The case counts are modeled as

Yi
indep.∼ Poisson(ni p), if i ∈ Z, and Yi

indep.∼ Poisson(niq), if i 6∈ Z (2)

or
Yi

indep.∼ Binomial(ni, p), if i ∈ Z, and Yi
indep.∼ Binomial(ni, q), if i 6∈ Z. (3)

Assuming a Poisson distribution for the case counts Yi, the likelihood function of a
fixed candidate zone Z in terms of disease risk parameters p and q is

LP(Z, p, q) = ∏
i∈Z

e−ni p(ni p)Yi

Yi!
∏
i 6∈Z

e−niq(niq)Yi

Yi!
,

and Kulldorff [6] derived the LRT statistic for the Poisson case counts as

λc
Z =

supp>q LP(Z, p, q)

supp=q LP(Z, p, q)
=

(
yin
nin

)yin
(

yout
nout

)yout(
y+
n+

)y+ I
(

yin
nin

>
yout

nout

)

=

(
yin
Ein

)yin
(

yout

Eout

)yout

I
(

yin
Ein

>
yout

Eout

)
, (4)

where I() is an indicator function.
The LRT statistic in Equation (4) has subscript Z to indicate that the LRT statistic is

computed for a specific zone Z ∈ Zc. The circular scan method proceeds by computing
the LRT statistic in Equation (4) for each candidate zone Z ∈ Zc. The candidate zone that
attains the maximum LRT statistic is known as the most likely Cluster (MLC). Therefore,
the LRT statistic value for the MLC is computed as

λc = sup
Z∈Zc

λc
Z. (5)

Assuming a binomial distribution for the case counts Yi, the likelihood function of a
fixed candidate zone Z in terms of disease risk parameters p and q is

LB(Z, p, q) = ∏
i∈Z

(
ni
Yi

)
pYi (1− p)ni−Yi ∏

i 6∈Z

(
ni
Yi

)
qYi (1− q)ni−Yi ,

and Kulldorff [6] derived the LRT statistic for the Binomial case counts as

λ
′c
Z =

supp>q LB(Z, p, q)

supp=q LB(Z, p, q)

=

(
yin
nin

)yin
(

nin − yin
nin

)nin−yin
(

yout

nout

)yout
(

nout − yout

nout

)nin−yin

(
y+
n+

)y+(n+ − y+
n+

)n+−y+ I
(

yin
nin

>
nin − yin

nin

)
. (6)

The LRT statistic value for the MLC is computed as

λ
′c = sup

Z∈Zc

λ
′c
Z . (7)

The derivation of the LRT statistic for Poisson and Binomial case counts can be found
in Appendix A.

The “second MLC” is the candidate zone that attains the second highest value of λc

while not overlapping the MLC. Similarly, the “third MLC” and “fourth MLC” can be
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computed. We use the Monte Carlo method described in ref. [23] (p. 126) to assess the
significance of the MLC (or the secondary MLCs). In short, data sets are simulated under
the null hypothesis, the test statistic of the MLC is determined for each simulated data set,
and the test statistics for the simulated data sets are used to compute a Monte Carlo p-value
for the test statistic associated with each candidate zone.

2.2. The Elliptic Scan Method

As discussed in the previous section, the circular scan method uses circular windows
to construct the set of candidate zones. Therefore, this method is ineffective for detecting
non-circular clusters. In order to resolve this limitation, Kulldorff et al. [12] proposed the
elliptic scan method, which modifies the set of candidate zones Zc.

In the elliptic scan method, the set Ze consists of many overlapping ellipses; each
ellipse is characterized by (i) the x-coordinate and y-coordinate of its origin i, (ii) its shape s,
(iii) its angle φ, and (iv) its population size. The shape s ≥ 1 of an ellipse is defined as the
ratio of the major axis and minor axis. A window with s = 1 is a special case of an ellipse
that represents a circle, and as s gets larger, the ellipse becomes narrower and longer. The
collection of ellipse shapes recommended by Kulldorff et al. [12] is s = 1, 1.5, 2, 3, 4, 5, 6, 8,
10, 15, 20, 30, 60, 120. The parameter φ is the angle between the major axis and the x axis.
Figure 1 displays an ellipse and its associated parameters.

For a fixed center, shape s, and population size, we can define the set of angles φ
such that a new ellipse overlaps at least 70% of the previous ellipse. To construct a set of
candidate zones, Ze, for a region with a fixed center located at (x, y), shape s, and angle φ,
we successively enlarge the size of the ellipse (though shape s is fixed) until the stopping
criterion is met, which is typically including no more than 50% of the total population in
the ellipse. Each time a new centroid falls inside the ellipse, a new candidate zone is created
by taking the union of all regions with a centroid inside the ellipse. We repeat this process
for all different user-specified combinations of centers, shapes, and angles.

b

a φ

i
x

Figure 1. A study area comprised of 19 polygonal regions. The centroid of each region is indicated
by a dot. The dashed-line ellipse, which includes a collection of regions, is centered at the centroid i
with angle φ, with a minor axis a and a major axis b. This ellipse is a potential candidate zone Z ∈ Ze.
The elliptic scan method starts with a single centroid i and extends the ellipse until a new centroid is
absorbed. A new candidate zone is created each time a new centroid is absorbed. For each region
i, and with a fixed s = b

a and φ, this process continues until a stopping criterion is met (by default,
when 50% of the population is contained within an ellipse).

To conduct hypothesis testing, both λc
Z and λ

′c
Z in Equations (4) and (6) can be used

as LRT statistics. However, using these unpenalized statistics may cause the detection of
impractically long and narrow ellipses. Thus, Kulldorff et al. [12] suggested an eccentricity
penalty function that penalizes very thin clusters. The eccentricity penalty is

(
4s(s + 1)−2)γ,
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where s is the shape of the cluster and γ ≥ 0 is a tuning parameter. Therefore, the likelihood
ratio test statistic for Poisson case counts in the elliptic scan method is given by

λe = sup
Z∈Ze

(
yin
Ein

)yin
(

yout

Eout

)yout

I
(

yin
Ein

>
yout

Eout

)(
4s

(s + 1)2

)γ

. (8)

when s = 1 or γ = 0, there is no penalty. For a fixed s > 1, as γ gets larger, a larger penalty
is imposed on the model. Similarly, for a fixed γ > 0, as s gets larger, a larger penalty is
imposed on the model, so long and narrow clusters are less likely to be detected. When
γ→ ∞, penalties for non-circular clusters are very large and only circular clusters can be
detected. The same penalty function can be used for the Binomial case counts LRT given in
Equation (6). In the following sections, we focus only on the Poisson case counts. However,
any LRT statistic modification can be applied to the binomial case counts as well.

The elliptic scan method is relatively fast, powerful, and suited for moderately irregu-
lar clusters. However, the elliptic scan method also has many unknown parameters such as
shape s, angle φ, population size, and tuning parameter γ that should be specified by users.
For real data sets in which the true clusters are unknown, picking the right parameters is
not simple, and using different parameters has a significant impact on the final results and
decisions. Furthermore, because the set Ze includes only ellipses, the elliptic method is
unable to detect highly irregular cluster shapes, e.g., star-like shape clusters.

2.3. The Flexible Scan Method

The flexible spatial scan method proposed by Tango and Takahashi [7] is able to detect
non-circular clusters by exhaustively searching all of the connected candidate zones within
neighborhoods that include up to K regions. Given K, for every region i ∈ {1, . . . , N} the
set of the candidate zones Z f is the union of all connected subsets among the K nearest
neighbors of i that include region i. The algorithm that Tango and Takahashi [7] proposed
for constructing the connected regions within a circle with radius K is as follows:

1. For each region i ∈ {1, . . . , N}, define the set Wi = {i, i1, . . . , ik} such that ik is the kth
nearest region to the region i.

2. Let Z be a set in the power set of Wi (i.e., Z ∈ P(Wi)) which includes region i.
Therefore, Z is a set that has at most k + 1 regions including centroid i. For example,
Z = {i, i2, i8, i5, . . . , ik′}, where k′ ≤ k.

3. Split the set Z into two subsets Z∗1 = {i} and Z1 = Z \ Z∗1 .
4. Split set Z1 to two subsets Z2 and Z∗2 such that Z∗2 contains all the regions of Z1 that

are connected to set Z∗1 , and Z2 contains all the regions that are not connected to Z∗1 .
The process continues until either Z∗j or Zj becomes a null set for a j ∈ N.

5. Z in Step 2 is a connected set of regions if Zj in Step 4 becomes a null set first, otherwise
Z is disconnected.

6. If Z in Step 5 is a connected set, it will be added to Z f .
7. Repeat Steps 1 through 6 for all regions i and all sets Z ∈ P(Wi).

Once the set of candidate zones Z f is formed, the LRT statistic λc
Z Equation (4) (for the

Poisson case counts) is calculated for each Z ∈ Z f , and the one that attains the maximum is
the MLC. Compared to the circular and elliptic scan method, this method can detect highly
irregular clusters within small neighborhood sizes. Since the number of candidate zones
increases exponentially as a function of K, this method is not computationally feasible for
large K like K ≥ 30 [7]. Additionally, in those situations where the true cluster is circular,
the flexible method tends to detect clusters larger than the true cluster. In the next section,
we describe the restricted flexible scan method, which attempts to address these limitations.

2.4. The Restricted Flexible Scan Method

Due to the computational inefficiency of the flexible scan method, Tango and Taka-
hashi [8] proposed the restricted flexible (rflex) scan method to decrease the computation
time needed for detecting larger clusters. In order to avoid adding low-risk regions to the
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set of candidate zones, for each region Z ∈ Z f , Tango and Takahashi proposed the following
restricted likelihood ratio by taking the risk of each individual region into account:

λr
Z =

(
yin
Ein

)yin
(

yout

Eout

)yout

I
(

yin
Ein

>
yout

Eout

)
∏
i∈Z

I(pi < α1), (9)

where α1 is a pre-specified significance level and pi is the middle p-value given by

pi = P(Yi ≥ yi + 1) +
1
2

P(Yi = yi), (10)

where yi is the observed case count for region i, Yi ∼ Poisson(nir), and r = y+/n+ is an
estimate of constant risk. For a low-risk region i ∈ Z, the indicator function I(pi < α1) is
zero and then the entire candidate zone Z is considered insignificant, meaning that it will
be removed from the set of candidate zones Z f . Removing low-risk zones from the set of
candidate zones Z f makes the computational load lighter than the original method. Tango
and Takahashi [8] provided the following guidance regarding the choice of α1 as follows:

• 0.10 ≤ α1 < 0.20 for detecting small clusters,
• 0.20 ≤ α1 < 0.30 for detecting small to medium clusters,
• 0.30 ≤ α1 < 0.40 for detecting large clusters.

The tuning parameter α1 is an unknown parameter that must be specified by users that
will directly impact the results and performance of the restricted method. Moreover, even
though the restricted flexible method has a lighter computational load than the original
flexible method, it may still be computationally demanding for large α1.

2.5. The Flexible-Elliptical Scan Method

We now describe the flexible–elliptical scan method. The flexible–elliptical method is
characterized by (i) the set of candidate zones Z f e (the subscript “ f e” stands for flexible–
elliptical) and (ii) the LRT statistic λ f e. Since Tango and Takahashi [7,8] create candidate
zones from subsets of connected regions in concentric circles having K regions, highly irreg-
ular and long clusters may be difficult to detect unless K becomes large. More specifically,
K might need to be very large before the irregular cluster contained in a concentric circle
of K nearest neighbors. Furthermore, the set of elliptic candidate zones Ze is not versatile
enough to cover non-elliptical clusters. To form a larger and more flexible set of candidate
zones, we construct the set of candidate zones based on the set of all connected subsets
within the elliptical windows. In other words, for a fixed region i, fixed shape s, and fixed
angle φ, first we sequentially enlarge the ellipsis until a stopping criterion is met; inside the
largest ellipse, we find all connected subsets that include region i.

The circular and elliptic scan methods tend to detect clusters larger than the true
cluster because their candidate zones absorb low-risk regions as they become larger. In
order to eliminate low-risk regions from Z f e, we adjust the LRT statistic in Equation (4)
so that a region is only included in a candidate zone if its standardized mortality ratio
(SMR) is at least 1. More formally, Z remains in Z f e if Yi/Ei > 1 for all i ∈ Z; however, Z is
removed from Z f e if Yi/Ei ≤ 1 for some i ∈ Z. Thus, we specify the LRT statistic for the
flexible–elliptical method as

λ
f e
Z =

(
yin
Ein

)yin
(

yout

Eout

)yout

I
(

yin
Ein

>
yout

Eout

)
∏
i∈Z

I
(

Yi
Ei

> 1
)

. (11)

Considering Equation (11), if only one region i has fewer observed cases than what is
expected, then the product ∏i∈Z I(Yi/Ei > 1) becomes zero and the entire candidate zone Z
is removed from Z f e. Removing low-risk candidate zones from the set Z f will reduce the
computation time compared to the unrestricted method. Additionally, the flexible–elliptical
method may consider fewer candidate zones than the rflex method when α1 is relatively
large (e.g., α1 ≥ 0.40), making it faster to apply. Unlike the restricted LRT statistic λr
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in Equation (9), which requires an additional unknown parameter α1 in the model, the
proposed LRT statistic in Equation (11) does not require any additional tuning parameter.
This is helpful because the size of the true cluster is unknown, making it difficult to choose
an appropriate α1.

We also can use a different adjustment to the LRT statistic λ
f e
Z in Equation (11) to

eliminate low risk regions. To accomplish that, let gi = Yi/Ei, i ∈ {1, . . . , N} denote the
empirical region rate and ḡ = 1

N ∑N
i=1 gi. Instead of using the multiplier ∏i∈Z I(Yi/Ei > 1)

in Equation (11), we can use ∏i∈Z I(gi > ḡ). For the data sets used in the simulation study
section (Section 3), we get almost identical results. Due to this, in Section 3, we only provide
the results of the flexible–elliptical method when using the LRT statistic in Equation (11).

3. Simulation Study

To assess the performance of the elliptic scan method, we compare its results to
the elliptic and rflex scan method using non-circular benchmark data sets provided by
Duczmal et al. [24]. The benchmark data sets are simulated based on the female breast
cancer mortality in the N = 245 counties (or county equivalent) in the northeastern United
States during the years 1988–1992 [25]. Eleven clustering models “a” through “k” are
generated such that the total number of cases across the study area is y+ = 600 among
n+ =29,535,210 people at risk. Figure 2 illustrates clustering models “a”–“i”. Cluster “j”
is the union of “g” and “h”. Cluster “k” is the union of “g”, “h”, and “i”. For each
clustering model mentioned above, 10,000 different data set are generated. Additionally,
99,999 data sets are simulated under the null hypothesis of no clustering. These benchmark
data sets are available in the neastbenchmark R package, which can be installed from
https://github.com/jfrench/neastbenchmark (accessed on 7 July 2023).

To have a more extensive comparison, we generated 45 irregularly shaped clustering
models based on circular benchmark data sets provided by Kulldorff et al. [25]. Three
different sets of irregularly shaped clustering models, iurban (i.e., irregularly shaped
urban clustering model), irural (i.e., irregularly shaped rural clustering model), and imixed
(i.e., irregularly shaped mixed of urban and rural clustering models) are generated. Each
clustering model contains 2–16 regions (counties). For each clustering model mentioned
above, 10,000 different data set are generated. The last three plots of Figure 2 illustrate nine
of these 45 clustering models.

To evaluate how well a cluster identified by each scan method matches the true cluster,
different performance measures can be used [7,16]. We compare the methods in terms of
their sensitivity, PPV, and misclassification as described below. Let z and ẑ denote the true
cluster and the detected cluster, respectively. Let n(X) be the population inside any zone X.
Sensitivity is the proportion of the population of the true cluster that is covered by the
detected cluster and is computed as

sensitivity =
n(z ∩ ẑ)

n(z)
. (12)

PPV is the proportion of the population of the detected cluster that is covered by the
true cluster and is computed as

PPV =
n(z ∩ ẑ)

n(ẑ)
. (13)

Misclassification is the proportion of the total population that is not correctly catego-
rized and is computed as

misclassification =
n[(z ∪ ẑ) ∩ (z ∩ ẑ)c]

n+
. (14)

Ideally, we want to see sensitivity and PPV equal to 1 and misclassification equal to 0.
We compare the performance of the flexible–elliptical, rflex (for both tuning parameters

α1 = 0.2 and α1 = 0.3), and elliptic scan method in terms of the average sensitivity, PPV, and

https://github.com/jfrench/neastbenchmark
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misclassification. The smerc R package [26] was used to apply the elliptic and rflex methods
to the benchmark data sets. Each scan method was applied to 1000 simulated data sets for
each of the 56 clustering models. To keep the set of candidate zones more comparable for
all three scan methods, the stopping criterion for the size of the scanning windows was
set to K-nearest neighbors. That is, for each starting region, i, a maximum of K− 1-nearest
neighbors can be added. The rflex scan method used the middle p values, and the tuning
parameters were set to α1 = 0.2 and α1 = 0.3. Both the elliptic and the flexible–elliptical
methods used the default shape and angle values used in the SaTScanTM software [27].
More specifically, the shapes are s = 1, 1.5, 2, 3, 4, 5, and the number of angles associated
with each shape is φ = 1, 4, 6, 9, 12, 15. Therefore, for each region i, 47 different elliptical
windows are considered; then, each of 47 elliptical shapes is enlarged until K = 20 regions
are included. All methods identified the clusters using the corresponding version of the
LRT statistic in Equations (8), (9) and (11), respectively.

Clusters

a

b

c

d

Clusters

e

Clusters

f

g

h

i

Clusters

imixed04

irural04

iurban04

Clusters

imixed10

irural10

iurban10

Clusters

imixed16

irural16

iurban16

Figure 2. Illustration of a few of the imixed, iurban, irural, and “a”–“k” benchmark simulated data
sets for the breast cancer mortality of the northeastern United States. For example, iurban10 displays
an urban cluster containing 10 regions. imixed04 illustrates a mixed (mixed of urban and rural
regions) cluster contacting four regions.
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Figure 3 presents box plots of the average sensitivity, PPV, and misclassification for
each method among all 56 clustering models. Table S1 in the Supplementary Materials
provides complete results for the simulation study. Overall, the sensitivity of the elliptic
method is higher than the other methods. This heightened sensitivity may be attributed to
the fact that the elliptic method has a tendency to detect clusters that are larger than the
true clusters. By detecting larger clusters, the elliptic method captures a greater number
of true positives, resulting in a higher sensitivity value. However, it is important to
note that this enhanced sensitivity comes at the cost of potentially including some false
positives in the identified clusters. In contrast, the flexible–elliptical demonstrates a more
consistent sensitivity and PPV across all different clustering models. Unlike the rflex
method, which exhibits varying results based on the chosen value of α1, the flexible–
elliptical method achieves a more constant sensitivity and PPV across different clustering
models. Additionally, the flexible–elliptical method does not suffer from unnecessarily
detecting larger clusters like the elliptic method. While the flexible–elliptical method may
not always surpass the rflex and elliptic methods individually, it provides a robust and stable
performance compared to the other two methods. The flexible–elliptical method exhibits similar
sensitivities to the rflex method with α1 = 0.3, showcasing its overall robust performance. In
terms of PPV, on average, the rflex method with α1 = 0.2, and the flexible–elliptical method
demonstrate the highest average PPV values among the tested methods. This underscores
the effectiveness of the flexible–elliptical method in identifying true clusters while minimizing
false positives compared to the elliptic method. On the other hand, the elliptic method exhibits
a relatively lower PPV, highlighting the advantages offered by the flexible–elliptical method in
achieving precise and reliable cluster identification. Regarding misclassification, the results
indicate similar average levels across all clustering models for each method.
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Figure 3. Box plots of the average (a) sensitivity, (b) PPV and (c) misclassification for all 56 Cluster models.

4. Application to Northeastern United States Data

We now detect clusters of breast cancer mortality cases in the northeastern United
States during the years 1988–1992. This data set is the inspiration for the simulated data
examined in the previous section. We compare the clusters identified by the elliptic, rflex,
and flexible–elliptical scan methods. The total number of observed breast cancer mortality
cases is y+ = 58,943, which was aggregated across the years 1988–1992. The population of
each region used in this analysis is the 1990 U.S. census estimate, with the total number of
persons at risk being n+ = 29,535,210. More information related to the northeastern data
set can be found in Kulldorff et al. [25].

Figure 4 provides choropleth maps of the case count (left panel) and SMR (right panel)
for each region in the northeastern data set. The number of cases per region ranged from
2 to 2169 with a median of 86 cases. The SMR of each region is computed as SMRi = Yi/Ei,
where Ei is the population size of each region multiplied by the constant risk = y+/n+.
The SMRs of the regions ranged from 0.33 to 1.81, while the case count plot in the left panel
of Figure 4 does show patterns of large case counts, it is not clear whether this pattern is
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unusual because the plot does not account for the population size of each region. The SMR
plot in the right panel of Figure 4 does not indicate any systematic patterns of high SMRs.
Therefore, spatial scan methods must be applied to this data set to identify clusters.
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Figure 4. Breast cancer mortality cases (a) and SMR (b) for the Northeastern United States data.

The northeastern data were analyzed using the previously discussed scan methods,
each of which identified different clusters. The maximum number of regions allowed in
each candidate zone was set to K = 20. The default values of s and φ provided in Section 3
are used for the elliptic and flexible–elliptical method. For the middle p-value, two tuning
parameters α1 = 0.2 and α1 = 0.3 were considered for the rflex method. For the elliptic
method, γ = 0 was used for the penalty function in Equation (8).

Figure 5 displays clusters detected by each scan method. There are seven clusters
identified by the rflex method using α1 = 0.2. Eight clusters are detected by the rflex
method using α1 = 0.3. Six clusters are detected by the elliptic and flexible–elliptical scan
method. A summary of the significant clusters found at level α = 0.05 is given in Table 1.

The flexible–elliptical method exhibits several key properties that are worth focusing
on. Notably, the clusters detected by this method encompass a larger number of cases, on
average, compared to both the elliptic and rflex methods. Furthermore, the clusters identified
by the flexible–elliptical method tend to have the largest population at risk, indicating their
significance in terms of potential public health impact. While the rflex methods tend to yield
clusters with higher SMR values, the flexible–elliptical method demonstrates slightly smaller
SMR values, reflecting its ability to capture clusters with more precise risk estimates. In contrast,
the elliptic method, which has a tendency to include low-risk regions, yields the lowest mean
SMR values among the methods even though the population at rick is not as high as the
flexible–elliptical method. This again shows a balancing of the advantages of both rflex and
elliptic method. For example, consider Cluster 1 detected by the flexible–elliptical method.
This cluster encompasses the largest population at risk compared to other clusters. Intriguingly,
the rflex method detects two smaller clusters, namely Clusters 2 and 4, which, when combined,
form a subset of Cluster 1. This example demonstrates that the flexible–elliptical method
is capable of identifying more extensive and impactful clusters when compared to multiple
smaller clusters detected by the rflex method.

Furthermore, Cluster 1 detected by the flexible–elliptical method was disconnected
into two separate clusters, namely Cluster 1 and Cluster 4, by the elliptic method. This could
be due to its ability to detect clusters of various shapes and sizes, making it more flexible
and realistic in capturing different types of clusters. In contrast, the elliptic method tends to
identify more compact and elliptical-shaped clusters. Almost all of the clusters detected by
the elliptic method in Figure 5 have elliptical shapes, which might be unlikely in reality. It is
important to note that, since the data set is real, definitive conclusions regarding the nature
of the clusters cannot be made. However, the results from the proposed flexible–elliptical
method demonstrate its ability to provide more diverse and versatile cluster configurations
while maintaining a high number of cases, SMR values, and populations at risk. This
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method strikes a balance between the characteristics of the rflex and elliptic methods,
offering a more comprehensive approach to cluster detection and potentially yielding more
meaningful and interpretable results.

Table 1. Significant clusters detected by the rflex method (both α1 = 0.2 and α1 = 0.3), flexible–
elliptical (flex-ellip) method, and elliptic method. The Monte Carlo p-value was computed using
999 null data sets under the constant risk hypothesis at the significance level of α = 0.05.

Method Cluster Population Cases Expected SMR p-Value

rflex (α1 = 0.2) Cluster 1 1,922,489 4525 3836 1.18 0.001
Cluster 2 2,232,866 5150 4456 1.16 0.001
Cluster 3 920,991 2248 1838 1.22 0.001
Cluster 4 228,322 643 455 1.41 0.001
Cluster 5 660,581 1537 1318 1.17 0.001
Cluster 6 507,044 1201 1011 1.19 0.001
Cluster 7 104,057 291 207 1.40 0.003

mean = 939,478 mean = 2228 mean = 1.25

rflex (α1 = 0.3) Cluster 1 1,922,489 4525 3836 1.18 0.001
Cluster 2 2,232,866 5150 4456 1.16 0.001
Cluster 3 920,991 2248 1838 1.22 0.001
Cluster 4 228,322 643 455 1.41 0.001
Cluster 5 660,581 1537 1318 1.17 0.001
Cluster 6 507,044 1201 1011 1.19 0.001
Cluster 7 104,057 291 207 1.40 0.004
Cluster 8 470,397 1084 938 1.15 0.041

mean = 880,843 mean = 2085 mean = 1.23

flex-ellip Cluster 1 3,256,369 7480 6498 1.15 0.001
Cluster 2 2,062,671 4853 4116 1.18 0.001
Cluster 3 920,991 2248 1838 1.22 0.001
Cluster 4 1,673,793 3703 3340 1.11 0.001
Cluster 5 507,044 1201 1011 1.19 0.004
Cluster 6 104,057 291 207 1.40 0.009

mean = 1,420,821 mean = 3296 mean = 1.21

elliptic Cluster 1 1,917,315 4517 3826 1.18 0.001
Cluster 2 1,701,906 3979 3396 1.17 0.001
Cluster 3 1,102,261 2598 2199 1.18 0.001
Cluster 4 1,841,814 4062 3675 1.11 0.001
Cluster 5 889,355 2035 1774 1.15 0.002
Cluster 6 635,396 1480 1268 1.17 0.002

mean = 1,348,008 mean = 3112 mean = 1.16
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Figure 5. A map of an eight-county region in upstate New York. The significant clusters identified by
the rflex method (for both tuning parameters α1 = 0.2 and α1 = 0.3), the flexible–elliptical method,
and the elliptic method are shown. In each map, the first and last clusters are the most significant and
least significant clusters, respectively. The level of significance is α = 0.05. Cluster 1 is the MLC, with
each successive cluster having a lower LRT statistic.

5. Application to NTM Data

In order to provide a more extensive comparison, we also analyze nontuberculous
mycobacterial (NTM) patient data and identify disease clusters by comparing the discussed
three spatial scan approaches. NTM data were obtained from the National Jewish Health
(NJH) Hospital electronic medical record database in Denver, Colorado. All patients (those
with cystic fibrosis and those without) who had sought treatment at NJH, had a diagnosis
of NTM infection (i.e., at least one positive culture) and were resident in Colorado during
February 2008 through January 2018 were included in this dataset, totaling y+ = 822 patients.
Since NTM is considered a rare disease, we aggregated patient data over a 10-year period and
tabulated patient data for each zip code tabulation area (ZCTA). We used the total population
of Colorado as determined by the 2010 US Census, fixed at n+ = 5,029,374 people. Given
that the incubation period of NTM is not currently understood, we did not have a reliable
time of disease onset variable, and therefore, we could not consider a temporal analysis to
identify disease clusters. The use of this dataset was approved by the NJH Institutional
Review Board (HS-3148).

Figure 6 displays the significant NTM clusters detected by each scan method at
significance level α = 0.05. To compute the p-value, 999 null data sets were simulated
under constant risk hypothesis. The rflex method with α1 = 0.2 and α1 = 0.3 identified
the same Cluster 1 but the rflex method with α1 = 0.3 includes additional regions for
Cluster 2 compared to the rflex method with α1 = 0.2. For Cluster 1, the flexible–elliptical
method included a longer, narrower set of zip codes compared to those identified by the
rflex methods. For Cluster 2, the rflex methods differed from the flexible–elliptical method
by only one zip code. The elliptic method detected the largest clusters among all of the
methods tested. The elliptic method detected Cluster 1 zip codes within the same location
as the previous methods but covered a larger area of zip codes. For Cluster 1, all methods
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identified some variation of zip codes within the center to the eastern end of the city of
Denver and in suburban regions south of Denver. For Cluster 2, the elliptic method identified
a much larger Cluster compared to those identified by the other methods. In Cluster 2, all
methods included zip codes located in the city of Arvada. The rflex methods and the flexible–
elliptical method also included zip codes located in Boulder County. The elliptic method did
not include the Boulder zip codes but included the Arvada zip codes. Cluster 2, identified by
the elliptic method, extended farther west into the Rocky Mountains. All methods detected
Cluster 3, as this included one zip code in Pitkin County with only 20 residents.

NTM are commonly found in water, and the hypotheses surrounding NTM exposure
and acquisition focus on municipal water supplies. The water supply for zip codes located
in Cluster 1 comes from different regions along the Western Slope than for zip codes located
in Cluster 2 (for clusters identified by the rflex and flexible–elliptical methods). Recent
studies have demonstrated an association between a trace metal, molybdenum, in the raw
water supply and NTM infection risk in Colorado [28,29]. Regions that supply water to
zip codes in Clusters 1 and 2 have naturally occurring molybdenum in high abundance,
as evidenced by the fact that large molybdenum mines are located in these regions. These
regions with high molybdenum concentrations are located within Cluster 2 identified by
the elliptic method.

The rflex method and the flexible–elliptical method present zip codes in Boulder
County and the city of Arvada as part of Cluster 2. The Boulder zip codes receive their
water supply from sources that are different from the Arvada zip codes. Since the Boulder
zip codes were not identified in the elliptic method cluster, this identification may lead us
to further examine those regions.

The elliptic method, because it typically exhibits greater sensitivity, tends to generate
clusters including more zip codes and that have larger geographic area. However, its
detected clusters tend to have lower PPV as not all zip codes within the detected clusters
are likely to be high risk. The rflex and flexible–elliptical methods typically have greater
PPV, so they are likely more useful for identifying the highest risk regions within the true
cluster. Given that its detected clusters tend to be larger, the elliptic method may provide
more opportunities for hypothesis generation in the initial stages of data exploration, while
the elliptic–flexible method possibly focuses in on the most high-risk regions of each cluster.

Figure 6. A map of the significant NTM clusters identified by the rflex, elliptic, and flexible–elliptical
scan method. In each map, the first and last clusters are the most significant and the least significant
clusters, respectively. The level of significance is α = 0.05. Cluster 1 is the MLC, with each successive
Cluster having a lower LRT.
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6. Conclusions

In our simulation study, it was revealed that the elliptic method generally displayed
higher sensitivity compared to the other scan methods. This heightened sensitivity is
attributed to the elliptic method’s tendency to detect larger clusters, increasing the chances
of capturing the true cluster. In contrast, the rflex method with α1 = 0.2 exhibited the
lowest sensitivity, likely due to the elimination of moderate-rate regions by the middle
p-value. However, the sensitivity of the flexible–elliptical method closely aligned with that
of the rflex method with α1 = 0.3, indicating its comparable performance in identifying
irregularly shaped clusters. Importantly, the proposed flexible–elliptical method moderates
the trade-off between cluster size and accuracy without relying on any specific tuning
parameter, providing a more flexible and versatile approach to capturing the true cluster.

The simulation study also revealed that, on average, the flexible–elliptical method
demonstrated a better performance based on PPV. The PPV of the rflex method with
α1 = 0.2 was comparable to the flexible–elliptical method, but the rflex method with
α1 = 0.3 resulted in lower PPV. The elliptic method had the lowest PPV values, which
again could be attributed to its tendency to detect clusters larger than the true clusters. PPV
ensures more accurate and reliable cluster identification, holding significant implications
for the precision and validity of cluster detection studies. By effectively detecting and
capturing clusters, the proportion of the detected clusters accurately aligning with the
true clusters in the population increased, which is an important measure. This further
highlights the flexible–elliptical method as a versatile approach to maintain high accuracy
and impact in cluster detection while avoiding dependence on a tuning parameter and
detecting excessively larger clusters.

Notably, the performance of the rflex method exhibits some inconsistency between the
two α1 levels, 0.2 and 0.3. This observation practically implies that the effectiveness of the
rflex method relies on the chosen value of α1 and the specific characteristics of the clustering
model. For instance, when examining the clustering model “irural05”, the sensitivity ranges
from 0.61 for α1 = 0.20 to 0.70 for α1 = 0.30, while the PPV ranges from 0.79 to 0.74, or
the clustering model “iurban08”, the sensitivity ranges from 0.59 for α1 = 0.20 to 0.71 for
α1 = 0.30, while the PPV ranges from 0.81 to 0.78.

The performance in terms of misclassification was generally comparable across all
methods. This similarity arose from the definition of misclassification in Equation (14),
where the denominator represented the total population at risk. The breast cancer data
set in Section 3 had a large total population size of n+ = 29,535,210, contributing to the
similarity in misclassification rates. However, it is worth noting that the proposed flexible–
elliptical method demonstrated improved performance in certain clustering models, such
as models “j”, “k”, and “iurban13”.

7. Discussion

In this study, we proposed the flexible–elliptical scan method, which combined the
flexible and elliptic scan methods to address their respective limitations and leverage
their advantages. Our approach involved modifying the set of candidate zones and
the likelihood ratio test statistics. We thoroughly compared the performance of the pro-
posed flexible–elliptical method with the elliptic and rflex methods for identifying irreg-
ularly shaped disease clusters. This evaluation included benchmark data sets comprising
56 diverse irregularly shaped cluster models as well as real-world data sets related to breast
cancer mortality and NTM cases. Our findings demonstrated a balanced performance
between the flexible and elliptic scan methods in accurately detecting irregularly shaped
clusters in disease surveillance.

The flexible–elliptical method exhibited flexibility, inheriting the capabilities of the
rflex and elliptic methods, particularly in constructing the set of candidate zones. The
elliptic method often struggled to identify clusters with highly irregular shapes, limiting
its effectiveness in capturing complex disease patterns. Similarly, the rflex method faced
challenges in detecting very long and narrow clusters due to its reliance on circular-shaped
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windows and the user-defined α1 tuning parameter. By incorporating the strengths of these
two methods, the flexible–elliptical method demonstrated a more adaptable approach to
candidate zone construction, enabling it to capture highly non-circular shaped clusters as
shown in Figure 7. This heightened flexibility allowed for the detection of a broader range
of cluster shapes, rendering the flexible–elliptical method a valuable tool in identifying
irregular disease clusters and leveraging the advantages of both elliptic and reflex methods.

While the rflex method’s performance can vary depending on the chosen tuning
parameter values, the proposed flexible–elliptical method eliminates the need for such
parameter adjustments. The flexible–elliptical method demonstrates independence from
tuning parameters, ensuring consistent and reliable cluster detection outcomes. While
the rflex method with tuning parameters α1 = 0.2 and α1 = 0.3 exhibited relatively good
sensitivity and PPV, a closer examination reveals that α1 = 0.2 yielded a superior PPV, whereas
α1 = 0.3 achieved better sensitivity (Figure 3). Moreover, the number of significant clusters
can be influenced by the choice of tuning parameter (e.g., Figure 5). On the other hand, the
elliptic method imposed an eccentricity penalty on the likelihood ratio test statistic which
required another tuning parameter. By adjusting the tuning parameter, the elliptic method
avoided detecting very narrow and long clusters. In the proposed flexible–elliptical method,
no eccentricity penalties have been used. First, we considered not only elliptical windows
but also connected regions inside them. Second, we filtered out windows having low-risk
regions. Therefore, even if a very narrow and thin cluster is obtained, an additional penalty is
not required due to the fact that we include only high-risk regions in each cluster. An example
of such a cluster can be found in the bottom-right plane of Figure 7, which is a very long cluster,
as it should be.

The flexible–elliptical method avoids including low-risk regions, which could poten-
tially be an advantage, but it does allow for disconnecting a large cluster. For example,
consider two large significant clusters that are connected with a single region, and that
region is a low-risk region. In this situation, the flexible–elliptical method presumably
detects one of them. It is possible that the other cluster is detected as a secondary clus-
ter, but it is not guaranteed. It is important to note that there were some situations where
the elliptic method detects clusters containing disconnected regions. For example, in the
clustering models such as Cluster “c” in Figure 2, the nearest neighbors are not necessarily
connected, and elliptical windows may include disconnected regions. Another example is
shown in Cluster 1 detected by the elliptic method in Figure 6. Unlike the elliptic method,
the flexible–elliptical method disconnects regions systematically. This can be a limitation
of the proposed flexible–elliptical method, and it could be extended when taking other
criteria into account before removing a region only based on whether it is a low-risk region.
Similar to algorithms proposed by Costa et al. [16], we may avoid eliminating those low-risk
regions by having specific geographic proximity criteria. For example, consider a current
window that involves only high-risk regions. We can let a low-risk region be added to
this current window if the region has two connections (borders) and increases the current
likelihood test statistic value. Furthermore, although the proposed method is relatively
simple, it is possible to impose additional restrictions on the regions to further enhance
speed and accuracy in Cluster detection.

In summary, the proposed method combines two well-known methods for detecting
irregularly shaped clusters, taking advantage of their individual strengths and achieving
a balanced approach. The flexible–elliptical method inherits the favorable features of
both the elliptic and rflex methods. It demonstrates a better positive predictive value (PPV)
compared to the elliptic method and comparable PPV to the rflex method with α1 = 0.2.
Notably, the flexible–elliptical method does not rely on the tuning parameter α1, offering a
more streamlined and straightforward approach. The construction of the set of candidate
zones in the proposed method provides greater flexibility compared to the rflex method,
allowing for improved adaptability to irregular cluster shapes.
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Figure 7. Two examples of non-circular clusters detected by different scan methods. Left plots: clustering
model imixed12 detected by the elliptic method and the flexible–elliptical method. Right plots: clustering
model “a” detected by the rflex method with α1 = 0.2 and the flexible–elliptical method.
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Abbreviations

N Number of regions in the study area.
i Centroid of each region.
Yi Number of cases in region i.
ni Population size of region i.
Ei Expected number of cases in region i (under the null).
θi Risk of developing the disease in region i
y+ Total number of cases in the study area, i.e., ∑N

i=1 Yi = y+.
n+ Total population of the study area, i.e., ∑N

i=1 ni = n+.
Z Set of all candidate zones.
Z A candidate zone.
yin Number of cases inside the candidate zone Z, i.e., ∑i∈Z yi = yin.
nin Population size inside the candidate zone Z, i.e., ∑i∈Z ni = nin.
Ein Expected number of cases inside the candidate zone Z, i.e., ∑i∈Z Ei = Ein.
yout Number of cases outside the candidate zone Z, i.e., ∑i 6∈Z yi = yout.
nout Population size outside the candidate zone Z, i.e., ∑i 6∈Z ni = nout.
Eout Expected number of cases outside the candidate zone Z, i.e., ∑i 6∈Z Ei = Eout.

Appendix A

In this appendix we derive the likelihood ratio test statistic when the case counts are
modeled by a Poisson or a Binomial random variable. Assume:

• The risk of disease for all regions i ∈ Z is p. That is, θi = p for all i ∈ Z.
• The risk of disease for all regions i 6∈ Z is q. That is, θi = q for all i 6∈ Z.

Appendix A.1. Poisson Cases Counts

Let Yi
indep.∼ Poisson(niθi). Thus, the likelihood function is

LP(Z, θi) =
N

∏
i=1

e−niθi (niθi)
Yi

Yi!
.

Under the alternative hypothesis of existing at least one cluster, the likelihood function
can be written as:

LP(Z, p, q) = ∏
i∈Z

e−ni p(ni p)Yi

Yi!
∏
i 6∈Z

e−niq(niq)Yi

Yi!

=
e−p ∑i∈Z ni p∑i∈Z Yi ∏i∈Z nYi

i
∏i∈Z Yi!

e−q ∑i 6∈Z ni q∑i 6∈Z Yi ∏i 6∈Z nYi
i

∏i 6∈Z Yi!

=
e−pnin pyin e−qnout qyout ∏i∈Z nYi

i ∏i 6∈Z nYi
i

∏i∈Z Yi! ∏i 6∈Z Yi!
(because ∑i∈Z ni = nin and ∑i 6∈Z ni = nout)

= C e−pnin pyin e−qnout qyout ,

where C =
∏i∈Z nYi

i ∏i 6∈Z nYi
i

∏i∈Z Yi! ∏i 6∈Z Yi!
.

Compute the log function of the LP(Z, p, q), i.e., lP(Z, p, q):

lP(Z, p, q) = log C− pnin + yin log p− qnout + yout log q.
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Differentiate with respect to p and set equal to zero to find the maximum.

∂

∂p
lP(Z, p, q) = −nin + yin

1
p

set
= 0 ⇒ p̂ =

yin
nin

∂2

∂p2 lP(Z, p, q) = −yin
1
p2 < 0 ⇒ p̂ =

yin
nin

is a maximum.

Similarly, q̂ =
yout

nout
.

Under the null hypothesis of no clustering, p is equal to q. Thus,

lP(Z, p = q) = log C− p(nin + nout) + (yin + yout) log p.
(we know nin + nout = n+, and yin + yout = y+)

⇒ ∂

∂p
lP(Z, p = q) = −n+ + y+

1
p
⇒ p̂ = q̂ =

y+
n+

.

Therefore, the likelihood ratio test statistic can be written as

λc
Z =

supp>q LP(Z, p, q)

supp=q LP(Z, p = q)
=

C e
−

yin
nin

nin
(

yin
nin

)yin

e
−

yout

nout
nout
(

yout

nout

)yout

C e
−

y+
n+

n+
(

y+
n+

)y+

=

e−(yin+yout)

(
yin
nin

)yin
(

yout

nout

)yout

e−y+

(
y+
n+

)y+

(where e−(yin+yout) = e−y+ )

=

(
yin
nin

)yin
(

yout

nout

)yout

(
y+
n+

)y+

=

 yin
y+
n+

nin


yin
 yout

y+
n+

nout


yout

=

(
yin
Ein

)yin
(

yout

Eout

)yout

.

(because
y+
n+

nin = Ein, and
y+
n+

nout = Eout)

No cluster is a “hotspot” unless yin
Ein

> yout
Eout

, so we include the indicator function to
simplify the computations. Thus,

λc
Z =

supp>q LP(Z, p, q)

supp=q LP(Z, p = q)
=

(
yin
Ein

)yin
(

yout

Eout

)yout

I
(

yin
Ein

>
yout

Eout

)
.

By taking maximum over all Z ∈ Z the likelihood ratio test statistic for the most likely
cluster is obtained. That is,

λc = sup
Z∈Zc

λc
Z.
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Appendix A.2. Binomial Cases Counts

Let Yi
indep.∼ Binomial(ni, θi). Thus, the likelihood function is

LB(Z, θi) =
N

∏
i=1

(
ni
Yi

)
θi

Yi (1− θi)
ni−Yi

Under the alternative hypothesis of existing at least one cluster, the likelihood function
can be written as:

LB(Z, p, q) = ∏
i∈Z

(
ni
Yi

)
pYi (1− p)ni−Yi ∏

i 6∈Z

(
ni
Yi

)
qYi (1− q)ni−Yi

=

(
∏
i∈Z

(
ni
Yi

))
p∑i∈Z Yi (1− p)∑i∈Z(ni−Yi)

(
∏
i 6∈Z

(
ni
Yi

))
q∑i 6∈Z Yi (1− q)∑i 6∈Z(ni−Yi)

= C pyin(1− p)nin−yin qyout(1− q)nout−yout ,

where C = ∏i∈Z (ni
Yi
) ·∏i 6∈Z (ni

Yi
).

Compute the log function of LB(Z, p, q), i.e., lB(Z, p, q):

lB(Z, p, q) = log C + yin log p + (nin − yin) log(1− p) + yout log q + (nout − yout) log(1− q).

Differentiate with respect to p and set equal to zero to find the maximum.

∂

∂p
lB(Z, p, q) = yin

1
p
− (nin − yin)

1
1− p

set
= 0 ⇒ p̂ =

yin
nin

. Similarly, q̂ =
yout

nout
.

Under the null hypothesis of no clustering, p is equal to q. Thus,

lB(Z, p = q) = log C + (yin + yout) log p + (nin + nout − (yin + yout)) log(1− p)

⇒ ∂

∂p
lB(Z, p = q) = y+

1
p
− (n+ − y+)

1
1− p

set
= 0 ⇒ p̂ = q̂ =

y+
n+

.

Therefore, the likelihood ratio test statistic can be written as

λ
′c
Z =

supp>q LB(Z, p, q)

supp=q LB(Z, p = q)

=

C
(

yin
nin

)yin
(

1− yin
nin

)nin−yin
(

yout

nout

)yout
(

1− yout

nout

)nout−yout

C
(

y+
n+

)y+(
1− y+

n+

)n+−y+

=

(
yin
nin

)yin
(

nin − yin
nin

)nin−yin
(

yout

nout

)yout
(

nout − yout

nout

)nout−yout

(
y+
n+

)y+(n+ − y+
n+

)n+−y+ .

No cluster is a hotspot unless yin
nin

> nin−yin
nin

, so we include the indicator function to simplify
the computations. Thus,

λ
′c
Z =

(
yin
nin

)yin
(

nin − yin
nin

)nin−yin
(

yout

nout

)yout
(

nout − yout

nout

)nout−yout

(
y+
n+

)y+(n+ − y+
n+

)n+−y+ I
(

yin
nin

>
nin − yin

nin

)
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By taking the maximum over all Z ∈ Z the likelihood ratio test statistic for the most
likely cluster is obtained. That is,

λ
′c = sup

Z∈Zc

λ
′c
Z .
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