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Abstract: The study on graphs emerging from different algebraic structures such as groups, rings,
fields, vector spaces, etc. is a prominent area of research in mathematics, as algebra and graph theory
are two mathematical fields that focus on creating and analysing structures. There are numerous
studies linking algebraic structures and graphs, which began with the introduction of Cayley graphs
of groups. Several algebraic graphs have been defined on rings, a fast-growing area in the literature.
In this article, we systematically review the literature on some variants of Cayley graphs that are
defined on rings and highlight the properties and characteristics of such graphs, to showcase the
research in this area.
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1. Introduction

Graph theory and algebra are two disciplines of mathematics which concentrate on
building and investigating structures. Algebra is a fundamental branch of mathemat-
ics, whose roots can be traced back to the early 16th century, whereas graph theory is a
flourishing mathematical research area which began unfolding in the early 18th century,
as the Swiss mathematician solved the famous eponymous Königsberg bridge problem by
representing the structure of the bridge and the landmass surrounding it as a graph. Hence,
this subject emerged as a consequence of modeling real-life problems in terms of graphs, as
it gives a comprehensive visual representation of the problem, aiding in obtaining optimal
and feasible solutions to the problem. It is interesting to note that, along with the increase in
applications of the developed subtheories, the theory by itself has evolved independently
over time and has established itself as a flourishing mathematical discipline.

An algebraic structure is a non-empty set along with one or more operations (usually
binary) defined on it, and, by the very definition of a graph, it can be noticed that a graph
can be realised as a structural representation of a relation defined on a (vertex) set. Relating
these two structural aspects, a synergy between algebraic and graphical structures is studied
in the field of algebraic graph theory. It has become a stimulating research field, yielding
numerous intriguing results, as these two disciplines—algebra and graph theory—interact
in many ways to mutually extend the tools of one subject for the benefit of the other. In fact,
powerful combinatorial methods found in graph theory have been used to prove specific,
significant, and well-known results in group theory. For example, all finite groups can be
represented as the automorphism group of a connected graph (c.f. [1]).

Any algebraic structure can be interpreted as a graph, and there are multiple ways to
associate an algebraic structure with a graph. In the past few decades, several graphs have
been constructed from algebraic structures based on different properties possessed by the
algebraic structures, and these algebraic graphs have been studied extensively, in order to
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understand the algebraic structure more clearly, thereby making this an enthralling area of
research (c.f. [2–7]).

This association of an algebraic structure with a graph began at the end of the 19th
century, when Arthur Cayley connected graph theory and group theory by introducing the
Cayley graph of a group (c.f. [8]), which encodes the algebraic information of a group as a
graphical structure. The Cayley graph for a group G is a graph with the vertex set as the
elements of the group G , which is invariant under the right translation by elements of G .
Cayley graphs are, by far, the most well-known graphs associated with algebraic structure.
There is massive yet still growing segment of the literature dedicated to convincing the
community that algebraic graph theory is only the study of Cayley graphs of finite groups
(see [9–14]).

The studies on Cayley graphs paved the path to the construction and investigation of
certain graph classes such as circulant and transitive graphs (refer to [15,16]). It was proven
that all circulant graphs are Cayley graphs and every Cayley graph is vertex-transitive. This
aided researchers to construct various families of circulant and transitive graphs, according
to the requirements concerned, as circulant graphs are highly stable and reliable networks
that are used in modeling real-life situations.

Another important class of algebraic graph construction is the construction of graphs
from rings, as the study of graphs constructed from rings contributes to an interplay
between the ring structure and the corresponding graph structure. One can sometimes
translate the algebraic properties of the rings in terms of graph-theoretic properties and vice
versa, which can help in exploring some interesting results related to the graphs as well as
to the rings. Graphs defined on rings either have vertices as the set of elements of the ring
or they are intersection graphs, such that each vertex represents some subset of the ring or
some well-known sub-structure of the ring such as ideals, subring, etc.; additionally, the
edges are defined with respect to an algebraic condition on the elements of the vertex set.

The study of graphs defined from rings began with the introduction of the zero-divisor
graph, which is one of the most well-studied graphs defined on commutative rings, having
a massive (and still augmenting) portion of the literature (see [17–19]). Apart from the zero-
divisor graphs, there are several other graphs, such as total graphs, annihilating graphs,
comaximal graphs, unit graphs, Jacobson graphs, generalised total graphs, etc. They all
have a substantial and growing segment within the literature (c.f. [18–25]). A few decades
back, algebraic graph theory was just a theory that did not apply to ordinary human
activities, whereas it has now been successfully used in transmitting encrypted information
with high security and privacy through public communication networks (c.f. [15]).

Though Cayley graphs were initially constructed on groups, their graph construction
has been extended to rings as well. As rings possess several symmetric subsets such as the
set of all zero-divisors, units, idempotent and nilpotent elements, etc., many variants of
Cayley graphs (using the symmetric subsets of rings) were constructed and studied. This
literature review intends to present an overview of these variants of Cayley graphs that are
defined on rings, that is, the graphs defined such that their vertex sets are the ring elements,
and their adjacency relation is similar to the adjacency condition given in the Cayley graph
with respect to some symmetric subset of the ring.

It can be seen that there are many survey papers, review papers, and books on graphs
defined on rings (see [17,22,23]), but many of them cover only a few well-studied graphs.
Furthermore, review papers that focus on a particular property of graphs defined on rings
can also be found in the literature (c.f. [26–28]), whereas there was no comprehensive review
found related to the variants of Cayley graphs defined on rings. This motivated us to create
a literature hub for these graphs defined on common grounds and to systematically analyse
the studies that have been carried out on these graphs to understand the pattern and
dynamics of research in this area.

In this manuscript, we list the significant results on the structural properties of the
concerned graphs, such as girth, diameter, traversal properties, connectivity, connectedness,
and perfection, along with certain characterisations that have led to further research and
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open problems in that direction. In addition to this, the spectral properties of these graphs
are also highlighted in this article.

This systematic review also helps to identify unsolved open problems that have been
proposed in the literature, revealing the future scopes of study on this topic. Furthermore,
this article aims to resolve the ambiguity over different graphs with similar names and the
same graphs with different names that have been defined and studied independently by
different authors, which fall under these criteria.

The outline of the article is as follows. The graph theoretic and algebraic preliminaries
that are required to proceed further are given in Section 1.1. Comprehensive reviews on
the unitary Cayley graph of Zn and unitary Cayley graph of a ring, where the former is a
particular case of the latter, are given in Sections 2 and 3, respectively. These are followed
by reviews on the unitary addition Cayley graph in Section 4 and the unit graph of a ring
in Section 5, where, again, the first class of graphs forms a subset of the second one. Finally,
a review on other variants of Cayley graphs, for which detailed investigations have not yet
been performed, is given in Section 6. We conclude the article by proposing the research
gaps that we have found over the course of this review, along with several possible avenues
for further research in Section 7.

1.1. Preliminaries

This subsection aims to familiarise the reader with the terminology and notation
that are used in the article. It also includes definitions and results which are required
to understand the study. Unless otherwise noted, all definitions relating to algebra are
from [29] and all definitions relating to graph theory are from [30].

We let N,Z,R, and C denote the sets of positive integers, integers, real numbers, and
complex numbers. A non-empty set together with a binary operation (termed as addition)
is called a group if the properties of closure, associativity, existence of a unique identity
(additive identity) of the set and a unique inverse for each element in the set are satisfied. In
addition to this, if the group elements commute with each other under the defined binary
operation, then the group is said to be an Abelian group.

The structure of a group endowed with another binary operation called multiplication
gave rise to the abstract concept of rings in the mid 19th century. A non-empty set R with
two binary operations of addition and multiplication, denoted by + and ·, respectively, is
said to be a ring or an associative ring if R is a commutative group under addition and the
properties of associativity and distributivity hold for the multiplication.

In general, the binary operation of multiplication need not be commutative and the
ring need not have an identity element under multiplication. If the ring is commutative
under multiplication, then the ring called a commutative ring, and when a ring has an
identity element under multiplication, called the multiplicative identity, the ring is termed
as a ring with identity, where this multiplicative identity is denoted by 1. Similarly, the
existence of a multiplicative inverse for a non-zero element in a ring with identity is not
guaranteed. If a non-zero element in a ring has a multiplicative inverse, then it is called a
unit element of the ring and the set of all unit elements of the ring R form a group under
multiplication, which is called the multiplicative group of units. For a ring R, we denote this
group of units of R by R∗. In other words, if R is a ring with identity and x ∈ R, x is a unit of
R when there exists a y ∈ R such that xy = yx = 1 and R∗ = {x ∈ R : xy = yx = 1, y ∈ R}
is the group of units of R.

An element x ∈ R is a left (right) zero-divisor if there exists a y ∈ R such that xy = 0
(yx = 0) and y 6= 0. Note that the additive identity 0 of a ring R is a trivial zero-divisor
and, for a commutative ring, the notions of left and right zero-divisors are the same, so
we can simply call them zero-divisors. An integral domain is a commutative ring with
identity such that there are no non-zero zero-divisors, and a field is a commutative ring
with identity such that every non-zero element is a unit. Therefore, it can be concluded that
every integral domain is a field. In addition, a field can be interpreted as a ring that forms
an Abelian group with respect to both addition and multiplication. The characteristic of a
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ring R, denoted by char(R), is the smallest integer k such that 1 + 1 + . . . + 1︸ ︷︷ ︸
k−times

= 0 in R and,

if there exists no such k, then R is said to have characteristic 0.
A subring of a ring R is a subset of R, which is a ring by itself with the operations

defined on R. A subset I of a ring R is called a left (right) ideal of R if (I,+) is a subgroup
of R and yx ∈ I (xy ∈ I), for all x ∈ I and y ∈ R. For an element x ∈ R, the set
〈x〉 = Rx = {yx : y ∈ R} (〈x〉 = xR = {xy : y ∈ R}) is an ideal of R, called the principal left
(right) ideal generated by x. A left (right) ideal I of a ring R is said to be a maximal left (right)
ideal of R if, whenever I1 is a left (right) ideal of R and I ⊆ I1 ⊆ R, then I1 = I or I1 = R,
that is, the only ideal that properly contains a maximal ideal is the ring itself. Note that the
notions of left and right are the same for a commutative ring.

A commutative ring with identity is called a local or quasilocal ring if it has a unique maximal
ideal. A division ring is a non-trivial ring in which division by non-zero elements is defined. In
other words, a field is a commutative division ring, and all division rings that are not fields are
non-commutative rings in which the non-zero elements have a multiplicative inverse, either
with respect to left or right multiplication. The Jacobson radical of a ring R, denoted by JR, is the
intersection of all the maximal ideals of R. For a ring R and an ideal I of R, R

I = {x + I : x ∈ R}

is called a quotient ring of R by I. For a commutative ring R, R[x] = {
n
∑

i=0
aixi : ai ∈ R, n ∈ Z}

is called the ring of polynomials over R in the indeterminate x.
A ring R is said to be left (right) Artinian if every strictly descending chain of left

(right) ideals in R is finite. The structure theorem for Artinian rings says that an Artinian
ring R is uniquely (up to isomorphism) a finite direct product of Artinian local rings,
where the direct product R1 × R2 × . . .× Rk of rings R1, R2, . . . , Rk is the set of all ordered
pairs {(r1, r2, . . . , rk) : ri ∈ Ri, 1 ≤ i ≤ k}, such that the binary operations of addition
and multiplication are defined element-wise. A simple ring is a non-zero ring that has no
non-zero proper ideals. By Zn, we denote the ring of integers modulo n, with the usual
operations of addition modulo n and multiplication modulo n, that is, Zn = (Zn,+n, ·n).
The units of the ring Zn, denoted by Z∗n, are the set of all integers that are relatively prime
to n and are less that n, that is, Z∗n = {k ∈ Zn : gcd(k, n) = 1}, and the cardinality of this
set is given by the arithmetic function called the Euler totient function, denoted by φ(n).

A ring-homomorphism f : R1 → R2 between two rings R1 and R2 is a mapping that
preserves the two ring operations, that is, f (x + y) = f (x) + f (y) and f (xy) = f (x) f (y) for
all x, y ∈ R1, where we assume that f (1) = 1. A one-to-one and onto ring-homomorphism
is a ring-isomorphism and if two rings R1 and R2 are isomorphic; it is denoted by R1

∼= R2.
Note that other related definitions are given within the article on the basis of requirement.

For a graph G with the vertex set V(G) and edge set E(G), the order and the size of
the graph are |V(G)| = n and |E(G)| = m, respectively. A graph in which there exists
an edge joining a vertex to itself, called a loop, is known as a pseudograph, and a graph
in which the edges are ordered pairs of vertices is called a directed graph. A subgraph H
of a graph G is said to be a spanning subgraph if, with V(H) = V(G) and for any subset
S ⊆ V(G), the subgraph induced by S, denoted by 〈S〉, is the maximal subgraph of G,
with vertex set S. The complement G of a graph G is the graph such that V(G) = V(G) and
E(G) = {uv : uv /∈ E(G)}.

The set N(v) = {u ∈ V(G) : uv ∈ E(G)} is called the open neighbourhood of a
vertex v ∈ V(G) and, for each vertex v ∈ V(G), the set N[v] = N(v) ∪ {v} is the closed
neighbourhood of v. The degree of a vertex v ∈ V(G), denoted by degG(v) or d(v), is the
number of vertices adjacent to v in G, that is, deg(v) = |N(v)| and ∆(G) = sup{|N(v)| :
v ∈ V(G)} is the maximum degree of a graph G.

A graph G is called connected if there is a path between any two distinct vertices in G;
otherwise, G is said to be disconnected. A graph is called Eulerian if it contains a closed trail
containing every edge, and a graph is Hamiltonian if it contains a spanning cycle. Let G be
a connected graph and, for two vertices u, v ∈ V(G), the length of a shortest path from u
to v is denoted by d(u, v) and the diameter of the graph G, diam(G) = sup{d(u, v) : u, v ∈
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V(G)}. The girth of a graph G is the length of the smallest induced cycle in G and, if the
graph is acyclic, the girth of the graph is taken as ∞.

An isomorphism between two graphs G and H is a bijective function f : V(G)→ V(H),
such that any two vertices u and v of G are adjacent in G if and only if f (u) and f (v) are
adjacent in H; an isomorphism from a graph G to itself is called an automorphism. The set of
all automorphisms of a graph G forms a group called the automorphism group of G, denoted
by Aut(G). Since each graph has a unique automorphism group, it is called the algebraic
invariant of the graph.

The adjacency matrix A(G) of a graph G is a binary matrix of order n, such that the ij-th
entry is 1 if vivj ∈ E(G), or 0 otherwise. The set of all eigenvalues in this real symmetric
adjacency matrix of a graph G, along with their multiplicities, is called the spectra of the
graph G. A graph G is said to be perfect if the clique number and the chromatic number are
equal for all the induced subgraphs of G. A graph is said to be planar if it can be drawn on a
surface such that no two edges cross each other. The other graph parameters and concepts
that are investigated for different graphs are defined herein on the basis of requirement.

For more definitions and concepts related to algebra, see [31,32], and [29], specifically
for ring theory. For fundamental concepts in graph theory, refer to [30], and for algebraic
and spectral aspects in graphs, see [15,33]. For the theory of domination in graphs, refer
to [34]. For more details on concepts related to the planarity of graphs, see [35], and for all
basic definitions and results required to understand the study of graphs defined on rings in
both graph theory as well as ring theory, we refer the reader to Chapter 1 within [17].

As the ring of integers modulo n is a standard ring that has an easily understandable
structure, almost all graphs defined on rings are examined on Zn, whose elements are
the integers modulo n. Therefore, to examine the graphs defined on Zn and its related
rings, proficiency in ring theory, graph theory, and elementary number theory are essential.
Therefore, for fundamental concepts in number theory, we refer the reader to [36,37].

2. Unitary Cayley Graph of Zn

One of the most-studied graphs defined on rings, especially on Zn, is the unitary Cayley
graph. As the name suggests, the unitary Cayley graph can be seen as a restriction of or a
variation on the broadly defined Cayley graph. As this graph is specifically defined on Zn,
it can be seen that the number-theoretic definition of the graph leads to several interesting
results that are obtained using number-theoretic properties, and, often, the innate structure
of the graph gives rise to pleasing combinatorial results.

A graph of order n is said to be representable modulo k if its vertices can be labeled using
distinct integers between 0 and k, such that the difference between the labels of two vertices
are relatively prime to k if and only if the vertices are adjacent; the smallest k for which the
graph is representable modulo k is called the representation number of the graph (see [38]).
The problem of determining the representation number of a given graph and analysing
the properties of graphs that have a given representation number, along with its relation
between the order of the graph, was one of prominence, that was put forth as the graph
representation problem in the last decade of the 20th century (refer to [39]), as it was proven
that every graph is representable modulo for some positive integer (c.f. [38]). The main
motivation to study the unitary Cayley graph of Zn was to investigate the representation
problem of graphs, as put forth in [38], which is closely related to the definition of the
unitary Cayley graph on Zn given below. Following the definition, an example of a unitary
Cayley graph is given in Figure 1.

Definition 1 ([40]). The unitary Cayley graph of the ring Zn, denoted by Xn = Cay(Zn,Z∗n),
is a graph with vertices set as the elements of the ring; 0, 1, . . . , n− 1 and two distinct vertices are
adjacent if their difference is a unit of the ring; that is, for all x, y ∈ V(Xn), xy ∈ E(Xn) when
|x− y| ∈ Z∗n, where Z∗n is the set of all relatively prime integers to n, which are the units of Zn.
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Figure 1. The unitary Cayley graph X8.

Note that the definition of the unitary Cayley graph on Zn is closely associated with the
definition of a graph to be representable modulo n; this motivated researchers to gain insight
into the graph representation problem, and, therefore, unitary Cayley graphs were investigated.
It can be observed that, post-introduction of the unitary Cayley graph Xn, the definition of a
graph to be representable modulo n was given in terms of Xn. In other words, a graph is said to
be representable modulo k if it is isomorphic to an induced subgraph of Xn (refer to [41]).

Though the representation problem is stated in terms of the unitary Cayley graph Xn
and the results obtained on the investigation of the representation problem may be related
to the graph Xn; note that we do not consider them in this review, as the results may only
address certain induced subgraph structures of the graph Xn, which may or may not have
all the properties of Xn.

The unitary Cayley graph of Zn was introduced in [40] as a specific case of the Cayley
graph, defined using the generating sets of Zn, as the set Z∗n generates Zn. The other
variants of Cayley graphs, defined based on such generating sets in [42], were complete
graphs, and, based on colouring the edges of these complete graphs in a symmetric fashion,
the realisation of the induced subgraphs of these complete graphs as totally multicoloured
(TMC) subgraphs, that is, a subgraph of a graph in which no two edges have the same
colour, was studied in [42].

Motivated to investigate the possibilities of obtaining totally multi-coloured Cayley
graphs, the unitary Cayley graph was defined on Zn, and its basic properties were investi-
gated in [40]. By Definition 1, it can be seen that the graph Xn is φ(n)-regular, where φ(n)
is the Euler totient function that gives the number of integers less than n that are relatively
prime to n. The symmetric nature of the graph can be observed from the adjacency pattern
as well as the regularity, as it is closely related to the number-theoretic concepts of modular
arithmetic (c.f. [43]). This symmetry of the unitary Cayley graphs gives rise to several
applications in modelling networks and encourages investigation of the graph in several
directions.

The primary focus of the study in [40] was to examine the existence of triangles and
enumerate them, in the newly defined unitary Cayley graph, as the intended study was
to explore the possibilities of obtaining totally multi-coloured graphs. This study on the
triangles present in the graph helped to identify TMC graphs, but it can be seen that
the study would not be significant when the graph turned out to be a complete graph.
Therefore, the first result obtained on Xn classifies the values of n for which Xn is a complete
graph. Since bipartite graphs are characterised based on the existence of odd cycles, the
values of n for which Xn is bipartite and complete bipartite were also obtained, as follows.

Theorem 1 ([40]).

(i) A unitary Cayley graph Xn is isomorphic to a complete graph Kn and a complete bipartite
graph K2t−1,2t−1 when n is prime and n = 2t, t ≥ 1, respectively.

(ii) A unitary Cayley graph Xn is a bipartite graph if n is even.
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It can be observed that the graphs X2t , t ∈ N are regular, with each vertex having
degree equal to half the number of vertices, making the size of the graph the square of the
sum of degrees of all vertices in the graph. Since the chromatic uniqueness of complete
bipartite graphs was proven in [44], the graphs X2t , t ∈ N are called chromatically unique
unitary Cayley graphs. Note that, for a graph G, the polynomial that gives the number of
graph colourings as a function of the number of colours is a chromatic polynomial (see [30]),
and two graphs G1 and G2 are chromatically equivalent if they have the same chromatic
polynomial, that is, Pα(G1) = Pα(G2). A graph G1 is said to be chromatically unique if
Pα(G1) = Pα(G2) implies that G1

∼= G2 (see [45]).
As the graph Xn is triangle-free for even n, the enumeration of triangles was restricted

to Xn for odd n. As a first step, the number of triangles in Xn with two common vertices was
enumerated, following which the total number of triangles in the graph was determined.
The number of triangles with two common vertices was obtained as the cardinality of the
set {u ∈ Z∗n : (u− 1) ∈ Z∗n}. This is because the vertex set of any triangle in Xn with two
common vertices can be taken as {0, 1, u : u ∈ Z∗n}, owing to the fact that the difference
between the vertices of any edge in the graph is a unit. Therefore, the third vertex that
differs, for the triangles with two common vertices, will always be a unit, and, hence, the
number of triangles with two common vertices is obtained as

n ∏
p|n

(
1− 2

n

)
,

where the product is run over all the prime factors of n.
To enumerate the number of triangles in the graph Xn, the group action of the group

Z∗n × Zn on the set of all triangles of the graph, that is, if (u′, x) ∈ Z∗n × Zn, then the
action (u′, x){0, 1, u} = {u′x, u′(1 + x), u′(u + x)} that gives the orbits of the triangles
corresponding to different pairs (u′, x) ∈ Z∗n ×Zn was considered. As orbits partition a set,
the sum of the cardinalities of these orbits obtained through the given group action aided
in determining the total number of triangles in the graph Xn. Using the orbits obtained
through the group action, the edges of the triangles were also coloured to obtain the
edge colouring of the graph, and this led to the enumeration of triangles having different
possible combination of colours, that is, the triangles that had all three edges coloured with
different colours, all three edges coloured with the same colour, and two edges coloured
with same colour were termed as scalene-coloured triangles, equilateral-coloured triangles
and isosceles-coloured triangles, after which they were enumerated.

The enumeration of triangles in unitary Cayley graphs gave rise to the problem of
counting the number of induced cycles of any given length k. Additionally, it was seen
that, to prove the chromatic uniqueness of a graph, it is important to count the number
of induced k cycles in the graph, as some of the coefficients in the chromatic polynomials
are related with the number of such induced cycles (see [46]). Therefore, this problem of
counting the induced k cycles was proposed in [47], and the induced cycles of length four
were enumerated using the concept of the multiplicative arithmetic property (map) of the
graphs Xn.

A sequence of Cayley graphs Cay(Γt, St), where Γt is an Abelian group and St is a
symmetric subset of Γt, is said to have the multiplicative arithmetic property if, for each pair of
positive relatively prime integers (n1, n2), there is a group isomorphism φn1,n2 from Γn1n2

to Γn1 × Γn2 , such that φn1,n2 maps Sn1n2 onto Sn1 × Sn2 (see [47]). In [47], the multiplicative
arithmetic properties on all the Cayley graphs defined on Abelian groups were discussed
and, since Zn is also an Abelian group and Z∗n is a symmetric subset of Zn, the unitary
Cayley graphs were also examined in [47].

In [47], all Cayley graphs defined on Abelian groups were proven to have the mul-
tiplicative arithmetic property by obtaining the corresponding multiplicative arithmetic
functions. A construction of sequences of Cayley graphs with the multiplicative arithmetic
property, based on the number-theoretic concepts such as the Chinese reminder theorem,
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was also given in the article. As an application of proving the multiplicative arithmetic
property of the unitary Cayley graphs, the number of induced cycles of length three (trian-
gles) and four were enumerated. Though the formula for the number of triangles had been
obtained previously in [40] by using the group actions, the same result was deduced in this
article using the multiplicative arithmetic property of the graph.

Along with the results obtained, the authors also posted many open problems, among
which were the possibility to obtain a generalised expression to find the number of induced
k cycles in the graph Xn for any given n and to characterise the chromatic uniqueness in Xn
as it pertained to unitary Cayley graphs. These open problems were partially addressed by
the same authors in [48], by establishing a connection between the existence of an induced
k cycle in Xn and the number of prime divisors of n, as follows.

Theorem 2 ([48]). Given r ∈ N, there is a natural number M(r) ∈ N, depending only on r, such
that the number of induced k cycles in Xn is zero for all k ≥ M(r) and for all n, with at most r
different prime divisors.

This result was proven based on the results obtained in [47], that established the
multiplicative arithmetic property of unitary Cayley graphs. By Theorem 2, it was deduced
that Xn is a complete p-partite graph on n vertices with the maximum number of edges
and is chromatically unique when n = pt, where p is prime and t ∈ N, with the partitions
Pi = {x : x ∼= i mod p, 0 ≤ i ≤ p− 1} . In [40], it was obtained that Xn is chromatically
unique when n = 2t, for some t ∈ N based on the structure of the graph, and this result
extends the class of chromatically unique unitary Cayley graphs from n being only 2t to
any prime power pt, and this result was also proven based on the multiplicative arithmetic
property. Along with this, the bounds for the value M(r) were also obtained as follows.

Theorem 3 ([48]). For r ∈ N, there is a natural number M(r) ∈ N that depends only on r, such
that (r− 1) ln(r− 1) ≤ M(r) ≤ 9r!.

The bounds given in Theorem 3 show the existence of induced k cycles in Xn for
arbitrarily large r, which adds credibility to Theorem 2. Additionally, a large gap between
the bounds of M(r) opened an avenue to find better estimates, which were computed
in [49]. The main problem addressed in [49] was to determine the length of the longest
induced cycle in Xn for a given n and, to address this problem, a representation of the
vertices in Xn based on their residues modulo the prime factors of n, called the residue
representation, was introduced as follows.

Definition 2 ([49]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and
αi ∈ N, if x ∈ V(Xn), such that x ≡ αi mod pi, for 1 ≤ i ≤ r and 0 ≤ αi < pi, the residue
representation of x is the unique string α1α2 . . . αr.

This representation simplifies the problem of finding the induced cycles in the graph
to that of checking the similarity conditions between consecutive vertices, that is, to check
if any pair of non-consecutive vertices has at least one identical index in the representation,
as it can be observed that, for any x, y ∈ V(Xn), xy ∈ E(Xn) if and only if x ≡ y mod pi
for all 1 ≤ i ≤ r. In this article, the number M(r) defined in [48] is given in terms of
m(n), which denotes the longest induced cycle in Xn as M(r) = maxn{m(n)}, where the
maximum is taken over all n values with r distinct prime divisors. Since M(r) was proven
to depend only on r in [48], m(n) was also proven to depend only on r in [49], so that
there arose no ambiguity in the given definition of M(r) in terms of m(n). Significant
questions as to the relation between the values m(n) and M(r) were also answered in [49]:
the conditions under which these values of m(n) and M(r) were equal were obtained, as
given below.
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Theorem 4 ([49]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and are
large, m(n) = M(r).

Theorem 5 ([49]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are
distinct primes and r 6= 1, m(n) = M(n′).

Theorem 5 reduces the complexity of calculating m(n) for large values of n, as it
considers only the values of n whose prime powers are square-free. These results aided in
improving the tightness of the bounds of M(r) in [49], which is given below.

Theorem 6 ([49]). For all positive integers n with r > 1 distinct prime divisors, 2r + 2 ≤ M(r) ≤
6r!.

To prove Theorem 6, an induced subgraph of Xn with 2r + 2 vertices was constructed
for all n, and it was proven that the construction depended only on the number of prime
divisors, r of n, and not on the value of the prime divisors, thus providing a lower bound
for m(n). It was natural to examine the properties of Xn that contributed to the results
that were obtained and to explore the possibilities of constructing similar graphs. On
analysing these properties, it was noted that the above results on the length of the longest
cycles could be extended to the direct product of any number of complete k-partite graphs,
and this extension can be seen as an immediate consequence of the fact that, for any
n = pα1

1 pα2
2 pα3

3 . . . pαr
r , Xn ∼= Xp

α1
1
× Xpα2

2
× . . .× Xpαr

r
, as Xn is a complete p-partite graph

for n = pt when p is prime. Note that the unitary Cayley graphs are referred to as unitary
circulant graphs in [49].

A random walk on a finite, connected graph is a Markov chain (a Markov chain is a
sequence of random variables, such that the next move depends only the current position
and not on any of the previous ones—refer to [50] for more details.) that jumps from a
current vertex v to one of its k neighbours with a uniform probability (refer to [51]). The
hitting time Tv of a vertex v is the minimum number of steps that a random walk takes to
reach back to the same vertex, and the expected value of Tv for a vertex is known as the
expected hitting time. The expected hitting times for the random walks in the unitary Cayley
graph Xn and the direct product of two unitary Cayley graphs Xn1 and Xn2 , where n1 = pt1

and n2 = pt2 ,t1, t2 ∈ N, were studied in [52] and [53], respectively, as an extension of the
study on the expected hitting time of the edge transitive graphs by the same authors in [51].
Though the high symmetry of the graph Xn can be realised from the graph’s construction,
the unitary Cayley graphs were formally proven to be arc-transitive in [52] by obtaining an
automorphism of the graph that satisfied the condition of arc transitivity as follows.

Theorem 7 ([52]). The function ψ(x) = wx + z, where w ∈ Z∗n, z ∈ Zn and x ∈ V(Xn) are
fixed, is an automorphism of the graph Xn.

A graph G is said to be a vertex-transitive (edge-transitive) graph if its automorphism
group acts transitively on V(G) (E(G)). In other words, a graph G is vertex-transitive
(edge-transitive) if there exists an automorphism between any two distinct vertices (edges)
of G. Similarly, a graph G is arc-transitive if there exists an automorphism between any two
distinct edges of G such that the direction of the edges are preserved.

As it can be observed that an arc-transitive graph is both vertex-transitive and edge-
transitive, this automatically proves that unitary Cayley graphs are both vertex- and
edge-transitive. The main focus of the article [52] was to determine the expected hitting
time of the edge-transitive graphs, when the diameter of the graphs were two and three,
and to tighten the results when the graphs followed certain adjacency patterns. Since
Theorem 7 proves the edge-transitivity of the unitary Cayley graphs, the expected hitting
times of these graphs were explicitly computed in [52] by classifying the graphs that had
diameter two and three as follows.
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Theorem 8 ([52]). The diameter of Xn,

diam(Xn) =

{
2, if n = 2 or n is odd and composite;
3, if n = 2lk, where l ≥ 1 and m > 1 is odd.

By the definition of a random walk, it can be noted that the study of a random walk in
a regular graph tends to give a uniform distribution, as the number of neighbours to which
the vertex can jump is equal for all the vertices in the graph. Additionally, the unitary
Cayley graphs considered in the study were the graphs Xn, n = pk, where p is a prime,
which were already proven to be complete k-partite graphs in [48]. To determine the hitting
times of these graphs, the degree and distance between each pair of vertices in the graph
must be known and, therefore, the degree and distance between each pair of vertices in the
graph Xn, when n is a prime power, was determined in [52], along with the diameter of the
graph Xn1 × Xn2 , where n1 = pr1 and n2 = pr2 ; for r1, r2 ∈ N, it was also determined as 2
in [53]. As the graphs Xn1 × Xn2 were of diameter two, the hitting time of the vertices of
these graphs were also computed and are given as follows.

Theorem 9 ([53]).

(i) The expected hitting time between the vertices at distance 1 is
|V(Xn1 × Xn2)| − 1 = pn1+n2 − 1.

(ii) The expected hitting time between the vertices at distance 2 is

(a) |V(Xn1 × Xn2)| = pn1+n2 , when no pair of vertices are at distance 1 in the graphs Xn1

or Xn2 ;
(b) |V(Xn1 × Xn2)|+ 1

p−2 = pn1+n2 + 1
p−2 , otherwise.

Though unitary Cayley graphs were officially introduced in [40] in the year 1995, not
many studies emerged on unitary Cayley graphs until 2007, when [54] was published. It
was the first study that laid a strong foundation for the study of unitary Cayley graphs, as
it had an in-depth investigation on the properties of unitary Cayley graphs, after which
the fast-growing literature on this topic commenced. The study in [54] begins with a
brief review on the previous investigations of unitary Cayley graphs, following which the
chromatic number, clique number, and the vertex connectivity of Xn were computed as
follows.

Theorem 10 ([54]). If p is the smallest prime divisor of n, then χ(Xn) = ω(Xn) = p, where χ
and ω denote the chromatic and clique number, respectively.

Theorem 11 ([54]). The vertex connectivity κ(Xn) of the unitary Cayley graph Xn is φ(n), where
φ(n) is the Euler totient function.

An arc-transitive graph in which the vertex connectivity is its degree makes the unitary
Cayley graph highly reliable and stable for network models. Additionally, the regularity
of the graph Xn implies that its complement is also regular and highly symmetric, an,d
therefore, by Theorem 10, the chromatic and clique number χ(Xn) and ω(Xn) of the
complement of Xn are computed as n

p , where p is the smallest prime divisor of n. Based on
these results on the complement of the unitary Cayley graphs, the following realisation
was obtained.

Theorem 12 ([54]). A unitary Cayley graph Xn is self-complementary if and only if n = 1 or
n = 2. That is, Xn ∼= Xn if and only if n = 1 or n = 2.

Based on the investigation of the complement of the graph Xn and its regularity, the
number of common neighbours between the vertices was enumerated in [54] by partitioning
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the vertex based on different conditions for different values of n. On obtaining the chromatic
and the clique number of the graphs, perfection in the unitary Cayley graphs was studied
by investigating the existence of odd cycles of length five or more in the graph Xn, and the
unitary Cayley graphs that were perfect were characterised as follows.

Theorem 13 ([54]). A unitary Cayley graph Xn is perfect if and only if n is even or n is odd and
has at most two distinct prime divisors.

The investigation of the spectral properties of the unitary Cayley graphs began in [54],
where the adjacency matrix of the graph Xn was obtained. It is known that there are
multiple adjacency matrices for any graph, which are given based on different ordering of
the vertices. With the natural order of vertices 0, 1, 2, . . . , n− 1, the adjacency matrices of
the unitary Cayley graphs were obtained as circulant matrices—that is, matrices in which
the entries of their first row generate the entries of the other rows by a cyclic shift—which
established that unitary Cayley graphs are circulant graphs: graphs with circulant adjacency
matrices (c.f. [15]).

Using the explicit formula to obtain the eigenvalues of a circulant matrix given in [55],
the eigenvalues of the adjacency matrix of Xn were obtained in terms of an arithmetic
function c(r, n) called the Ramanujan sum (For k1, k2 ∈ N, the Ramanujan Sum, c(k1, k2) =

∑
1≤q≤k1

e2πi q
k1

n, where the summation is taken over all integers q, such that gcd(k1, q) = 1—

for more details, refer to [37,56]), which takes only integral values for the given integers
r, n, n > 0.

Therefore, it was concluded that all eigenvalues of unitary Cayley graphs are integers
and, hence, unitary Cayley graphs fall under the class of graphs called the integral circulant
graphs: circulant graphs whose eigenvalues are integers (see [57]). Further investigation
on the eigenvalues of the graph Xn, based on their symmetry and the number-theoretical
properties led to the following interesting results related to the eigenvalues of the graphs.

Theorem 14 ([54]). Let φ(n) denote the Euler totient function and µ(n) denote the Mobiüs
function on a natural number n = pα1

1 pα2
2 . . . pαr

r , defined as

µ(n) =


1, if n = 1;
−1, if α1 = α2 = . . . = αr = 1;
0, otherwise.

Then, the following hold:

(i) Every non-zero eigenvalue of Xn, n > 1 is a divisor of φ(n);

(ii) Let p be the maximal square-free divisor of n. Then, λmin = µ(p) φ(n)
φ(p) is a non-zero eigenvalue

of Xn, n > 1 of minimal absolute value and multiplicity φ(p);
(iii) Every eigenvalue of Xn, n > 1 is a multiple of λmin;
(iv) If n > 1 is odd, then λmin is the only non-zero eigenvalue of Xn with minimal absolute value;
(v) If n > 1 is even, then −λmin is also an eigenvalue of Xn, with multiplicity φ(n).

Theorem 15 ([54]).

(i) There is an eigenvalue −1 or 1 of Xn if and only if n is square-free.;
(ii) If n is square-free, then Xn has an eigenvalue µ(n) with multiplicity φ(n);
(iii) The unitary Cayley graph Xn has both eigenvalues 1 and −1 with multiplicity φ(n) if and

only if n is square-free and even.

Fascinated by the spectral properties of unitary Cayley graphs and their close relation
with number theory, a generalisation of the unitary Cayley graphs, called the GCD-graphs,
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was defined, in which the set of all positive, proper divisors of an integer n > 1 are
considered to form the symmetric subset, to define the adjacency condition. The formal
definition of the graph is given below.

Definition 3 ([54]). The GCD-graph, denoted by Xn(D∗n), is a graph with its vertices set as the
elements of the ring Zn; 0, 1, . . . n − 1 and two distinct vertices are adjacent if the gcd of their
difference and n is a positive proper divisor of n, that is, for all x, y ∈ V(Xn(D∗n)), xy ∈ E(Xn(D∗n))
when gcd(x− y, n) ∈ D∗n, where D∗n is the set of all positive, proper divisors of the integer n > 1.
An example of a GCD-graph is given in Figure 2.

1

2

3 4

5

6

70

Figure 2. The GCD-graph X8(D∗8 ).

Observe that the set D∗n consists of only all the proper positive divisors because, when
one is included as a divisor, the graph obtained is the complement of Xn for certain values
of n. The analysis on the spectra of GCD-graphs in [58] proved that the GCD-graphs also
have integral eigenvalues. On further exploration of the properties of these graphs with
integral spectra, the authors came up with a slightly modified definition of the graphs,
based on this basic definition of GCD-graphs that was put forth by them in [54], to obtain
multiple smaller graphs which fell under this broad category with similar properties as
follows.

Definition 4 ([59]). For a positive integer n, let Dn be the set of all its divisors. Define the graph
Gn(d), where d ∈ Dn, with the vertices set as the elements of the ring Zn, and two distinct vertices
x, y in the graph are adjacent when the gcd(x − y, n) = d. The graph Gn(d) is extended by
increasing the number of divisors and modifying the adjacency condition of any two distinct vertices
x, y to be gcd(x− y, n) ∈ D, where D ⊆ Dn; this graph is represented as Gn(D). These graphs
are known as gcd-graphs.

Note that, if |Dn| = k, then 2k−1 gcd-graphs Gn(D) are possible for any integer n,
where the graphs Xn and Xn(Dn) are also among them. An illustration of some gcd-graphs
emerging from Z12, for the subsets D ⊂ Dn, apart from D = {1} and D = Dn, is given
in Figure 3.

This new generalised definition was simultaneously given in [58] in the process of
characterising integral circulant graphs, where it was proven that a graph is an integral
circulant graph if and only if it can be realised as the graph Gn(D) for some D ⊆ Dn. It can
be observed that, when the set of all proper divisors are considered, the gcd-graphs Gn are
the GCD-graph defined in [54], and, when, D = {1}, Gn(1) = Xn.

Therefore, it can be seen that unitary Cayley graphs can be realised as a special case of
GCD-graphs, as well as the gcd-graphs from their definitions, and any study on gcd-graphs
can be considered to obtain results on unitary Cayley graphs. Additionally, based on the
characterisation of the integral circulant graphs as gcd-graphs and the fact that Gn(1) = Xn,
the results established for the integral circulant graphs also hold for unitary Cayley graphs.
The integral circulant graphs, or the graphs Gn(D), have a huge, growing body within
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the literature, owing to their spectral properties that have applications in fields such as
chemistry, quantum physics, radiology, etc. (c.f. [57]).
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(b)

Figure 3. gcd-graphs of Z12. (a) The gcd-graph G12(2); (b) The gcd-graph G12({3, 4, 6}).

As already seen, the unitary Cayley graph Xn is a special case of integral circulant
graphs, or gcd-graphs, and, hence, all the properties that are investigated for the latter hold
for Xn, but the bounds and results obtained for unitary Cayley graphs are more specific and
tight than results obtained for these broader classes of graphs. Therefore, in this article, we
present a review of the studies which are specifically made on the unitary Cayley graphs
and the results that were explicitly stated for the graph Xn as an application or a corollary
in the articles that studies the integral circulant graphs or gcd-graphs.

In [54], an open problem to determine the automorphism group of the unitary Cayley
graphs Xn, for n > 6, had been posited by the authors, which led to the investigation on
the automorphisms of Xn. Though the problem was not fully addressed, a necessary and
sufficient condition for a bijective mapping to possess the structure of an automorphism of
the graph Xn was given in [60] as follows.

Theorem 16 ([60]). Let n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes,
αi ∈ N, and r is the number of distinct prime divisors of n. Then, a bijective mapping induces an
automorphism of the graph Xn if and only if it preserves congruence modulo pi for all i.

Apart from the above-mentioned result, that was obtained on the automorphism of Xn,
a characterisation of planar unitary Cayley graphs was obtained along with the crossing
number (the lowest number of edges that cross in a planar graph drawing) of Xn, for a
few values of n for which the graph structure was a well-known graph class, by using the
existing results on the crossing number of these graph classes. The traversal properties of
Xn were also discussed in the article along with which the edge chromatic number, and the
edge connectivity of the graph was also determined as given below, where φ(n) denotes
the Euler totient function.

Theorem 17 ([60]). The graph Xn is planar if and only if n ∈ {1, 2, 3, 4, 6}.

Theorem 18 ([60]). The graph Xn, n ≥ 3 is Eulerian as well as Hamiltonian, and each such Xn

can be decomposed into φ(n)
2 edge-disjoint Hamiltonian cycles.

Theorem 19 ([60]). The edge connectivity of the graph Xn is φ(n).

Theorem 20 ([60]). For the graph Xn, the edge chromatic number is φ(n) and φ(n) + 1, when n
is even or odd, respectively.
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The property of the graph Xn having both its edge and vertex connectivity equal to its
degree of regularity, as well as the graph being integral-circulant, increases the application
of the graphs in the field of networks, especially in areas that require a stable and strong
network. This increased the significance of studying the graph for various application
purposes, and this also gave researchers curiosity to investigate other properties of the
graphs and construct similar graphs. Extending the study further, the authors studied the
basic graph properties of the unitary Cayley graph of a ring, which was obtained as a finite
direct product of the rings Zn for different values of n. This extension gave rise to the idea
of generalising the unitary Cayley graphs of Zn to any ring R, a detailed review of which is
given in Section 3.

The open problem to determine the automorphism group of Xn, put forth in [54],
was solved in [61] by obtaining the automorphism groups of Xn and their cardinality
for different values of n, as a tool to generalise the automorphism groups of the integral
circulant graphs. The results obtained are given below, showing that the structure of the
automorphism groups become highly sophisticated as the value of n increases.

Theorem 21 ([61]). For n = pk, where p is a prime number and k ≥ 1, the size of the automor-
phism group of Xn, |Aut(Xn)| = p!((pk−1)!)p.

Theorem 22 ([61]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r, are distinct primes and

αi ∈ N, the size of the automorphism group of Xn, |Aut(Xn)| =
r

∏
i=1

pi!(( n
r

∏
i=1

pi

)!)

r
∏

i=1
pi !

.

The structure of the automorphism group of Xn was proven by partitioning the vertices
of Xn based on the residue modulo primes, which is similar than the residue representation
introduced in [49], and the permutations on these residue classes were considered to obtain
automorphisms of the graph, using the notion of modular arithmetic and the Chinese
remainder theorem. According to the construction of automorphisms of Xn in the proof of
Theorem 22, it was concluded that the automorphism group is isomorphic to the wreath
product of the permutation group (refer to [62]) of the graphs of residue classes modulo r
and the permutation groups of vertices in each class, as given below.

Theorem 23 ([61]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and
αi ∈ N, the automorphism group of Xn, Aut(Xn) ∼= (Sp1 × Sp2 × . . . × Spr ) o S n

r
, where Sk

represents the group of permutations on k elements and o denotes the wreath product of groups.

The same problem of determining the automorphism group of the unitary Cayley
graph was solved in [21,63] using different approaches. The study in [21] began with a
motive to investigate the automorphism group of Xn, but the authors, upon observing the
symmetric pattern of Xn in several aspects, extended the concept of unitary Cayley graphs
to any ring R, and the automorphism groups of the unitary Cayley graphs defined on a
ring R were investigated, which, in the special case R = Zn, gave the automorphism group
of Xn. The main idea of their algebraic proof, where the dependence of the automorphisms
on the underlying algebraic structure of the rings concerned was emphasized, was different
from the proof given in [61], which used a number-theoretical approach. The authors
of [63] investigated the automorphism group of the rational circulant graphs—circulant
graphs with rational spectra—in which the integral circulant graphs became a subclass
by developing a framework based on Schur rings (for more details, refer to [64,65]). The
approach is highly complex, as it is built for all rational circulant graphs, but it is claimed,
in [63], that the automorphism group of Xn could have been traced a few decades ago if
the framework of the approach presented in [63] was followed.

The results on the spectra of the unitary Cayley graphs obtained in [54] fascinated the
researchers, leading them to explore other parameters and properties of the unitary Cayley
graph Xn that were closely associated with its adjacency matrix and its eigenvalues. The
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first of such properties to be investigated was the perfect state transfer in unitary Cayley
graphs. For a graph G with adjacency matrix A, H(t) is defined as the operator e(itA), called
the transition operator. A perfect state transfer between the vertices u and v is said to happen
at time τ if the uv-entry of |H(τ)u,v| = 1. This perfect state transfer is used in several
areas that deal with allocation and assignment factors; in particular, it has been efficiently
applied to key distribution in commercial cryptosystems and in assignment of objects in
quantum spin networks (see [57]). This notion was introduced to circulant graphs in [66],
and the perfect state transfer in the integral circulant graphs was studied in [57]. Based on
these studies, the class of unitary Cayley graphs that allowed perfect state transfer was
characterised in [57] as follows.

Theorem 24 ([57]). The only unitary Cayley graphs that allow perfect state transfer are X2 and X4.

Following the study on perfect state transfer in the unitary Cayley graph Xn, the
properties related to the energy of the graph, which is the sum of the absolute values of the
eigenvalues of the adjacency matrix of the graph, was determined in [67,68] as follows.

Theorem 25 ([67,68]). For n = pt, where p is a prime and t ∈ N, the energy of Xn,
E (Xn) = 2φ(n), where φ(n) represents the Euler totient function.

Theorem 26 ([67,68]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r
are distinct primes and r 6= 1, the energy of Xn, E (Xn) = 2rφ(n), where φ(n) represents the Euler
totient function.

Theorem 26 arises as a consequence of Theorem 25 along with the fact that, for
n = pα1

1 pα2
2 pα3

3 . . . pαr
r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are distinct primes and

r 6= 1, Xn ∼= Xp
α1
1
× Xpα2

2
× . . .× Xpαr

r
. Based on the energy of the graph Xn obtained, the

hyperenergetic unitary Cayley graphs, along with their complements, were characterised
in [67,68] as follows. Note that a graph G of order n is called hyperenergetic if its energy,
E (G), is greater than the energy of the complete graph of order n, that is, E (G) > E (Kn) =
2(n− 1) (see [67]).

Theorem 27 ([67,68]). The graph Xn is hyperenergetic if and only if n has at least two prime
factors greater than 2 or at least three distinct prime factors.

Theorem 28 ([67,68]). The graph Xn is hyperenergetic if and only if n has at least two distinct
prime factors and n 6= 2p, where p is a prime number.

Both [67,68] discuss the energy and hyperenergercity of the graphs Xn and Xn, and
the same results, using similar proof techniques, were obtained independently. In addition
to these results, the ratio E (Xn)

2(n−1) , that measures the degree of hyperenergecity of Xn, which
can be seen to grow exponentially as the number of distinct prime divisors of n increases,
was given in [68]. In the process of proving the above results, the nullity of the graph was
discussed, which was also independently proven in [69]. After the publication of [68], a
comment on the article was released, wherein a one line proof to determine the energy
of unitary Cayley graphs, as was determined in Theorems 25 and 26, using the notion of
Ramanujan sums, was given.

This was followed by a discussion on the eigenspace of the Unitary Cayley graphs
in [70], where, in a specific case, the class of graphs called Hamming graphs were proven to
be isomorphic to the unitary Cayley graphs and, using the results obtained on the spectra
of these unitary Cayley graphs, the eigenspaces of Hamming graphs were determined.
Note that, for non-negative integers k, r, s, the Hamming graph HG(l1, l2, . . . lr; s) is a graph
which is constructed based on the number of words formed by considering r out of a given
k letters, which have a Hamming distance s. In other words, given k letters, the kr possible
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words with r ≤ k letters are the vertices of a Hamming graph, and two vertices are joined
by an edge if their associated words differ in exactly s positions (see [70]).

Theorem 29 ([70]). For n = pα1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are
distinct primes and r 6= 1, Xn ∼= HG(p1, . . . , pr; r).

A k-regular graph G is said to be a Ramanujan graph if and only if the second largest
absolute value of the eigenvalues of the adjacency matrix of G, λ2(G) ≥ 2

√
k− 1 (c.f. [71]).

This idea of realising a graph as a Ramanujan graph was explored in unitary Cayley
graphs and their complement, using the spectra of the graphs that were obtained in the
previous literature, and a complete characterisation of the cases in which the unitary Cayley
graph and its complement were Ramanujan graphs were obtained in [71,72], respectively,
as follows.

Theorem 30 ([71]). The graph Xn is a Ramanujan graph if and only if n satisfies one of the
following conditions for some distinct odd primes p1 < p2 and for s ∈ N:

(i) n = 2s, for some s > 2;
(ii) n = p1;

(iii) n = 2s p, where p > 2s−3 + 1;

(iv) n = p2
1 , 2p2

1, 4p2
1;

(v) n = p1 p2 , 2p1 p2, where p− 1 < p2 ≤ 4p1 − 5;
(vi) n = 4p1 p2, where p− 1 < p2 ≤ 2p1 − 3.

Theorem 31 ([72]). For n ≥ 2, the graph Xn is a Ramanujan graph if and only if n has one of the
following forms:

(i) n is a prime power;
(ii) n = 2t13t2 , where 1 ≤ t1 ≤ 3 when t2 = 1, or t1 = 1 when t2 = 1, 2;
(iii) n = 10 or 30;
(iv) n = p1 p2, where p1 = 3, 5 and p2 = 5, 7.

Further investigations on some variants of energy, namely, the distance energy, colour
energy, minimum covering Gutman energy, the minimum edge dominating energy, and
the Seidal Laplacian energy of the unitary Cayley graphs, were conducted in [9,73–77],
respectively. As already known, energy of a graph is the sum of the absolute values of the
eigenvalues of a matrix. Based on the defined matrix, the corresponding spectra and the
energies can be computed. Therefore, the distance energy is obtained from the distance
matrix of the graph, which is a square matrix in which the ij-th entry gives the shortest
distance between the vertices vi and vj in the graph (see [74]). The colour energy of a graph
G corresponds to the energy of the AL-matrix of G (c.f. [9,76]), whose entries are based on a
proper vertex colouring of the graph G, say c, such that

aLij =


1, if vivj ∈ E(G) and c(vi) 6= c(vj);
−1, if vivj /∈ E(G) with c(vi) = c(vj);
0, if vi = vj or vivj /∈ E(G) with c(vi) 6= c(vj).

A minimum covering set C ⊆ V(G) of a graph G is a subset of vertices, such that each
edge of the graph is incident to at least one vertex in the subset, and the minimum number
of vertices in such a set is called the minimum covering number of the graph (c.f. [75]). A
minimum covering matrix MCC(G) of a graph G of order n is an n× n matrix, defined based
on the adjacency of the vertices in a minimum covering set C, such that the diagonal entries
of the adjacency matrix of the graph G are 1 if the corresponding vertex belongs to the
minimum covering set considered (see [78]). The Gutman matrix GM(G) of a graph G of
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order n is a square matrix of order n, whose entries are 0 and didjdij, where di and dj are
the degrees of the vertices vi and vj, and dij is the shortest distance between vi and vj,
corresponding to the conditions if the vertices vi = vj and vi 6= vj (c.f. [79]).

The minimum covering Gutman energy of a graph G is computed based on the minimum
covering Gutman matrix MCG(G) defined in [75], which, as observed, is defined as a
combination of the minimum covering matrix and Gutman matrix as follows:

mcgij =


1, if vivj ∈ E(G) and c(vi) 6= c(vj);
0, if i = j and vi /∈ C, where C is a minimum covering set;
didjdij, otherwise, where di and dj are the degrees of the vertices vi and vj

and dij is the shortest distance between vi and vj.

Similarly, the minimum edge dominating energy of a graph G is the sum of the absolute
values of eigenvalues of the minimum edge dominating matrix of G, which is a binary
matrix of order m × m, where m is the size of G in which the entries are based on the
adjacency of the edges and the minimum edge-dominating set of the graph. A subset
F ⊆ E(G) is an edge-dominating set of a graph G if every edge not in F is adjacent to at
least one edge in F, an edge-dominating set with the least cardinality is called a minimum
edge-dominating set of the graph, and cardinality is the edge domination number of the graph
(c.f. [34]).

The study on minimum covering Gutman energy of Xn involved the discussion of
this energy for unitary Cayley graph Xn, for the values of n for which Xn was a common
graph class such as complete graph, complete multipartite graph, etc. A similar situation
was encountered on the discussion of the minimum edge-dominating energy of the unitary
Cayley graphs in [73], except for a few bounds that were deduced instead of calculating
the exact values.

The distance spectra, along with the corresponding energy of the unitary Cayley
graphs, were computed in [74], as a part of the study on the same integral circulant
graphs, and it was proven that the integral circulant graphs, including Xn, had integral
distance spectra. On investigating the distance energies of both these graphs, a construction
of infinite families of distance equi-energetic graphs (graphs, possibly isomorphic, that
have the same energy) emerged, which were the first ones to be derived without using
construction methods, that is, without taking graph products nor iterated line graphs
(defined in the later part of this section). The results on the distance energy of Xn and the
construction obtained in [74] are given below.

Theorem 32 ([74]). The distance energy of Xn,

DE(Xn) =

{
2(n− 1), if n is prime;
4(n− 2), if n = 2t, for some t ∈ N.

Theorem 33 ([74]). Let n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and
αi ∈ N, be an odd composite number and m = p1 p2 . . . pr be the maximal square-free divisor of n.
The distance energy of Xn,

DE(Xn) = 2
[

2n + φ(n)(2r−1 − 1)−m− 2 +
k

∏
i=1

(2− pi)

]
,

where φ(n) is the Euler totient function.
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Theorem 34 ([74]). Let n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and
αi ∈ N, be an even number with odd prime divisor and m = p1 p2 . . . pr be the maximal square-free
divisor of n. The distance energy of Xn,

DE(Xn) =
9n
2
− 2m + 1 + φ(n)(2k+1 − 6) + |2φ(n)− 2− n

2
|,

where φ(n) is the Euler totient function.

In Theorem 34, the value of |2φ(n) − 2 − n
2 | cannot be resolved, since it takes all

positive, zero, and negative values, and, for specific n values, the solution of the problem
relates to the still-open conjecture on the Euler totient function (refer to [80]), for which
obvious solutions involve prime Fermat numbers, where a Fermat number is a positive
integer of the form 22n

+ 1, n ∈ N (see [36]).

Theorem 35 ([74]). Let n = p1 p2, where p1 and p2 are odd primes. The unitary Cayley graph Xn
is equi-energetic with the gcd-graph Gn(1, p1), that is, DE(Xn) = DE(Gn(1, p1)).

The colour energy of the unitary Cayley graph and its complement were studied
in [9,76]. The eigenvalues of the AL matrix, defined with respect to the proper colourings
of the graphs, were examined, and the corresponding energy was obtained in terms of
the chromatic number of the graph and the Euler totient function, using the notion of
Ramanujan Sums. A study on a few other matrices of the unitary Cayley graphs, along
with their eigenvalues and energy, was conducted in [81], where a small-world network
depending on the unitary Cayley graph was proposed, with an intent to decrease the
delay and increase the reliability in data transfer used to create and analyse network
communication.

The Seidal Laplacian energy of the unitary Cayley graph Xn was computed in [77] by
obtaining the eigenvalues of the Seidal Laplacian matrix SL(Xn) = S(Xn)− DS(Xn) of Xn,
where SL(Xn) is the Seidal Laplacian matrix of Xn, S(Xn) is the Seidal matrix of Xn, and
DS(Xn) is an n× n diagonal matrix of Xn, which has its diagonal entries n− 1− 2deg(vi),
1 ≤ i ≤ n. The Seidal matrix of a graph G is an n× n matrix with entries 1,−1 corresponding
to whether the vertices vivj ∈ E(G) or vivj /∈ E(G), or 0 otherwise (refer to [77]).

An algebra over a field is an algebraic structure consisting of a set, together with the
operations of addition, multiplication, and scalar multiplication by elements of a field, that
satisfies the axioms of a vector space with a bilinear operator; where, a bilinear operator is a
function of two variables which are linear with respect to each of their variables. In other
words, an algebra over a field is a vector space equipped with a bilinear operator (c.f. [82]).

For a positive integer n, the set of all n× n matrices over the field of complex numbers
C forms an algebraMn(C), with the usual matrix multiplication. As the adjacency matrix
of a graph A(G) is a well-known square matrix, the adjacency algebra of a graph is defined
as the subalgebra of Mn(C) which consists of all polynomials of A(G) with coefficients
from C, where a subalgebra is a subset of the algebra, which is an algebra by itself under the
same bilinear operator (refer to [16]).

The adjacency algebra of the unitary Cayley graph Xn was investigated in [82]. Since
every element of the adjacency algebra of a graph is a linear combination of the powers of
its adjacency matrix, the results on the adjacency algebra of a graph was obtained using
the powers of the adjacency matrix. Therefore, using the existing results on the adjacency
matrix of the graph Xn, the adjacency algebra of Xn was discussed in [82], and it was
proven that the adjacency algebra of unitary Cayley graphs is a coherent algebra, that
is, it is a subalgebra of Mn(C) containing I, J, where I is the identity matrix and J is the
matrix with all its entries being 1, which is closed under Hadamard product and conjugate
transposition. For any two square matrices M1 and M2 of order n, their Hardamard product
M1 ◦M2 is also an n× n matrix, such that (m1 ◦m2)ij = m1ijm2ij, 1 ≤ i, j ≤ n, where m1ij
and m2ij are the entries of M1 and M2, respectively(c.f. [82]).
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For a graph G with an adjacency matrix A(G), its coherent closure, denoted by C C (G),
is the smallest coherent algebra containing A(G), and a graph G is said to be a pattern
polynomial graph if its adjacency algebra is its coherent closure. On proving that the unitary
Cayley graphs had a coherent adjacency algebra, the authors proved that every unitary
Cayley graph was a pattern polynomial graph, and, using this, certain properties of the
unitary Cayley graphs were derived based on the properties of pattern polynomial graphs,
in [83]. To prove that all unitary Cayley graphs are pattern polynomial graphs, the following
characterisations on the structure of the graphs were obtained.

Theorem 36 ([82]). The graph Xn is a strongly regular graph if and only if n is a prime power.

Recall that a k-regular graph G of order n is strongly regular with parameters (n, k, r, s) if
any two adjacent vertices have exactly r common neighbours and any two non-adjacent ver-
tices have exactly s common neighbours, and also that a crown graph, Cr,r is a bipartite graph
with vertex set such that V(Cr,r) = V1 ∪V2 and |V1| = |V2| = r, with V1 = {v1, v2, . . . , vr}
and V2 = {u1, u2, . . . , ur}, such that viuj ∈ E(Cr,r) if and only if i 6= j.

Theorem 37 ([82]). The graph Xn is crown graph if and only if n = 2p, where p is an odd prime.

Appropriate representation of the circulant graphs on a Euclidean plane unveils the
rotational symmetry of the graph. As previously known, unitary Cayley graphs are integral
circulant graphs and, therefore, such a suitable representation or drawing, called the unit
circle drawing of a unitary Cayley graph, was examined in [84]. The unit circle drawing
of the graph Xn is simply a drawing of the graph Xn such that the vertices are placed
equidistantly on a unit circle on the complex plane C and the edges are drawn as line
segments. This representation gives a hole-like structure in the middle of the graph, which
is called the central hole or the geometric kernel of the graph. Just as the spectrum of a graph
provides vital information on the graph, the size of the geometric kernel in the unit circle
drawing of an integral circulant graph, which is measured through the kernel radius, also
provides the arithmetic properties of the graph.

It was proven in [85] that the central hole in the unit circle drawing of any circulant
graph on n > 3 vertices is a regular n-gon. Therefore, only the size of the geometric kernel
for Xn, which is already known to be an n-gon, had to be determined, in [84], by computing
the kernel radius, given by the formula max{k : 1 ≤ k < n

2 , gcd(k, n) = 1}. Only integers
less than n

2 were considered because there is no central hole when the edge (k, k
2 ) exists in

the unit circle drawing of a graph. It was observed that the kernel radius of Xn is a strictly
decreasing function on the range

(
0, n

2
]
.

Apart from this, computation of certain graph parameters of the unitary Cayley graph
were carried out in [86–93]; certain topological indices of the unitary Cayley graphs were
computed in [90–92], and a few graph polynomials for the unitary Cayley graphs were
determined in [86], using the results that were given in [54], as graph polynomials are also
graph invariants that code numerical information about the underlying graph (c.f. [94]).

It was already seen that unitary Cayley graphs are highly reliable networks that can
be used in modeling situations which require stable networks. To assert this, and to study
the degree of reliability of these networks, a few vulnerability parameters which measure
the vulnerability of a graph were computed for unitary Cayley graphs in [88]. This study
on computing vulnerability parameters paved the way to examine the parameters related
to graph covering, as performed in [93,95].

The graph covering problem is one of the most classical topics in graph theory, where
the minimum number of the entities of a graph, such as vertices, edges, etc., with a particular
property having a given graph as their union is determined. One such covering parameter
is the tree covering number, which is defined as the minimum cardinality among all tree
covers of the graph, where a family of mutually edge-disjoint trees in a graph is called a
tree cover of the graph if each edge is an edge of a tree in the family. This tree covering
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number was determined for the unitary Cayley graph Xn and its complement Xn in [93],
from which the Nordhaus–Gaddum-type inequalities, that is, bounds on the sum and the
product of the invariant for a graph and its complement, for the tree covering number were
obtained. The exact value of the tree covering number of Xn was computed as given in
Theorem 38, whereas, for the complement Xn, the bounds according to different values of
n were obtained. Based on these bounds, the Nordhaus–Gaddum-type inequalities were
also obtained for different cases of n, depending on its prime factorisation.

Theorem 38 ([93]). The tree covering number of a unitary Cayley graph Xn is φ(n)
2 + 1, where

φ(n) is the Euler totient function.

The other aspect related to covering that was discussed for the unitary Cayley graphs
in [95] was the property of the well-coveredness of a graph. A graph G is said to be well-
covered if all its maximal independent sets are of the same size. In [95], the well-coveredness
of the graphs Xn and Xn, along with its vertex decomposability, were examined, and the
conditions under which the graphs were well-covered and vertex decomposable (refer
to [96] for more details on vertex decomposable graphs) were given. The number of walks
between any pair of two vertices in the unitary Cayley graphs was enumerated in [87], and,
as an application of this result, it was shown that there exists a bijection between walks in
Xn and the ordered sums of units in Zn, from which the number of representations of a
fixed residue class mod n as the sum of k units in Zn was determined.

A function which is defined on the set of positive integers to a subset of the set of
complex numbers is an arithmetic function. An arithmetic function h is multiplicative if it
is not identically zero and, for any r, s ∈ N, h(rs) = h(r)h(s), whenever gcd(r, s) = 1.
For each non-negative integer r and prime p, the r-th Schemmel totient function STr is a
multiplicative arithmetic function that satisfies

STr(pα) =

{
pα−1(p− r), if p ≥ r;
0, otherwise,

where α is a positive integer. From the name Schemmel totient function, it can be seen that
this function, introduced by Schemmel, is a generalisation of the Euler totient function φ(n)
(c.f. [97]). It can be seen that ST0(n) = n and ST1(n) = φ(n) for all integers n. Since most of
the graph invariants of the unitary Cayley graph Xn are computed and expressed in terms
of φ(n) and STr(n) is its generalisation, this opened an avenue to check the possibility of
expressing the parameters in terms of STr(n) and, in [98], a simple formula for the number
of cliques of any order in the unitary Cayley graph Xn was obtained as follows.

Theorem 39 ([98]). For a given integer k, the number of cliques of order k in the unitary Cayley

graph Xn is given by the expression
k

∏
i=1

STi−1(n)
k , where STi−1(n) is the Schemmel totient function.

This formula naturally gives the number of triangles in the graph Xn in terms of the
Schemmel totient function as ST0(n)

1
ST1(n)

2
ST2(n)

3 , which is more generalised and simple than
the same expression which was computed independently in [40,47,48,54].

The k-th power G(k) of a graph G is a graph whose vertex set is the same as the vertex
set of G, and there is an edge between two vertices in the graph G(k) if and only if there
is a path of length at most k between them in G. The k-th powers of the unitary Cayley
graphs were examined in [89], where the energies of these graphs were determined and all
the powers of unitary Cayley graphs that were Ramanujan graphs were classified. Note
that, in [89], the k-th powers of a unitary Cayley graph are addressed as the the distance
powers of the graph. Using the results obtained on the energies of distance powers of
unitary Cayley graphs, infinitely many pairs of non-cospectral equi-energetic graphs were
constructed, and all the hyperenergetic distance powers of unitary Cayley graph Xn were
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characterised. It can be noticed that the k-th power of any graph G can be defined for the
values 1 ≤ k ≤ diam(G) and diam(Xn) ≤ 3. Therefore, the investigation is limited to the
unitary Cayley graphs that have diameter three, in which case there exists only the value
k = 2, for which the discussion of the k-th power of the graph Xn is non-trivial.

Apart from Cayley graphs, the literature on power graphs of groups is growing, giving
rise to several survey papers (c.f. [2,99–101]). Note that the power graph of a finite group is a
graph with the vertex set as the elements of the group, and two vertices are adjacent if one
is a power of the other, which are not to be confused with the k-th power of a graph, as both
the graphs are referred to as power graphs in the literature. Owing to the huge literature
on power graphs of finite groups, an open problem to explore the relation between power
graphs and Cayley graphs was put forth in [99]. This problem was addressed in [102], and
it was shown that, for certain values of n, the vertex-deleted subgraphs of power graphs of
Zn span subgraphs or the complement of the vertex-deleted subgraphs of certain unitary
Cayley graphs. Using these relations, the relationships between the energy of power graphs
and Cayley graphs were also obtained in [102]. The following theorem gives a relation
between the power graph P(Zn) and unitary Cayley graph Xn of Zn for some values of n.

Theorem 40 ([102]).

(i) For any prime p, P(Zp) ∼= Xp ∼= Kp;
(ii) If n = pα1

1 , for a prime p1 and α1 > 1, Xn is a regular spanning subgraph of P(Zn);
(iii) When n = pα1

1 pα2
2 , where p1, p2 are distinct primes, and α1, α2 are positive integers, P∗(Zn)

is a spanning subgraph of X∗n, where P∗(Zn) is the vertex-deleted subgraph, P(Zn)−
{Z∗n ∪ 0} and X∗n is the vertex-deleted subgraph, X(Zn)− {Z∗n ∪ 0}. The graphs X∗n ∼=
P∗(Zn) if and only if α1 = α2 = 1.

Recall that the study on unitary Cayley graphs began with the investigation of the
edge colouring of the graph, in order to obtain a total multi-coloured graph. This motivated
researchers to study different colourings of the graph and to investigate the related param-
eters and properties. The total colouring and the strong edge colouring of unitary Cayley
graphs were studied in [103–105]. A total colouring of a graph G is a proper colouring on
both the edges and vertices, such that no two adjacent entities (both vertices and edges) are
assigned the same colour, and the total chromatic number is the minimum number of colours
required in the total colouring of the graph (see [105]). The total colouring conjecture given
in [106] states that the total chromatic number of a graph G is at most ∆(G) + 2, where
∆(G) is the maximum degree of G; this was proven for the unitary Cayley graphs in [105],
as part of the investigation on the total colouring of some regular graphs. Additionally,
the total chromatic number of unitary Cayley graphs was determined; along with this, a
pattern to assign colours to obtain an optimal total colouring of unitary Cayley graphs for
some values of n was given in [103].

A strong edge colouring of a graph G is a proper edge colouring of G such that every
colour class induces a matching, and the minimum number of colours required is the
strong chromatic index. In [104], the strong chromatic index of all unitary Cayley graphs was
determined, and the colouring technique revealed the underlying product structure from
which the unitary Cayley graphs emerge.

Following the notion of colouring, domination in unitary Cayley graphs was investi-
gated in [107–110]. In [98], the domination number, upper domination number, and total
domination number (refer to [34]) of the unitary Cayley graphs were investigated based on
the structural property of the unitary Cayley graph Xn to be realised, as a direct product of
its factor graphs that were complete. The bounds for these domination parameters were
obtained in terms of an arithmetic function called the Jacobsthal function g(n), that denotes
the smallest positive integer r, such that every set of r consecutive integers contains an
element that is relatively prime to n (see [111]). By the definition of g(n) and Xn, it can be
deduced that the set {0, 1, . . . , g(n)− 1} is a dominating set as well as a total dominating
set of Xn, the cardinality of which gives a tight bound on the total domination number and
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the domination number of Xn. It was proven that the domination number of Xn need not
necessarily be equal to g(n) by identifying the cases when the equality γ(Xn) = g(n) does
not hold. Additionally, the rate at which the tightness of the bound decreases as the n value
increases was also discussed in [108], as given below.

Theorem 41 ([108]). For each positive integer j, there is an integer n with more than j distinct
prime factors, such that γ(Xn) ≤ γt(Xn) ≤ g(n), where γ(Xn), γt(Xn), and g(n) denote the
domination number of Xn, total domination number of Xn, and the Jacobsthal function.

Theorem 42 ([108]). If n = pα1
1 pα2

2 pα3
3 . . . pαr

r is an integer with a square-free canonical represen-
tation (αi < 2, for all 1 ≤ i ≤ r), having fewer than 3 distinct primes, then the domination number
of Xn is at most 4.

Theorem 43 ([108]). Let n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and
αi ∈ N. If r ≤ 3 and αj ≥ 2 for some 1 ≤ j ≤ r, then the domination number of Xn is at least

p1
p1−1 .

Theorem 44 ([108]). If the number of distinct prime factors of n is at most 3, such that n is not
square-free, then the domination number of Xn is g(n), where g(n) denotes the Jacobsthal function.

The proof of Theorems 38 and 43 establishes that, for infinitely many n, the domination
number of Xn is strictly less than the Jacobsthal function evaluated at n, and this gives
rise to a tighter bound on the total domination number (for definition, refer to Section 4)
of Xn, γt(Xn); γt(Xn) ≤ g(n), whenever n has at most three distinct prime factors. These
results also affirm the fact that as the number of prime factors of n increases, the domination
number as well as the total domination number of Xn are never equal to the Jacobsthal
function g(n), by showing that there exists an integer n with arbitrarily many distinct prime
factors, such that the bound γ(Xn) ≤ γt(Xn) < g(n) holds.

Additionally, the possibility of the value g(n) − γ(Xn) being arbitrarily large was
not explored in the article, meaning that the open problems to determine the existence of
integers n with arbitrarily large number of distinct prime factors such that γ(Xn) ≤ g(n)− 2
and to find a single integer n such that γt(Xn) ≤ g(n)− 2 were posited. Apart from this,
it was also conjectured that the upper domination number of Xn is n

p1
, where p1 is the

smallest prime factor of n, and the conjecture was proven for certain values of n, based on
their number-theoretical properties. The approach in [107] to determine the domination
parameters of the unitary Cayley graphs were built in order to investigate the solutions
of the two open problems posed in [108]. These open problems were solved in [107]
by constructing integers n with arbitrarily many distinct prime factors, such that the
unitary Cayley graph Xn contains a dominating cycle of size g(n)− 2, thus answering both
questions, because a dominating cycle is a total dominating set.

Recall that a dominating set which is independent is called an independent dominating
set and the minimum cardinality of such a set is called the independent domination number.
Additionally, a set S ⊆ V(G) is called irredundant if, for each v ∈ S, either v is isolated
in S or v has a neighbour u /∈ S such that u is not adjacent to any vertex of S− {v}. The
minimum size of a maximal irredundant set is called the irredundance number of graph G
(c.f. [34]). The bounds on other domination parameters such as the irredundance number
(ir(Xn)), independent domination number (i(Xn)), etc. of unitary Cayley graphs were
determined in [107], as a special case of these bounds, obtained for the direct products
of complete graphs. This result gave rise to the construction of some infinite families of
integers n, where ir(Xn) = γ(Xn) = i(Xn), as given below.

Theorem 45 ([107]). For a unitary Cayley graph Xn, ir(Xn) = i(Xn), when n = p, n = 2p, or
n = 3p for some prime p, or when n is square-free with exactly three prime divisors.
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The problem of finding other square-free integers n for which the equality is achieved
in the lower portion of the domination chain (see [34]) was posed, along with two other
open problems similar to the ones posed in [108], to check the existence of infinitely
many integers n such that γc(Xn) > g(n), and, if so, to check if such integers can have
arbitrarily many distinct prime factors and if there exists a single integer n such that
γt(Xn) ≥ g(n) − 3, where γc(Xn) and γt(Xn) are the connected and total domination
number of Xn, respectively. Note that the connected domination number of a graph is the
cardinality of a minimum dominating set whose induced subgraph is connected (refer
to [34]).

The study on the domination parameters of the unitary Cayley graph Xn was extended
in [110], where the open problem to find an integer n such that γt(Xn) ≥ g(n)− 3 was
solved, using the updated results on the nature of Jacobsthal function in the literature.
The problem was solved not just for γt(Xn) ≥ g(n)− 3, but also the existence of n with
arbitrarily many prime factors that satisfied γt(Xn) ≥ g(n)− 16 was also proven in [110].
In addition to this, new lower bounds on the domination numbers of direct products of
complete graphs were presented in [110], from which new asymptotic lower bounds on
the domination number of Xn, when n was a product of distinct primes, were obtained by
adopting the proof techniques used in [108].

Two variants of domination, namely, the closed domination and the inverse closed
domination, of unitary Cayley graphs were discussed in [109] by determining the cor-
responding domination parameters. Given a graph G, we choose v1 ∈ V(G) and put
S1 = {v1}. If NG[S1] 6= V(G), we choose v1 ∈ V(G)− S1 and put S2 = {v1, v2}. Where
possible, for ≥ 3, we choose vk ∈ V(G)− NG[Sk−1] and put Sk = {v1, v2, . . . , vk}. At some
point, we obtain a positive integer k, such that NG[Sk] = V(G). A dominating set obtained
in the above method is called a closed dominating set, and the smallest cardinality of a closed
dominating set is called the closed domination number of G (c.f. [112]). The dominating set
S ⊆ V(G)−D is called an inverse dominating set with respect to D. A closed dominating set
S ⊆ V(G)− C is called an inverse closed dominating set with respect to C, and the minimum
cardinality of an inverse closed dominating set is the inverse closed domination number of
G (c.f. [113]). In the study, the closed and inverse closed domination numbers of unitary
Cayley graphs whose structures are standard graph classes, such as complete graphs,
complete r-partite graphs, etc., were computed based on the existing results for those graph
classes, and hence, they did not contribute to any dynamic results.

On reviewing the literature on the domination of unitary Cayley graphs, it was seen
that unitary Cayley graphs were independently investigated under the name Euler totient
Cayley graphs, and a review of the studies conducted on the graphs Xn under the name
Euler totient Cayley graphs is given in the following subsection.

2.1. Euler Totient Cayley Graphs

Definition 5 ([114]). Let n = pα1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes, αi ∈ N,
and r is the number of prime divisors of n. The arithmetic graph Vn is defined as the graph whose
vertex set consists of the divisors of n, and two distinct vertices are adjacent in the graph if and
only if their gcd is a prime divisor of n. In other words, two distinct vertices u, v ∈ E(Vn), when
gcd(u, v) = pi, 1 ≤ i ≤ r. An illustration of an arithmetic graph is given in Figure 4.

Euler totient Cayley graphs were introduced in [114] as a combination of arithmetic
graphs and Cayley graphs. As this was a parallel independent study on the same graph
with a different name, various results were repeated in the literature; however, studies
on Euler totient Cayley graphs were mainly concentrated on the computation of different
domination parameters of the graph. Euler totient Cayley graphs were introduced in [114],
in which the basic properties of the graphs were studied, and the values of n for which
the graph was a standard graph class were classified and characterised. Using this study,
various types of domination were discussed and the corresponding domination parameters
were determined in [115–122].
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Figure 4. The arithmetic graph V12.

The results on the domination number of the Euler totient Cayley graph proven in [120]
were the motivation to investigate the tightness of the bounds of the domination number
in terms of the Jacobsthal function, as given in [107,108]. Additionally, on computing the
domination parameters of Xn in [107], an error in the bounds obtained in [117] for the
independent domination number of the graph was stated and rectified. The independent
domination number and the isolate domination number of the Euler totient Cayley graphs
were discussed again in [123], in which the bounds obtained in [117] were improved for a
few cases, and a few counterexamples to disprove the results in [123] were also obtained.
Note that a set-dominating set of a graph G whose induced subgraph has an isolated vertex
is called an isolate dominating set of G, and the minimum cardinality of such a set is the isolate
domination number of the graph (c.f. [124]).

Apart from this, the energy of Euler totient Cayley graphs was studied in [123,125],
which were a prefatory studies when compared to the study on the energy of unitary
Cayley graphs in [67,68]. Additionally, certain functions defined on the vertex set of a
graph-like independent and basic minimal-dominating functions (for more details, see
Section 6.5.2) were discussed for Euler totient Cayley graphs in [126,127], and the structure
and enumeration of cycles in Euler totient Cayley graphs was discussed in [122,128]. Note
that a function f : V → [0, 1] is an independent function if, for every vertex v with f (v) > 0,

∑
u∈N(v)

f (u) = 1, where N(v) is the set of all vertices adjacent to v (see [127]).

As Euler totient Cayley graphs were introduced relating the arithmetic graphs, the
different domination numbers that were determined for the Euler totient Cayley graphs
were also computed for the different graph products of Euler totient Cayley graphs with
the arithmetic graphs in [129–133]. These included the lexicographic product, Cartesian
product, direct product, and strong product of the graphs concerned, where the definitions
of different graph products studied were as follows.

Definition 6 ([134]). Let G1 and G2 be two simple graphs with vertex sets V(G1) and V(G2),
respectively. The lexicographic product G1[G2] of G1 and G2 is a graph with V(G1[G2]) =
V(G1) × V(G2), and two vertices (v1, u1) and (v2, u2) are adjacent in G1[G2] if either v1 is
adjacent to v2 in G1 or u1 is adjacent to u2 in G2.

Definition 7 ([134]). For two graphs G1 and G2 with vertex sets V(G1) and V(G2) and edge
sets E(G1) and E(G2), the direct product of G1 and G2, denoted by G1 × G2, is a graph with
V(G1 × G2) = V(G1)×V(G2), and two vertices (v1, u1) and (v2, u2) are adjacent in G1 × G2
if both v1v2 ∈ E(G1) and u1u2 ∈ G2.
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Definition 8 ([134]). Let G1 and G2 be two graphs with vertex sets V(G1) and V(G2) and edge
sets E(G1) and E(G2). The Cartesian product of G1 and G2, denoted by G1�G2, is a graph with
the vertex set V(G1�G2) = V(G1)×V(G2), and two vertices (v1, u1) and (v2, u2) are adjacent
in G1�G2 if either u1 = u2 and u1u2 ∈ E(G1) or v1 = v2 and u1u2 ∈ G2.

Definition 9 ([134]). Let G1 and G2 be two simple graphs with vertex sets V(G1) and V(G2),
respectively. The strong product G1 � G2 of G1 and G2 is a graph with V(G1 � G2) = V(G1)×
V(G2), and two vertices (v1, u1) and (v2, u2) are adjacent in G1 � G2 if

• u1 = u2 and v1 is adjacent to v2 in G1; or
• v1 = v2 and v1 is adjacent to v2 in G2; or
• v1v2 ∈ E(G1) and u1u2 ∈ E(G2).

The studies in [131,135] focused on the computation of the domination parameters
of the Cartesian product of Xn�Vn, and, in [129,130,133,136], the domination parameters
in the direct product of Xn and Vn were studied. The domination parameters in the
lexicographic product of Xn and Vn were discussed in [132,137–139], and the matching
domination number—the minimum cardinality of a dominating set that induces a matching
in a graph—of the strong product of the graphs Xn and Vn was determined in [140].

The different products of the arithmetic graphs with Euler totient Cayley graphs give
rise to various graphs with different structural properties, as per the number-theoretic
properties of the values of n. Based on this, the parameters were computed in multiple
cases, where it can be observed the results were mainly obtained for the structure of
graph products that were standard graph classes, making these studies secondary ones.
Additionally, it can be seen that the product structures became complex as the value of n
increased and the number of prime factors increased. Therefore, this presents a challenge
in studying many other structural parameters, despite the pattern and symmetry of the
factor graph.

2.2. Signed Graphs Based on the Unitary Cayley Graphs

A signed graph (or a sigraph), S = (G, σ), is a graph obtained from G, in which every
edge is assigned either a positive or a negative sign by a function σ : E(G) → {+,−}. If
the signs assigned to the edges depend on some property, the graph is called an induced
sign graph. It is very natural to extend the theory of signed graphs into the algebraic graphs
by assigning signs to the edges of algebraic graphs, and studies on such signed algebraic
graphs (algebraic signed graphs) have been found to be of much interest (see [141,142]).

One such signed algebraic graph is the signed unitary Cayley graph. As the assignment
of signs can be arbitrary or can depend on any property, there are possibilities for generating
several variations of signed graphs from a single algebraic graph. Depending on how the
signs are assigned to the edges of the graph Xn, there are four variations of the signed
graphs that have emerged from the unitary Cayley graphs to date, and the definitions of
these graphs are given below, following which the illustrations of each of them are given in
Figure 5. Note that the dashed edges in the figures represent the negative edges, and the
other edges are positively signed.

Definition 10 ([143]). The unitary Cayley join signed graph, denoted by S∨n = (Xn, σ∨), is a
signed graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N, and the sign of an
edge vivj ∈ E(S∨n ) is assigned by the function σ∨ : E(Xn)→ {+,−} as follows. For an edge vivj
in Xn,

σ∨(vivj)

{
+, if vi ∈ Z∗n or vj ∈ Z∗n;
−, otherwise.

Definition 11 ([143]). The negation of the unitary Cayley join signed graph, denoted by
S∨n = (Xn, σ∨), is a signed graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N,
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and the sign of an edge vivj ∈ E(S∨n ) is assigned by the function σ∨ : E(Xn)→ {+,−} as follows.
For an edge vivj in Xn,

σ∨
{
+, if both vi /∈ Z∗n and vj /∈ Z∗n;
−, otherwise.

Definition 12 ([143]). The unitary Cayley meet signed graph, denoted by S∧n = (Xn, σ∧), is a
signed graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N, and the sign of an
edge vivj ∈ E(S∧n ) is assigned by the function σ∧ : E(Xn)→ {+,−} as follows. For an edge vivj
in Xn,

σ∧(vivj)

{
+, if both vi ∈ Z∗n and vj ∈ Z∗n;
−, otherwise.

Definition 13 ([143]). The unitary Cayley ring signed graph, denoted by S⊕n = (Xn, σ⊕), is a
signed graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N, and the sign of an
edge vivj ∈ E(S⊕n ) is assigned by the function σ⊕ : E(Xn)→ {+,−} as follows. For an edge vivj
in Xn,

σ⊕(vivj)

{
+, if either vi ∈ Z∗n or vj ∈ Z∗n;
−, otherwise.
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Figure 5. The signed unitary Cayley graphs of X6. (a) The unitary Cayley join signed graph S∨6 .
(b) The negation of unitary Cayley join signed graph S∨6 . (c) The unitary Cayley meet signed graph
S∧6 . (d) The unitary Cayley ring signed graph S⊕6 .

One of the main properties of a signed graph is its balance and consistency. A signed
graph is said to be balanced if every cycle in the graph has an even number of negative
edges. A marked sign graph of a graph G is an ordered pair Sµ = (S, µ), where S = (G, σ) is
a signed graph and the function µ : V(S)→ {+,−} is called a marking of the signed graph
S. A cycle in Sµ is said to be consistent if it contains an even number of negative vertices,
and a sign graph S is said to be consistent if every cycle within it is consistent (see [144]).
The unique marking µσ induced by the sign function σ : E(G) → {+,−}, such that, for
every vertex v ∈ V(S), µσ(v) = ∏

e∈Ev

σ(e), where Ev is the set of all edges incident with v in

S, is called the canonical marking; a cycle in S is said to be canonically consistent if it contains
an even number of negative vertices, and the given sigraph is said be canonically consistent
if every cycle within it is canonically consistent. A sigraph S is sign-compatible if there exists
a marking of its vertices such that the end vertices of every negative edge receive a negative
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marking and no positive edge in S has both of its ends assigned a negative sign by the
marking; otherwise, the graph is sign-incompatible (see [144]).

The above-mentioned four variations of the signed unitary Cayley graphs were exam-
ined in [143,145–147], where the properties of the unitary Cayley join signed graph and its
negation were investigated in [146], the unitary Cayley ring signed graph was investigated
in [145], and the unitary Cayley meet signed graph was explored in [143,147]. In [146], a
characterisation of the balanced unitary Cayley join signed graphs and canonically con-
sistent unitary Cayley join signed graphs S∨n , where n had at most two distinct odd prime
factors, were obtained, as follows.

Theorem 46 ([146]). The unitary join Cayley signed graph S∨n is balanced if and only if either n is
even or if n is odd and it does not have more than one distinct prime factor.

Theorem 47 ([146]). The negation of a unitary join Cayley sigraph S∨n is balanced if and only if n
is even.

Theorem 48 ([146]). The unitary join Cayley sigraph S∨n , where n has at most two distinct odd
prime factors, is canonically consistent if and only if n is odd, 2, 6, or a multiple of 4.

Unitary Cayley ring signed graphs, which are closely associated with unitary Cayley
join signed graphs, were examined in [145]. It can be seen that an edge in a unitary Cayley
join signed graph is positively signed when at least one of its end vertices is a unit of the
ring, that is, either one or both of the end vertices can be units for an edge to be positive.
Conversely, an edge in the unitary Cayley ring signed graph is positively signed only when
exactly one of its end vertices is a unit of the ring. Therefore, the difference and the relation
between the unitary join Cayley signed graph, the unitary ring Cayley signed graph, and
the unitary Cayley meet signed graph were given in [145], and the conditions under which
they are isomorphic were obtained, as given in Theorems 49 and 50.

Theorem 49 ([145]). For a unitary Cayley graph Xn, the unitary Cayley join sigraph and unitary
Cayley ring sigraph are isomorphic if and only if n is even.

Theorem 50 ([145]). For a unitary Cayley graph Xn, the unitary Cayley join sigraph can never be
isomorphic to the unitary Cayley meet sigraph.

Along with the above-mentioned characterisations of balanced and canonically con-
sistent unitary Cayley ring signed graphs, the characterisations of clusterable and sign-
compatible unitary Cayley ring signed graphs were also obtained in [145], as given in
Theorems 51 and 52, based on the results on the property of balance. A signed graph is
said to be clusterable if its vertex set can be partitioned into pairwise disjoint subsets, called
clusters, such that every negative edge joins vertices in different clusters and every positive
edge joins vertices in the same cluster.

Theorem 51 ([145]). For unitary Cayley graph Xn, the unitary Cayley ring sigraph is balanced if
and only if n is even, and is clusterable if and only if the graph is balanced.

Theorem 52 ([146]). The unitary Cayley ring signed graph S∨n is sign-compatible if and only if
either n is even or n = pt, where p is an odd prime and t ∈ N.

The unitary Cayley meet signed graphs in which an edge was positively signed
only when both of its end vertices were units were investigated in [143,147], where the
graphs were characterised based on the similar properties of balance, canonical consistency,
sign-compatibility, and clusterability, as given below.
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Theorem 53 ([143,147]). For unitary Cayley graph Xn, the unitary Cayley meet sigraph is bal-
anced if and only if n is even or n is a power of an odd prime.

Theorem 54 ([143,147]). The unitary meet Cayley sigraph S∧n , where n has two distinct odd prime
factors, is canonically consistent if and only if n is even.

Theorem 55 ([143,147]). For unitary Cayley graph Xn, the unitary Cayley meet sigraph is always
clusterable.

Theorem 56 ([143,147]). For unitary Cayley graph Xn, the unitary Cayley meet sigraph is sign-
compatible if and only if n is even.

Along with the significant characterisations on the properties of balance, clusterability,
etc. of the four different signed graphs defined from the unitary Cayley graphs, a few
cursory studies on certain derived signed graphs from the signed graphs corresponding to
each of the definitions of the signed graphs were also carried out in [143,145–147], which
included the discussions on different variations of the line signed graphs, as the canonical
marking served as the signs of the edges in the line signed graphs. Moreover, the property
of canonical consistency of the signed graph can be used to investigate the properties, such
as balance, clusterability, etc., of the line signed graphs.

3. Unitary Cayley Graph of a Ring

The definition of the unitary Cayley graph Xn on the ring Zn, naturally fostered an
extension of the definition to any associative ring R, in order to explore the properties of
the ring and to obtain similar graphs to that of Xn with the same properties. It can be
seen that all investigations on the unitary Cayley graphs of rings were inspired from the
investigations of the same concepts on Xn, and a particular case of the study or the results
obtained on the unitary Cayley graph of a ring R produces the existing results on the graph
Xn, which can be seen as a factor of verification of the obtained results on the unitary
Cayley graph of any ring, as well as a validation of the existing results on the graphs Xn.
This definition of the unitary Cayley graph for a ring R, which is mentioned below, was
first put forth in [148]. Following the definition, an illustration of a unitary Cayley graph of
a ring is given in Figure 6.

Definition 14 ([148]). Let R be a ring and R∗ be the group of units in R. The unitary Cayley
graph, denoted by G(R) = Cay(R, R∗), is a graph with the vertices set as the elements of the ring,
and any two distinct vertices u and v are adjacent in the graph if their difference is a unit, that is,
for u, v ∈ V(G(R)), uv ∈ E(G(R)), when u− v ∈ R∗.
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Figure 6. The unitary Cayley graph on Z2 ×Z6.
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Before the introduction of the graph as the unitary Cayley graphs in [21], a graph that
was constructed using the property of the elements of an Artinian ring, to be expressed
as the sum of two units under certain conditions, had the same definition in [148], where
a short introductory study on the graph was performed to understand the nature of the
graph. The two main results obtained in the study were that, for an Artinian ring R, the
number of connected components of the constructed graph G(R) is always a power of
2 and is Hamiltonian. Additionally, to answer the question of the existence of algebraic
graphs possessing certain properties that have their clique and chromatic numbers equal, a
graph construction on the Artinian rings was proposed in [149] using the same notion, that
is, the nature of the elements to be expressed as the sum of units, which later emerged as
the formal definition of unitary Cayley graphs of rings in [21].

As we restricted our study to finite graphs, the rings considered are taken as finite
rings, unless otherwise mentioned. In [49], the unitary Cayley graph of a ring was defined
with the motive of extending a few results of Xn to the unitary Cayley graph of any ring R,
where the result on the number of induced cycles in the graph Xn that was enumerated
was extended to the graph G(R) for some specific rings. To obtain this extension, the rings
which were isomorphic to the direct product of local rings were considered first, and it
was proven that, if R ∼= R1 × R2 × . . .× Rt, where each Ri, 1 ≤ i ≤ t is a local ring with
Mi as the maximal ideal, called the local factors of R, then G(R) is a direct product of
complete ki-partite graphs for some ki. As it was also proven in [49] that the result obtained
on the length of the longest induced cycle in Xn holds for the direct product of complete
ki-partite graphs for some ki (which need not be necessarily finite), the longest induced
cycles in G(R), for a ring R which is isomorphic to the direct product of the local rings,
were investigated in [49].

To prove the structure of the graph G(R) as the direct product of complete ki-partite
graphs when R is the direct product of local rings, the graph G(Ri) for each local ring
Ri was first obtained as a complete ki-partite graph, where ki = | Ri

Mi
|, by partitioning

the vertex set of the graph into ki residue classes modulo. In this partition, two vertices,
say, u, v ∈ V(G(Ri)), 1 ≤ i ≤ t, belong to the same residue class modulo ki only when
u− v ∈ Mi and, hence, u− v /∈ R∗. This implies that two vertices u, v ∈ V(G(Ri)) belong
to different partite sets only when they are adjacent and, hence, their difference is a unit,
according to the definition of the graph. This partition gives a complete ki partition for the
unitary Cayley graph of each of the local rings, such that the partite sets are the cosets of Mi
in the additive group R. Following this, the graph G(R) was proven to be isomorphic to the
direct product G(R1)× G(R2)× . . .× G(Rt), based on a similar argument. As a corollary
of this result, the same direct product structure of the unitary Cayley graphs of a Dedekind
ring, that is, the quotient ring of a Dedekind domain, was also discussed, as the Dedekind
rings are local rings.

In algebraic graph theory, realisation of an algebraic structure through the structure
of the graph defined on the corresponding algebraic structure is a fundamental problem
considered for any new algebraic graph defined. That is, to investigate the relation between
the isomorphism of the algebraic structure and the corresponding graphs defined, in order
to understand the properties of the algebraic structure that induces the properties of the
graph. This problem of realising rings through the graph G(R) was addressed in [150], by
proving that the unitary Cayley graphs of rings are isomorphic when the corresponding
rings on which they are defined are isomorphic, with respect to certain conditions on the
structure of the ring.

A ring R1 is said to be a determined by the unitary Cayley graph G(R1) if R2 is also a
ring, such that G(R1) ∼= G(R2) implies R1

∼= R2. The Jacobson radical of a ring R, denoted
by JR, is defined as the intersection of all the maximal ideals of R, and a ring R is said to be
reduced if it has no non-zero nilpotent elements.

Successively, the unitary Cayley graph of finite rings was investigated in [150], where
the study, as a whole, aimed to discuss the unitary Cayley graphs of all finite rings; however,
the results obtained were mainly focused on the unitary Cayley graphs of some specific
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finite rings and finite commutative rings. For these rings, the graph invariants of G(R),
such as the clique and the chromatic number, were also obtained when R =Mn(F), where
F is a field. Additionally, for a ring R, it was proven that the clique and the chromatic
number of G(R) are equal to the clique and the chromatic number of the graph G( R

JR
), the

unitary Cayley graph of the ring R
JR

. A stronger result was proven on the isomorphism of
these graphs in [150], as given below.

Theorem 57 ([150]). Let R1 and R2 be finite rings such that G(R1) ∼= G(R2). Then, G( R1
JR1

) ∼=
G( R2

JR2
). Additionally, |JR1 | = |JR2 |.

As an application of Theorem 57, a similar result was proven in the case of commuta-
tive rings, which aided in proving that a commutative reduced ring can be determined by
the unitary Cayley graph. Along with the proof of this theorem, an example of the ring
R = Z4 was also given to show that not all commutative rings can be determined by the
unitary Cayley graphs. Finally, a conjecture on the isomorphism between the reduced rings
R1
JR1

and R2
JR2

, when their unitary Cayley graphs are isomorphic, was given in [150].

Following this, the diameter of unitary Cayley graphs of rings was investigated
in [151], and it was proven that, for each integer n ≥ 1, there exists a ring R such that
diam(G(R)) = n. The proof of this result revealed that the connectedness of the graph
G(R) is closely related to the property of the ring R to be generated additively by its units.
The diameter of the unitary Cayley graphs of a few extensions of rings such as the power
series ring over a ring, polynomial ring over a ring, and self-injective rings were also
investigated based on the main results that were obtained. Note that a ring R is called
right (left) self-injective if every homomorphism from a right (left) ideal of R into R can be
extended to a homomorphism of R to itself (refer to [152]).

An element of a ring R is said to be k-good if it can be expressed as a sum of k units of
the ring R, and a ring is said to be k-good if every element is k-good. The unit sum number,
usn(R), of a ring R is the smallest number l such that every element can be written as the
sum of at most l units. If some element of R is not k-good for any k ≥ 1, then usn(R) is
∞ (c.f. [153]). A few characterisations of rings with their unitary Cayley graphs having
different values of diameter were obtained based on the definitions of the unit sum number
of a ring, as follows.

Theorem 58 ([150]). Let R be any ring with the unitary Cayley graph G(R) and unit sum number
usn(R). Then, the following hold:

(i) diam(G(R)) = 1 if and only if R is a division ring;
(ii) diam(G(R)) = 2 if and only if usn(R) = 2 and R is not a division ring;
(iii) diam(G(R)) = k if and only if usn(R) = k, for k ≥ 3.

In [21], the unitary Cayley graph of finite commutative rings with a non-zero unit
element was considered for the study, where the properties of the graph G(R) were inves-
tigated in a similar pattern, such as how the properties of Xn were discussed in [54], but
using an algebraic approach. That is, the proof techniques of the results on the unitary
Cayley graph of finite commutative rings emphasize the algebraic structure of the rings,
which, in some cases, were comparatively simpler and more efficient that the proofs given
in [54] for the graphs Xn. The structure of the graph G(R) was first discussed by obtaining
results on its regularity, the number of common neighbours between the vertices of the
graph, and the basic graph parameters such as diameter, girth, the number of triangles,
chromatic number, clique number, edge and vertex connectivity, etc., as follows.

Theorem 59 ([21]). For any ring R with the group of units R∗, G(R) is a r-regular graph, where
r = |R∗|.
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Theorem 60 ([21]). Let R be a local ring with maximal ideal M. Then, G(R) is a complete graph
if and only if R is a field.

Theorem 61 ([21]). Let G(R) be the unitary Cayley graph of an Artinian ring R. The neigh-
bourhoods of two vertices u, v ∈ V(G(R)) are equal if and only if u− v belongs to the ideal of all
nilpotent elements of R.

Recall that a finite ring R is Artinian, and the structure theorem of Artinian rings (refer
to [31]) states R ∼= R1 × R2 × . . .× Rt, where each Ri, 1 ≤ i ≤ t is a finite local ring with the
corresponding maximal ideal Mi, 1 ≤ i ≤ t, such that the decomposition is unique up to the
permutation of factors. Here, the finite residue field is Ri

Mi
, and the mapping πi : Ri → Ri

Mi
is

the quotient map. With appropriate permutation of the factors, f1 ≤ f2 ≤ . . . ≤ ft, where
fi = | Ri

Mi
|, for 1 ≤ i ≤ t can be obtained. Note that these notations are used in the following

theorems and the notation is maintained throughout the paper whenever R is mentioned
as a finite or an Artinian ring.

Theorem 62 ([21]). Let G(R) be the unitary Cayley graph of an Artinian ring R ∼= R1 × R2 ×
. . .× Rt. Then, the diameter of G(R),

diam(G(R)) =


1, if t = 1 and R is a field;
2, if t = 1 and R is not a field;
3, if t ≥ 2, f1 ≥ 3 or t ≥ 2, f1 = 2, f2 ≥ 3;
∞, if t ≥ 2, f1 = f2 = 2.

Theorem 63 ([21]). Let G(R) be the unitary Cayley graph of an Artinian ring R ∼= R1 × R2 ×
. . .× Rt. Then, the girth of G(R),

gir(G(R)) =


3, if f1 ≥ 3;
6, if R ∼= Zr

2 ×Z3, for some r ≥ 1;
∞, if R ∼= Zr

2, for some r ≥ 1;
4, otherwise.

Theorem 64 ([21]). Let G(R) be the unitary Cayley graph of an Artinian ring R ∼= R1 × R2 ×
. . .× Rt. Then,

(i) The clique number, ω(G(R)) = χ(G(R)) = f1, where χ(G(R)) denotes the chromatic
number of G(R);

(ii) The independence number, α(G(R)) = |R|
f1

;

(iii) The edge chromatic number,

χ′(G(R)) =

{
|R∗|+ 1, if |R| is odd;
|R∗|, otherwise;

(iv) The vertex and the edge connectivity of G(R), κ(G(R)) = κ′(G(R)) = |R∗|.

Along with the computation of these parameters, the planarity and perfection of
the graph G(R) was also discussed in [21], and a characterisation of planar and per-
fect unitary Cayley graphs of finite commutative rings was obtained, as mentioned in
Theorems 66 and 67. To investigate the perfection of the graph, the clique and the chro-
matic numbers of the complement (G(R)) of the graph G(R) were also determined in [21],
as given below.
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Theorem 65 ([21]). The clique number of the graph G(R), ω(G(R)) = χ(G(R)) = α(G(R)) =
|R|
f1

, where χ and α represent the chromatic and the independence number.

Theorem 66 ([21]). Let R be an Artinian ring. Then, G(R) is perfect if and only if f1 = 2, R is
local, or R is a product of two local rings.

Theorem 67 ([21]). Let R be a finite ring and s be a non-negative integer. Then, the graph G(R)
is planar if and only if R is one of the following rings:

(i) ( Z2Z )
s;

(ii) Z
3Z × ( Z2Z )

s;

(iii) Z
4Z × ( Z2Z )

s;

(iv) F4 × ( Z2Z )
s, where F4 is a field with 4 elements.

Following this, the algebraic properties such as the automorphism group and the
spectra of the graph G(R) were obtained using the concept of reduction of a graph, given
in [38], as follows.

Two vertices of a graph G are said to be equivalent if their open neighbourhoods are
equal, and this defines an equivalence relation on the vertices of the graph, as two vertices
are adjacent only if they are in different equivalence classes; the induced subgraph of the
vertices of two equivalence classes is either a complete bipartite graph or an edgeless graph.
The reduction of a graph G is said to be the graph in which vertices are the equivalence
classes of G; two classes are adjacent if and only if their union induces a complete bipartite
graph, and a graph is said to be reduced if it is isomorphic to its reduction. Recall that a ring
is said to be reduced if it has no non-zero nilpotent element, and hence, a finite commutative
reduced ring is a finite product of finite fields.

An interesting relation between the reduction of the unitary Cayley graph G(R) of a
ring R and the structure of the reduced ring R was obtained in [21], which decreases the
complexity of answering general questions about unitary Cayley graphs of finite rings to
answering the questions for the corresponding finite reduced rings, as follows.

Theorem 68 ([21]). Let R be an Artinian ring. Then, the reduction (G(R))red
∼= G(Rred), where

(G(R))red is the reduced graph of G(R) and Rred
∼= R

NR
, where NR is the maximal ideal of R

containing the nilpotent elements in the reduced ring R and G(Rred) is the unitary Cayley graph of
the ring Rred

∼= R
NR

.

The above established relation aids in determining the automorphism group of the
graph G(R), by reducing the problem of determining the automorphism group of the
reduced graph of G(R). In that case, an isomorphism f : Aut(G(R)) → Aut(G(Rred))×
(Sn)

R
NR is established between the structures of the automorphism group of the graph

G(R) and its reduced graph because any σ ∈ Aut(G(R)) permutes the cosets of NR and
induces an automorphism σ ∈ Aut(G(Rred)), as a consequence of Theorem 61. As the auto-
morphism group of the reduced graph is known through this process, the automorphism
group of the graph was determined using this in [21], as follows.

Theorem 69 ([21]). Let t ∈ N and r1, r2, . . . , rt be prime power integers, such that 2 ≤ r1 <

r2 < . . . < rt and R ∼=
t

∏
i=1

(Fi)
ni , where Fi denotes a field with ri elements and ni ∈ Z, for each

1 ≤ i ≤ t. Then, Aut(G(R)) ∼=
t

∏
i=1

Sri ×
t

∏
i=1

Sni .

As mentioned previously, the spectra of the unitary Cayley graph G(R) of a ring R
was also determined based on the properties of the ring, by grouping the rings into three
cases. Firstly, the spectra of G(R) when R is a field were computed in the case that the
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graph G(R) is a complete graph. Followed by that, the spectra of G(R) when R is not a
field were computed as follows.

Theorem 70 ([21]). Let R be a finite local ring which is not a field, having a non-zero maximal
ideal of size s and f = |R|

s . Then,

Spec(G(R)) =
(
−s 0
f f (s− 1)

)
.

Theorem 71 ([21]). Let R ∼= R1 × R2 × . . .× Rt be a finite ring having t local factors of which
none are fields. Then,

Spec(G(R)) =
(
−1t(|NR|) 0
|Rred| |R| − |Rred|

)
,

where NR is the maximal ideal of R containing the nilpotent elements and Rred is the reduced ring
of R.

On computing the eigenvalues of the graph G(R), the properties related to the spectra
such as energy, perfect state transfer, etc. of the graph were studied. It could be seen that all
these properties that were examined on the unitary Cayley graph of a finite commutative
ring were inspired from the study of the same properties on the unitary Cayley graph
on Zn. The energy of the unitary Cayley graph of finite commutative rings, as well as
their complements, was determined in [154], and the rings that had hyperenergetic unitary
Cayley graphs were characterised as follows.

Theorem 72 ([154]). Let R be a finite commutative ring such that R ∼= R1× R2× . . .× Rt, where
each Ri, 1 ≤ i ≤ t is a local ring with the corresponding maximal ideal Mi. Then, the energy,
E (G(R)) = 2t|R∗|, where R∗ is the group of units in R.

Theorem 73 ([154]). Let R be a finite commutative ring such that R ∼= R1 × R2 × . . . × Rt,
where each Ri, 1 ≤ i ≤ t is a local ring with the corresponding maximal ideal Mi and assume that
f1 ≤ f2 ≤ . . . ≤ ft, where fi = | Ri

Mi
|, for 1 ≤ i ≤ t. Then,

(i) For s = 1, G(R) is not hyperenergetic;
(ii) For s = 2, G(R) is hyperenergetic if and only if f1 ≥ 3 and f2 ≥ 4;
(iii) For s ≥ 3, G(R) is hyperenergetic if and only if fs−2 ≥ 3 or fs−1 ≥ 3 and fs ≥ 4.

The study on the energy of the unitary Cayley graph G(R) was followed by the
characterisation of finite commutative rings R, for which G(R) and its complement G(R)
were Ramanujan graphs, in [155], as given in Theorems 74 and 75. In addition to this,
the energy of the line graph L (G(R)) of the unitary Cayley graph G(R) of a ring R,
its hyperenergecity, and its spectral moments were also determined in [155]. Note that,
for an integer k ≥ 0, the k-th spectral moment of a graph G of order n with eigenvalues

λ1, λ2, . . . , λn is given by the the value smk(G) =
n
∑

i=1
λk

i , which was found to be related to

many combinatorial properties of the graph (see [156]).

Theorem 74 ([155]). Let R be a finite local ring with maximal ideal M of order s. Then, G(R) is a

Ramanujan graph if and only if either |R| = 2s or |R| =
(

m
2 + 1

)2

and m 6= 2.

Theorem 75 ([155]). The complement G(R) of the unitary Cayley graph, G(R), of a finite local
ring R is always a Ramanujan graph.
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All the characterisations obtained in [155] were given separately for the cases of R
being a local ring and R being a finite product of local rings, where the characterisation
on the latter involved the number-theoretic properties of the cardinalities of the quotient
ring | Ri

Mi
|. This is mainly because of the variation in the spectra of the unitary Cayley graph

of these two types of rings, which reveals the innate algebraic structure of the rings. This
could be observed explicitly because, on proving these characterisations, several other
results on the structure of the graph which completely relied on the structure of the rings
were obtained in the process. For example, it was proven that the graph G(R) is connected
if and only if there is at most one factor Ri such that Ri

Mi
∼= F2, that is, a field with 2 elements.

This result on the connectedness of the graph can also be seen as a consequence of the
well-known fact that, for an r-regular graph G, the multiplicity of r as an eigenvalue gives
the number of connected components of G, and, in view of the same, it was also concluded
that the unitary Cayley graph of a finite local ring R is always connected.

In the sequence of studying the graph properties based on the spectra, the perfect state
transfer in the unitary Cayley graphs of rings, that is, the problem of finding if the network
admits data transfer without a loss of information, so that the probability of transfer is 1,
were investigated in [157,158]. The rings were characterised based on the existence of the
perfect state transfer in their unitary Cayley graphs, along with which the time of transfer,
which was also obtained for the unitary Cayley graph of a finite local ring as follows.

Theorem 76 ([157]). Let R be a finite local ring with maximal ideal M of size s. Then, G(R) has
a perfect state transfer if and only if R = F2 or s = 2, where F2 is a field with 2 elements. In
particular, a perfect state transfer occurs at time t = π

2 .

One of the interesting aspects of research in spectral graph theory is to find non-
cospectral (non-isospectral) equi-energetic graphs. One such problem is to find families of
regular graphs which are equi-energetic with their own complements. With unitary Cayley
graphs being regular, an attempt to obtain such non-cospectral equi-energetic regular
graphs was performed in [159,160], and it was proven that, if R ∼= R1 × R2 × . . .× Rt has
an even number of local factors, then G(R) and G(R) are complementary equi-energetic if
and only if R is the product of two finite fields and, in this case, the graphs are strongly
regular. It was also given that the classification of such complementary equi-energetic
unitary Cayley graphs for R, when it has an odd number of local factors greater than three,
remains open.

A similar problem of finding integral equi-energetic non-isospectral graphs was ad-
dressed with the properties of unitary Cayley graphs G(R), their complements G(R), and
the unit graphs G+(R) (refer to Section 5 for details on the unit graphs of rings) in [159].
The conditions under which the unit and unitary Cayley graph of a finite commutative
ring are equi-energetic were obtained in [159] and, in addition to that, using the results on
the equi-energetic complements of the unitary Cayley graphs given in [160], all integral
equi-energetic non-isospectral triple {G(R), G(R), G+(R)}, such that all three graphs are
also Ramanujan graphs, was characterised in [159].

It was first proven that, for a ring R, G(R) and G+(R) are equi-energetic, as the group
of units considered for the adjacency criteria is a symmetric subset of R. Following this,
the conditions on the structure of the ring R, the spectrum of G(R) and G+(R), and the
corresponding graphs were obtained, in order to prove that the unitary Cayley and the unit
graphs of the ring concerned are non-isospectral. Using this, it was shown that G(R) and
G+(R) are integral equi-energetic non-isospectral connected non-bipartite graphs under
certain conditions, and, as an application, the graphs G(R) and G+(R), which are strongly
regular, were characterised. This characterisation of all finite commutative rings for which
their unitary Cayley graphs are strongly regular was also obtained independently in [161]
as follows.
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Theorem 77 ([159,161]). The unitary Cayley graph G(R) of a finite commutative ring R is
strongly regular if and only if R is a local ring or R ∈ {Zk

2,F× F}, where F is a finite field with
|F| ≥ 3.

Other important spectra of the graph that arise from the adjacency and the degree
matrices of the graph are the Laplacian and the signless Laplacian spectra. These Laplacian
and signless Laplacian eigenvalues for the unitary Cayley graph of a commutative ring,
along with their corresponding energies for the graph G(R) and its line graph L (G(R)),
were determined in [162].

It can be noted that the properties of the Laplacian and the signless Laplacian spectra
are in parallel with the properties of the adjacency spectra, as the Laplacian matrix and the
signless Laplacian matrix of a graph G are given by the relation L(G) = A(G)− Deg(G)
and L(G) = A(G) + Deg(G), respectively, where A(G) is the adjacency matrix and Deg(G)
is the degree matrix of the graph G. The degree matrix Deg(G) of a graph G of order n is an
n× n matrix whose only non-zero entries are the diagonal entries that give the degree of
the vertices.

The study of groups admitting planar Cayley graphs can be traced back over almost
120 years, and there is a long history of studying infinite planar Cayley graphs which
satisfy additional special conditions (For example, see [35,163]). Regarding the unitary
Cayley graphs of rings, a list of finite commutative rings whose unitary Cayley graphs are
planar was given in [21,164]. This result only dealt only with finite graphs, and the main
algebraic tool used in its proof was the Wedderburn–Artin Theorem. The Wedderburn—
Artin theorem states that an Artinian semisimple ring R is isomorphic to a product of
finitely many ni × ni matrix rings MNi (Di) over the division rings Di, for some integers
ni, both of which are uniquely determined up to permutation of the index i (c.f. [31])).
In [164,165], the unitary Cayley graph of arbitrary rings was considered for investigation,
for which the unitary Cayley graphs were mostly infinite.

Though the list of finite planar unitary Cayley graphs was given in [21], the difference
in the technique of investigating the planarity of a finite graph and an infinite graph
was visible in observing the proof techniques used to prove the results in [164,165]. One
distinguishing example is, for a finite planar graph, the minimal degree of the graph is at
most five, whereas it was proven, in [166], that there exists a k-regular planar infinite graph
for any positive integer k.

A thorough analysis of the group of units of the associated ring structures was con-
ducted in [165], and it was shown that a ring with a planar unitary Cayley graph has either
at most four units or exactly six units. This result served as a key to obtain a complete
characterisation of the rings whose unitary Cayley graphs were planar in [165], as given in
Theorem 78. Using Theorem 78, the semilocal rings with planar unitary Cayley graphs were
completely determined. Note that a semilocal ring is a commutative Noetherian ring with
finitely many maximal ideals, where a ring is called Noetherian if every strictly ascending
chain of ideals in the ring is finite.

Theorem 78 ([155,165]). Let R be a ring with the group of units R∗. Then, G(R) is planar if and
only if one of the following holds:

(i) |R∗| ≤ 3 and |R| ≤ |R|;
(ii) |R∗| = 4, Char(R) = 0 and |R| ≤ |R|;

(iii) |R∗| = 6 and R contains a subring isomorphic to Z[t]
(t2−t+1) with |R| ≤ |R|, where Z[t] is the

polynomial ring over a ring Z in the indeterminate t.

An orientable surface is said to be of genus g if it is topologically homeomorphic to
a sphere with g handles. The genus of a graph is the minimum number of handles that
must be added to a plane to embed the graph without any crossings. A planar graph is a
graph with genus zero, and a toroidal graph is a graph with genus one (c.f. [35]). It should
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be noted that this investigation on the planarity of unitary Cayley graphs of rings was
restricted to finite commutative rings, owing to the complexity of the structure of the
unitary Cayley graphs emerging from finite as well as infinite arbitrary rings, due to the
diversity in their properties.

As an extension of the characterisation of planar unitary Cayley graphs, minimal
non-planar unitary Cayley graphs were investigated in [165,167]. In [167], the structure of
the finite commutative rings whose unitary Cayley graphs had genus at most three was
examined, and it was proven that, for any given positive integer g, there are at most finitely
many finite commutative rings whose unitary Cayley graphs have genus g.

A graph G is a ring graph if each block of G which is not a bridge or a vertex can be
constructed from a cycle by successively adding H-paths of length at least two, meeting the
graph H in two adjacent vertices. Here, given a graph H, we call a path P an H-path if P is
non-trivial and meets H exactly at its ends (For more details, refer to [168]). By definition,
it is clear that the ring graphs are planar. An outerplanar graph is a graph that has a planar
drawing for which all vertices are in the outer face of the drawing.

Based on the characterisations of planar unitary Cayley graphs on rings, the rings for
which the unitary Cayley graphs are outerplanar and the ring graphs were characterised
in [169], as follows.

Theorem 79 ([169]). Let R be a finite ring. Then, G(R) is a ring graph if and only if it is a planar
graph.

This gives the same list of rings for which G(R) is planar as given in Theorem 67. It
was proven in [168] that every outerplanar graph is a ring graph. The following theorem
on the characterisation of outerplanar unitary Cayley graphs serves as a counterexample
for the converse of the theorem, as the existence of a ring R for which G(R) is a ring graph
but not outerplanar could be seen.

Theorem 80 ([169]). Let R be a finite ring and s be a non-negative integer. Then, G(R) is
outerplanar if and only if R is one of the following rings:

(i) ( Z2Z )
s;

(ii) Z
3Z × ( Z2Z )

s;

(iii) Z
4Z × ( Z2Z )

s.

The same study of examining the rings for which the line graph of the unitary Cayley
graphs are planar, outerplanar, and ring graphs was performed in [170], and it was proven
that L (G(R)) is planar if and only if G(R) is planar, and L (G(R)) is outerplanar if and
only if it is a ring graph. Both of these conditions are similar to the outerplanarity conditions
of the unitary Cayley graph itself.

Following the investigation on the planarity of line graphs of the unitary Cayley
graphs, the planarity parameters on the iterated line graphs were investigated in [171].
The k-th iterated line graph of a graph G, denoted by L k(G), is defined inductively as
L 0(G) = G, L 1(G) = L (G), and L k(G) = L k−1(L (G)). The planarity (outerplanarity)
index of a graph G, denoted by ζ(G) (η(G)), is the smallest integer k such that L k(G) is
non-planar (non-outerplanar). The results obtained on these parameters of the unitary
Cayley graph on R are given as follows.

Theorem 81 ([171]). For a finite commutative ring R,

(i) ζ(G(R)) = ∞ if and only if G(R) is outerplanar;
(ii) ζ(G(R)) = 2 if and only if G(R) is a non-outerplanar ring graph;
(iii) ζ(G(R)) = 0, otherwise.
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Theorem 82 ([171]). For a finite commutative ring R,

(i) η(G(R)) = ∞ if and only if G(R) is outerplanar;
(ii) η(G(R)) = 0, otherwise.

Equivalently, it can also be told as η(G(R)) = ∞ if and only if ζ(G(R)) = ∞ and,
if not, η(G(R)) = 0, to establish the significance of the relation between the planarity
and outerplanarity indices of the graph. Note that we have rephrased the above results
from[171] in terms of the planarity and outerplanarity of the unitary Cayley graphs to
emphasise the relation and similarity between the concepts. Along with this, the studies
in [169–171] also determined the same properties and parameters related to planarity and
outerplanarity of graphs, as well as line graphs, for the unit graphs of the rings, and similar
results were obtained, as their structures are similar to each other, according to the graph
construction.

By identifying the vertices in a simple graph G as the variables of the polynomial ring
R = F[x1, x2, . . . , xn] over a field F, the edge set of the graph becomes an ideal I for the ring
R, and the quotient ring R

I is called the edge ring of the graph G. A simplicial complex Ω on a
vertex set V = {x1, x2, . . . , xn} is a set of subsets of V that satisfies the following conditions,
where the elements of Ω are called its faces:

(i) If F ∈ Ω and F1 ⊆ F, then F1 ∈ Ω;

(ii) For each i = 1, 2, . . . , n, {xi} ∈ Ω.

Using the above given definitions, the properties of a graph being Cohen–Macaulay
and Gorenstien are defined based on the Cohen–Macaulay and Gorenstien ring structures
(refer to [172]). It was already seen that the property of well-coveredness of the graphs
Xn was examined in [95]. The same was extended to the unitary Cayley graphs of finite
commutative rings in [173], in which a characterisation of the rings that had well-covered
unitary Cayley graphs was obtained in terms of the unitary Cayley graph of its reduced
ring, as given in Theorem 83, along with an equivalence relation of the properties of Cohen–
Macauleyness, shellability, and Gorenstien, which state that all the Cohen–Macaulay unitary
Cayley graphs are shellable and Gorenstein.

Theorem 83 ([173]). Let R be a finite ring. Then, G(R) is a well-covered graph if and only if
G( R

J(R) ) is well covered.

It was seen that several variants of domination numbers and other domination related
parameters were computed for the graph Xn, as the computation of domination parameters
for algebraic graphs is a very common study. Interestingly, for the unitary Cayley graphs
of rings, the literature has discussions only on the Roman domination number γrom(G(R))
(refer to [174]) of these graphs in [175], where the following characterisation of the unitary
Cayley graphs with Roman domination number of at most four was obtained.

Theorem 84 ([161]). Let R be a finite commutative ring with non-zero identity. Then, the following
properties are satisfied:

(i) For the graph G(R), γrom(G(R)) = 2 if and only if R is a field;
(ii) For the graph G(R), γrom(G(R)) = 3 if and only if R is a local ring with the maximal ideal

M, such that |M| = 2;
(iii) For the graph G(R), γrom(G(R)) = 4 if and only if either R is a local ring with the maximal

ideal M such that |M| ≥ 3 or R ∼= Z2 × F, where F is a field.

Over the course of the study on the unitary Cayley graph of a ring, the extension
of the graph’s definition to an algebraic signed graph was given in [176]. The unitary
Cayley signed graph was defined based on the definition of unitary Cayley graphs on finite
commutative rings, as given in Definition 15, and the graphs were characterised based on
the properties of balance and canonical consistence of the graph.
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Definition 15 ([176]). Let R be a finite commutative ring with the group of units R∗. The unitary
Cayley signed graph, denoted by SR = (G(R), σ), is a signed graph whose underlying graph
is the unitary Cayley graph G(R), and the sign of an edge vivj ∈ E((G(R)) is assigned by the
function σ : E(G(R))→ {+,−}, as follows. For an edge vivj in (G(R),

σ(vivj) :

{
+, if vi ∈ R∗ or vj ∈ R∗;
−, otherwise.

The spectra and energy of the signed graphs and also their corresponding line signed
graph were computed, and the characterisation of all finite commutative rings for which
the graph SR was hyperenergetically balanced was given. Additionally, it was obtained,
in [176], that, for a finite local ring, the adjacency matrix of the unitary Cayley graph and
the adjacency matrix of the unitary Cayley signed graph coincide. Using this, the perfect
state transfer in this signed graph SR was examined in [158].

It was seen in [21] that the structures of unitary Cayley graphs were determined by
the appropriate reduction structures of the graph as well as the rings. The properties of
the graph as well as the ring reduction give further scope to examine the rings and the
unitary Cayley graphs of the rings by studying the properties of the subgraph induced
by the unit elements in the unitary Cayley graph; that is, for a finite commutative ring
R with the unitary Cayley graph G(R), the induced subgraph Γ(G(R)) is the graph with
V(Γ(G(R))) = R∗, and two vertices are adjacent if their difference is a unit, where R∗ is the
group of all units of the ring R. This graph was introduced in [177], and the basic properties
of the graph Γ(G(R)) were investigated. Some characterisation results based on the graph
invariants such as girth, chromatic number, chromatic index (edge chromatic number) and
genus were also given in [177].

The main motivation of the study in [177] was to examine the possibility of determining
the structure of the reduced ring of a ring R using Γ(G(R)), for which the outcome was
positive. This was proven by showing that, for two finite commutative rings R1 and R2,
Γ(G(R1)) ∼= Γ(G(R2)) if and only if R1

JR1

∼= R2
JR2

, where JR1 and JR2 are the Jacobson radical

of R1 and R2, respectively, using the algebraic properties of the spectrum of the graph.
In distinction from the extensive studies on the unitary Cayley graphs over commuta-

tive rings, it can be seen that not much work was performed on unitary Cayley graphs over
non-commutative rings, for which a possible reason is the complicated structures of non-
commutative rings, compared to commutative rings. The first class of non-commutative
ring that was specifically considered to construct the graph G(R) and study its properties
is the matrix ring.

The unitary Cayley graphs of matrix algebras, that is, the set of all square matrices of
order n over a finite field F, denoted byMn(F), was studied specially in [178–180]. Though,
in [21,150], certain properties of the graph G(Mn(F)) were discussed for these rings as
a special case, [178–180] re-iterated them and gave a broader proof. As known, the unit
group of Mn(F) is the set of all invertible matrices of order n, which is also called the
general linear group, denoted by GLn(F). The graph invariants of G(Mn(F)) were already
discussed in [150,161], as given below, and they can also be deduced as a special case from
the existing results of the graphs G(R).

Theorem 85 ([150]).

(i) The clique number of the unitary Cayley graph onMn(F) is |F|n;

(ii) The independence number of the unitary Cayley graph onMn(F) is |F|n2−n;
(iii) The diameter of G(Mn(F)) is 1 when n = 1, or 2 otherwise.

In [180], an analogous notion to the representation problem of graphs put forth in [38]
was given, as the representation of graphs by matrices was defined to investigate whether
every graph in any family was an induced subgraph of G(Mn(F)), and it was conjectured
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that there is a graph G such that, for each finite field F, the graph G is not an induced
subgraph of G(Mn(F)). Additionally, the characterisation of the G(Mn(F)) to be strongly
regular was obtained in [180] as follows.

Theorem 86 ([180]). The graph G(Mn(F)) is strongly regular if and only if n = 2 and M2(F)
is strongly regular with the parameters (q4, q4 − q3 − q2 + q, q4 − 2q3 − q2 + 3q, q4 − 2q3 + q),
where q = |F|.

In [180], Theorem 86 has been proven only by considering two special cases of n, when
n = 2, 3, and has failed to cover the other general cases. This was quoted and rectified
in [179], and the same result was re-established by proving that the graph G(Mn(F)) cannot
be strongly regular for any n > 2. Following this, the spectral properties of the graph
G(Mn(F)) were studied in [178], where the three eigenvalues of the graph were determined
using the additive property of the ringMn(F), along with its energy and the conditions for
hyperenergecity of the graphs, which were determined without explicitly computing the
spectrum of the graph. The characterisation of ringsMn(F) by determining the value of n
for which G(Mn(F)) were Ramanujan graphs were also obtained in [178], as given below.

Theorem 87 ([178]). The graph G(Mn(F)) is a Ramanujan graph if and only if n = 2 or n = 3
and F = Z2.

The study on the unitary Cayley graphs of matrix rings was extended in [181], where
explicit formulas for all the eigenvalues of the graphs G(Mn(F)) and G(Mn(R)), where R is
a finite commutative local ring that is not a field, were obtained using an alternate approach
to the one that was followed in [178]. Using this, the energy, the Kirchhoff index, and the
number of spanning trees of the graphs G(Mn(F)) and G(Mn(R)) were also derived. Note

that the Kirchoff index of a graph G of order n is the value n
n
∑

i=2

1
λi

, where λi, 2 ≤ i ≤ n,

denotes the eigenvalues of the Laplacian matrix of the graph (see [182,183]).
For a vertex v in a graph G, the first and the second subconstituent of G at v are the sub-

graph of G induced by the neighbours and the non-neighbours of v (except v), respectively.
The subconstituents of strongly regular graphs have been studied for several graphs, as they
have many interesting properties associated with the structure of the graph (see [184,185]).
Moreover, the problem of finding graphs which have strongly regular subconstituents is a
problem of interest to researchers, as several properties, including the eigenvalues of these
subconstituents, were used to prove the uniqueness of the parameters of some strongly
regular graphs (c.f. [184,185]). This notion of subconstituents of the unitary Cayley graphs
of the ring G(Mn(R)) was investigated in [186].

On examining the subconstituents of the unitary Cayley graphs of a finite ring R
with identity 1 6= 0, it can be seen that both the first and the second subconstituent of
the additive identity 0 are the graph isomorphisms that map v to u − v, where u, v ∈
V(G(Mn(R))). Hence, a complete study on the subconstituents of 0 in G(Mn(R)) was
performed, particularly when R was a finite field F, that is, the subconstituents of the
0 element in the graph G(Mn(F)) were investigated. It can be observed that the first
constituent of the 0 element in the graph G(Mn(F)) was nothing but the graph with the
vertex set as the group G(GLn(F)) (can be correlated as the graph Γ(G(GLn(F)))), and the
second constituent was defined on the set of non-zero non-invertible matrices over F. The
structures of these subconstituents were determined, from which the spectra, energy, and
other related spectral properties such as hyperenergeticity and Ramanujan property for
both graphs were studied. In addition to these, the clique number, chromatic number, and
independence number of these subconstituents were also computed in [186].

The next ring for which unitary Cayley graphs were investigated in [187] was the
quotient ring R

I , where R was a Dedekind domain and I was an ideal of R, giving a finite
and non-trivial R

I . The unitary Cayley graph defined on this Dedekind ring is a very
close generalisation to that of the graph Xn, and, hence, the unitary Cayley graphs of such
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Dedekind rings R
I are called generalised totient graphs. Recall that the Schemmel totient

function STr is a generalisation of the Euler totient function, defined for each non-negative
integer r and prime p, as a multiplicative arithmetic function that satisfies

STr(pα) =

{
pα−1(p− r), if p ≥ r;
0, otherwise,

where α is a positive integer (c.f. [36]).
To study the properties of the generalised totient graphs, the Schemmel totient function

was used, and, in particular, one of the two extensions of the Schemmel totient function
was used to obtain a formula for the number of cliques of any order k in a given generalised
totient graph. This formula had not been used in the literature even for Euler totient Cayley
graphs before this article, and, after a couple of years, the formula to obtain the number of
cliques of any order k was given using the Schemmel totient functions in [98].

Using this formula of the number of cliques, the clique domination number of the
generalised totient graphs was determined, which aided in the correction of an erroneous
claim that had been made regarding this topic in [119], and also to provide a counterexample
for the result on the strong domination (refer to Section 4 for definition) of the graph Xn
that was given in [114]. The study in [187] can be seen to have built on the basis of [54], as
similar results and proof techniques were adopted. The paper concluded by suggesting
further scopes of research pertaining to the topic, of which some have been investigated for
all finite commutative rings.

A dual number is a number x + εy, where x, y ∈ R and ε is a matrix with the property
that ε2 = 0 (refer to [188]). As the set of all dual numbers is an Artinian local ring, the
unitary Cayley graph associated with ring of dual numbers was investigated in [188], where
the exact values of the diameter, chromatic number, and chromatic index were determined,
along with which a classification of all perfect unitary Cayley graphs of this ring was given.

Definition 16 ([189]). The set of all complex numbers a + ib, where a, b ∈ Z, is the ring of
Gaussian integers, denoted by Z[i]. For any k ∈ N, if [k] is the principal ideal generated by k in
Z[i], then the factor ring Z[i]

[k] is isomorphic to Zk[i], where Zk[i] is the set of all complex numbers
a + ib, in which a, b ∈ Zk, and the ring Zk[i] is called the ring of Gaussian integers modulo k.

Definition 17 ([190]). The set of all complex numbers a + bω, where a, b ∈ Z and ω = 1
2 (−1 +

i
√
(3)) is a primitive third root, forms an integral domain called the ring of Eisenstein integers,

denoted by Ze[i]. For any k ∈ N, if [k] is the principal ideal generated by k in Ze[i], then the factor
ring Ze [i]

[k] is isomorphic to Ze
k[i], where Ze

k[i] is the set of all complex numbers a + bω, in which
a, b ∈ Zk, and the ring Ze

k[i] is called the ring of Einstein integers modulo k.

To understand the unitary Cayley graphs of these rings, the nature of the units of these
rings must be known. Both the rings have n2 elements, and they form a ring with respect
to the operations of usual addition modulo n and multiplication modulo n. The structure
of the units of the ring depends on the norm defined and is given below in the following
theorems. An illustration of the unitary Cayley graph on both the rings, Zk[i] and Ze

k[i], is
given in Figure 7.

In [191,192], the unitary Cayley graphs of the rings Zk[i] and Ze
k[i] were studied indi-

vidually, in which the basic graph invariants were obtained for the unitary Cayley graphs
of these rings. In addition, the traversal properties of these graphs were explored, and it
was proven that the unitary Cayley graphs of both these rings were Hamiltonian; further-
more, certain necessary and sufficient conditions for the graph G(Zk[i]) to be Eulerian were
obtained in [191].

Theorem 88 ([189]). An element a + ib ∈ Zn is a unit in the ring Zn if and only if a2 + b2 is a
unit in Zn.
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Theorem 89 ([190]). An element a + bω ∈ Ze
n is a unit in the ring Ze

n if and only if a2 + b2 − ab
is a unit in Zn.
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Figure 7. Unitary Cayley graphs of the rings Gaussian and Einstein integers modulo n. (a) The
unitary Cayley graph of Z3[i]. (b) The unitary Cayley graph of Ze

3[i].

It can be seen that the properties of the unitary Cayley graph of rings highly depend
on the properties of the rings, which is the reason that not many properties of the graphs
were discussed, unlike for the graphs Xn. This is because the feasibility of condensing all
the rings under the same roof and investigating many properties is lower; however, several
avenues are still open for further research.

4. Unitary Addition Cayley Graph

The conventional definition of a Cayley graph on any algebraic structure, with respect
to any of its symmetric subsets, is a graph with the vertices set as the elements of the
algebraic structure, and there exists an edge between two vertices in the graph if their
difference is an element of the symmetric subset considered. A slight modification on this
adjacency condition in the usual Cayley graph, for the sum of two elements to belong to the
symmetric subset instead of their difference, made its way to the concept of addition Cayley
graphs, also known as Cayley-sum graphs in [193], which almost have the same properties
and symmetric nature as usual Cayley graphs.

Though these addition Cayley graphs were termed as a twin to Cayley graphs, it can
be seen that they have received far less attention in the literature when compared to Cayley
graphs. To some extent, this situation can be explained based on the fact that the addition
Cayley graphs are comparatively more difficult to study than Cayley graphs. For example,
the connectivity of a Cayley graph on a finite Abelian group was obtained as an immediate
consequence of its adjacency pattern, whereas determining the connectivity of an addition
Cayley graph was a non-trivial problem that was exclusively solved in [194].

In the literature, though the addition Cayley graph was first defined for groups in [193],
it was extended to many algebraic structures. The addition Cayley graph of an algebraic
structure A , with a symmetric subset S, is given in Definition 18, after which its illustration
is given in Figure 8.

Definition 18 ([193]). An addition Cayley graph of an algebraic structure A is a graph with
the vertices set as the elements of A , and any two vertices u and v in the graph are adjacent when
u + v ∈ S, where S is a symmetric subset of A . This addition Cayley graph on A with respect to
its symmetric subset S is usually denoted by Cay+(A , S).
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Figure 8. The addition Cayley graph of the dihedral group D4, Cay+(D4, {a2, b2
1}).

Combining the notions of the addition Cayley graph with the definition of the graph
Xn, that is, the unitary Cayley graphs of Zn, the concept of unitary addition Cayley graphs
was introduced in [195], as given below, with an example of a unitary addition Cayley
graph given in Figure 9.

Definition 19 ([195]). The unitary addition Cayley graph, denoted by X+
n = Cay+(Zn,Z∗n), is a

graph with the vertices set as the elements of the ring Zn; 0, 1, . . . , n− 1, and two vertices are adjacent
if their sum is a unit of the ring, that is, for all u, v ∈ V(X+

n ), uv ∈ E(X+
n ) when |u + v| ∈ Z∗n,

where Z∗n is the set of all relative prime integers to n, which are the units of Zn.
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Figure 9. Unitary addition Cayley graph X+
7 .

Though the graph was defined and officially introduced with the name unitary ad-
dition Cayley graph in [195], this graph was already defined by Grimaldi in [24], from
which the unit graphs of rings (refer to Section 5) were defined and studied. Since a unitary
addition Cayley graph is a unit graph of Zn, researchers focused on studying the unit
graphs of all rings, rather than a particular one. Over a period of time, as the unitary
Cayley graph on Zn marked its high significance in this area of research, its claimed twin,
the unitary addition Cayley graph, was defined independently and is still currently being
studied.

In [24], the basic results on the regularity of the graph X+
n and the decomposition of

the graph into Hamiltonian cycles were given, along with which the challenging nature
of investigating different graph properties for the unitary Cayley graphs with odd order,
despite a clear understanding of the structure of the graph, was discussed.

On re-introducing the unit graph of Zn as the unitary addition Cayley graph, the
basic properties such as the regularity, girth, size, etc. of the graph were investigated
in [195], along with their traversal properties, as mentioned in Theorem 90. The structural
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characterisations of the graph on their k-partiteness or planarity were also obtained, which
are given below.

Theorem 90 ([195]). Let X+
n be the unitary addition Cayley graph of the ring Zn and φ(n) be the

Euler totient function. Then, the following properties hold:

(i) The graph X+
n is (φ(n), φ(n)− 1)- semiregular, when n is odd;

(ii) |E(X+
n )| = (n−1)φ(n)

2 , when n is odd;
(iii) gir(X+

n ) = 3 for odd n > 3, 4 for even n > 2, and n � 0 mod 3.

Theorem 91 ([195]). The unitary addition Cayley graph is planar if and only if the value of n is 1,
2, 3, 4, or 6, and it is outerplanar if and only if it is planar.

As the graph is obtained from a unitary Cayley graph, a natural and an important
question of the relation between the unitary addition Cayley graph X+

n and its so-called
twin, the unitary Cayley graph Xn, had to be answered. This was solved by obtaining the
characterisation that Xn ∼= X+

n if and only if n is even, and this characterisation reduces the
problem of investigating the properties and the structure of X+

n to only being necessary
for the odd values of n. Owing to this, the results on the unitary addition Cayley graphs
explicitly mentioned in this section are only for odd values of n.

This characterisation naturally motivates the researchers to extend the investigation
on all similar problems and properties that were addressed for the unitary Cayley graphs
to the unitary addition Cayley graphs for two different reasons: one is to understand how
the structure and properties of the unitary addition Cayley graphs differ for odd values of
n, and the other reason is to obtain parallel results with the help of a similar methodology
that was already existent in the literature, especially in a similar context which could also
be verified without much challenge.

The study in [195] was extended in [196] by more clearly establishing the structure of
the unitary addition Cayley graph as a k-partite graph for odd n, as given in Theorem 92,
which aided in computing several numerical parameters of the graph in [196]. Note that the
parameters of the graph X+

n that were computed in [196] are given below only for odd n.

Theorem 92 ([196]). The unitary addition Cayley graph X+
n , for an odd n is a φ(n)

2 + r-partite
graph, where r is the number of distinct prime factors of n.

Theorem 93 ([196]). Let X+
n be the unitary addition Cayley graph onZn, where n = pα1

1 pα2
2 . . . pαr

r ,
such that pi < pj, for i < j and αi ∈ N, for all 1 ≤ i ≤ r. Then, the following are true:

(i) The independence number, α(X+
n ) = 2, when n is prime and α(X+

n ) = n
p1

, when n is an odd
composite number;

(ii) The vertex covering number, α0(X+
n ) = n− 2, when n is prime and α0(X+

n ) = n− n
p1

,
when n is an odd composite number;

(iii) The edge covering number, α1(X+
n ) = n+1

2 , when n is odd;

(iv) The matching number, β1(X+
n ) = n−1

2 , when n is odd;
(v) The edge connectivity, κ1(X+

n ) = φ(n)− 1, when n is odd;
(vi) The edge chromatic number, χ′(X+

n ) = φ(n), for all n.

Based on Theorem 92, the bounds for the chromatic number and clique number of
the unitary addition Cayley graph were obtained in [196], from which it was obtained that
a unitary addition Cayley graph X+

n is perfect if and only if n is even or a prime power.
This characterisation was obtained by proving that, for all the other values of n, the unitary
addition Cayley graph contained an induced cycle of length five, according to its chromatic
partition.
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A more detailed study on the chromatic number of the unitary addition Cayley graph
was performed in [197], where tighter bounds for the clique and the chromatic number
of the unitary addition Cayley graph X+

n for different values of n, based on their number-
theoretic properties, were obtained. A colouring pattern that satisfied the bound was also
given, along with some examples of the unitary addition Cayley graphs, to show that the
bounds were sharp as well as strict.

This was followed by a study on the achromatic number of the unitary addition
Cayley graph in [198], whose relation with the chromatic number of the graph is visible
from the definition given hereafter. The achromatic number of G, denoted by χach(G), is the
maximum number of colours that can be assigned to the vertices of the graph such that the
adjacent vertices are assigned different colours and any two different colours are assigned
to some pair of adjacent vertices. It therefore follows that, for any graph G, χach(G) ≥ χ(G)
(c.f. [199]).

Though the lower bounds of the chromatic number obtained in [197] can serve as
the lower bounds for the achromatic number, better bounds were computed as per the
maximization condition in [198], and, in a similar way, colouring patterns were given to
establish the bounds as well as their tightness. In certain cases, the exact value of the
achromatic number was also determined, as given below.

Theorem 94 ([198]). The achromatic number of a unitary addition Cayley graph,

χach(X+
n ) =

{
2, if n = 2k, for some k ∈ N;

1 + φ(n)
2 if n = pk, for and odd prime p and k ∈ N.

Ensuing this, the domination parameters of the unitary addition Cayley graph were
determined in [200,201]. In [201], the exact values of the domination number of the unitary
addition Cayley graph were determined for a few values of n, as given in Theorem 95,
and, in [201], the strong domination and the total strong domination of the graph X+

n were
studied, where the parameters were computed for similar cases of n, which are also given
in Theorem 95.

For a graph G without isolated vertices, a total dominating set of the graph is a dom-
inating set in which every vertex of the graph is adjacent to at least one vertex in the
dominating set (c.f. [34]). A vertex v ∈ V(G) strongly dominates a vertex u ∈ V(G) in a
graph G if uv ∈ E(G) and deg(u) ≥ deg(v). A dominating set S ⊆ V(G) in which every
vertex u ∈ V − S is strongly dominated by some vertex v ∈ S is said to be a strong domi-
nating set of the graph G, and the minimum cardinality of a strong dominating set is the
strong domination number γs(G) of the graph G (see [202]). A total dominating set S ⊆ V(G)
in which every vertex u ∈ V − S is strongly dominated by some vertex, v ∈ S is said to
be a total strong dominating set of a graph G, and the minimum cardinality of total strong
dominating set of G is called the total strong dominating number of the graph, denoted by γts
(refer to [202]).

Theorem 95 ([200,201]). Let X+
n be the unitary addition Cayley graph and φ(n) represent the

Euler totient function. Then, the following hold:

(i) γ(X+
n ) = 2, when n = 2r, for some integer r ≥ 2;

(ii) γ(X+
n ) = γs(X+

n ) = 1 and γts(X+
n ) = 2, when n is prime;

(iii) γ(X+
n ) = γs(X+

n ) = 2, when n = 2k, where k is an odd prime;
(iv) γ(X+

n ) = γs(X+
n ) = d n

3 e, when n is even such that φ(n) = 2;
(v) γts(X+

n ) = γs(X+
n ) = 2, when n is a prime power.

Proceeding with the study on other computational parameters of the unitary addition
Cayley graphs, a few topological indices for the graph were computed in [203,204]. The
Wiener index of a graph, which is the sum of shortest paths between all pairs of vertices in
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the graph, and the hyper-Wiener index of a graph, which is the sum of the shortest distance,
as well as their square between every pair of vertices in the graph, were computed in [204].

The reverse Wiener index of the graph G, given by the value 1
2

n
∑

i=1

n
∑

j=1
diam(G) − d(u, v),

where d(u, v) is the shortest distance between two distinct vertices u and v in the graph G,
was computed for the unitary addition Cayley graph in [203].

By the above-mentioned definition of the topological indices, it can be seen that the
reverse Wiener index of a graph is closely related with the previously computed Wiener
and hyper-Wiener indices. As the computation of all these topological indices requires
the distance between the vertices, the number of common neighbours between any two
vertices in the unitary addition Cayley graph was computed in [204]. The values of all
three topological indices for the graph X+

n that were obtained in [203,204], based on the
values of n, are given in Table 1, where φ(n) denotes the Euler totient function.

Table 1. Topological indices of the unitary addition Cayley graph X+
n .

n Values Wiener Index Hyper-Wiener Index Reverse-Wiener Index

n is a prime integer n2−1
2 (n− 1)(n + 2) (n−1)2

2

n = 2t, for some integer t > 1 3n2

4 − 4 2(n2 − 3n
2 ) ( n

2 )
2

n is a composite odd number (n− 1)(n− φ(n)
2 ) (n− 1)(3n− 2φ(n)) (n−1)φ(n)

2

n = 2t, for some integer t > 1 having odd
prime divisors

5n2

4 − n(φ(n)− 1) n(9n−10φ(n)−6)
2

n(n−2+4φ(n))
4

The Wiener index of the graph X+
n was independently computed in [205], using an

algorithm and a program. Programs to draw the unitary addition Cayley graphs as well
as the unitary Cayley graph of the given order, and also to find the adjacency matrix
and the energy of a unitary addition Cayley graph, were given in [205]. Additionally,
a few other topological indices for the unitary addition Cayley graphs were computed
in [206,207], whose values could be derived from the entries of different matrices associated
with the graph.

Apart form the study of these computational parameters, the spectra associated with
different matrices defined on the graph, along with their corresponding spectral properties,
were investigated in [208–211]. In [210], spectral studies related to the adjacency and the
Laplacian matrix were conducted, where the eigenvalues and the Laplacian eigenvalues
of the unitary addition Cayley graph X+

n and its complement X+n were determined.
Additionally, the bounds for the energy and Laplacian energy for both these graphs were
computed, and it was proven that the unitary addition Cayley graph is hyperenergetic if
and only if n is an odd composite number that is not a power of three or if n is even and
has at least three distinct prime factors. The characterisation for the complement of the
unitary addition Cayley graph to be hyperenergetic was also given, explained as follows.

Theorem 96 ([210]). The graph X+n is hyperenergetic if and only if n is odd and has at least
2 distinct prime factors.

On comparing the degree of hyperenergeticity of the unitary Cayley graph Xn with
the unitary addition Cayley graph X+

n , it was seen that X+
n is more hyperenergetic than Xn.

A high number-theoretical approach can be seen in the proof of the results in which both
the adjacency and the Laplacian spectra and their corresponding energies were obtained
in [210]. This was followed by a discussion on the signless Laplacian spectrum for the
graph in [211], where the results obtained can be seen to be closely related to the results
in [210].

The signless Laplacian energy of the unitary addition Cayley graph was also indepen-
dently examined in [209], which again had the same results as similar proof techniques.
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In [209], along with the signless Laplacian energy, other derived forms of Laplacian energies
such as the distance Laplacian and the signless distance Laplacian energy for the unitary
addition Cayley graphs were investigated. The distance Laplacian energy and the signless
distance Laplacian energy of a graph are the sum of the absolute values of the eigenvalues of
the distance Laplacian and the signless distance Laplacian matrix, respectively. The distance
Laplacian matrix and the signless distance Laplacian matrix are correspondingly given as
D(v)−Dis(G) and D(v) + Dis(G), where Dis(G) denotes the distance matrix of the graph
G, and D(v) denotes the diagonal matrix in which each diagonal element corresponding
to a vertex v is the sum of the shortest distances from the vertex v to all the vertices of the
graph (refer to [209]).

These derived Laplacian spectra were computed for the unitary addition Cayley
graph X+

n and its complement X+n, and the bounds for these energy values for different
n were also determined. This was followed by the investigation of the Aα matrix of
the unitary addition Cayley graph in [208]. The Aα-matrix of a graph G is defined as
Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1], where D(G) and A(G) are the degree and the
adjacency matrices of G (see [208]).

In [208], the eigenvalues of the Aα matrix for the unitary addition Cayley graph X+
n

and its complement were computed, along with some bounds for these eigenvalues, when n
was odd. Consequently, the Aα-energy of both X+

n and its complement, when n was a prime
power and n was even, were determined, along with some bounds for the Aα-energy of
X+

n and X+n, when n was odd. From these, the Aα-borderenergetic and Aα-hyperenergetic
graphs were defined as the graphs having their Aα-energy equal to the Aα-energy of a
complete graph and the graphs having their Aα energy greater than the Aα-energy of a
complete graph, respectively; then, a few unitary addition Cayley graphs were classified as
Aα-borderenergetic and Aα-hyperenergetic.

An incidence structure D = (P, B, J), with a point set P, block set B, and an incidence
relation J, is a t− (r, k, s)-design, where |P| = r, every block in B is incident with precisely
k points, and every t distinct points are incident with precisely s blocks. The code CF(D) of
the structure D over the finite field F is the space spanned by the incidence vectors of the
blocks over F (c.f. [212]). The notion of codes is given in higher design theory to study the
relation between the elements in a design, but, in the case of this restriction to the discrete
structure of graphs, it reduces to the notions related to the incidence and adjacency in a
graph, such as the adjacency design, incidence design, neighbourhood design, etc. (refer
to [213]).

If G is a k-regular graph, then the 1− (|E|, k, 2) design with the incidence matrix of
G is called the incidence design of G, where the incidence matrix, B(G), of the graph G is
a |V(G)| × |E(G)| binary matrix, such that the entry bij = 1, if vi is incident with ej and 0
otherwise. A code C|F|(G) of a graph G over a finite field F is the row span of the incidence
matrix of the graph over F, and the dimension of the code is the rank of the matrix over F.

As the unitary addition Cayley graphs are regular, linear codes from the incidence
matrix of the unitary addition Cayley graph X+

n over the field Z2 were determined in [214],
by computing the main parameters of the code for the values n = p, 2p, where p is prime.
Since the incidence matrix is a binary matrix, the field considered to determine the linear
code is Z2. To determine these binary linear codes, the edge connectivity, regularity, and
size of the graphs were taken from the existing results, as stated in [196], that the incidence
code of a graph G over a field with two elements is a [|E|, |V| − 1, (κ1(G))]2 code, where
the subscript two denotes that the binary conversions of these integers are to be considered.

In [215–217], the properties of the unitary addition Cayley graph of the ring of Gaus-
sian integers modulo n, Zn[i] (refer to Definition 16) were investigated, where the exact
values and bounds of certain parameters of the graph Zn[i] were obtained. Note that the
number of elements in the ring Zn[i] is n2, as there are n ways to fill both the real and the
complex part of the number a + ib. Correspondingly, the number of units of the ring differs,
based on the value of n.
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The degrees of the vertices, size, diameter, and girth of the unitary addition Cayley
graph on Zn[i] was given in [215], based on the value of n, as mentioned in Theorem 97,
from which it was determined that the unitary addition Cayley graph on Zn[i] is a complete
bipartite graph if and only if n = 2t, t ∈ N. The traversal properties of the graph were
also investigated in [215]; it was proven that the unitary addition Cayley graph on Zn[i] is
always Hamiltonian and, when n is even, the graph is Eulerian. It was also found that the
unitary addition Cayley graph on Zn[i] is planar only for n = 1, 2.

Theorem 97 ([215]).

(i) The diameter of the unitary addition Cayley graph on Zn[i] is 3 if n = kp, where k is even
and p is an odd prime, or 2 otherwise;

(ii) The girth of the unitary addition Cayley graph on Zn[i] is 3 if n is odd, and 2 when n is even.

Adding to the study, the basic graph invariants for the unitary addition Cayley graph
on Zn[i] were computed in [216,217]. Some bounds for the chromatic and the clique number
of the graph were given in [217] as well as [216], which coincided with each other. In [216],
the clique covering number of the unitary addition Cayley graph on Zn[i] was determined
by determining the independence number of its complement, and, in [217], the domination
number of the graph was obtained as either 1, 2, or 3, based on the value of n. A similar
study was conducted on the unitary addition Cayley graphs of the ring Einstein integers
modulo n, Ze

n[i] (refer to Definition 17), in [218], where, along with the basic properties
and parameters of the unitary addition Cayley graphs of Ze

n[i], a comparison between
the unitary addition Cayley graphs of the rings Zn[i] and Ze

n[i] was also given, to enable
a better comprehension of the structure of the rings, graphs, and their properties. For
understanding the structure of the unitary Cayley graphs on the rings Zn[i] and Ze

n[i], an
illustration is given in Figure 10.
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Figure 10. Unitary addition Cayley graphs (unit graphs) of the rings with Gaussian and Einstein
integers modulo n. (a) The unitary addition Cayley graph of Z3[i]. (b) The unitary addition Cayley
graph of Ze

3[i].

From the literature, it can be seen that these unitary addition Cayley graphs of the
rings Zn[i] and Ze

n[i] were independently examined in [191,192], respectively, as the unit
graphs of the corresponding rings, where almost the same invariants and the properties
were examined in more detail. In the next section (Section 5), it can be seen that the unit
graphs are nothing but an extension of the same definition of a unitary addition Cayley
graph to a ring R, similar to how the unitary Cayley graph Xn of Zn was extended to all
the rings R in the graph G(R).

For a graph G, S ⊆ V(G) is a perfect code (different from the notions of a code of
a graph) of the graph if S is an independent set, such that every vertex in V(G) − S is
adjacent to exactly one vertex in S (see [219]). The perfect codes in an induced subgraph of
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the unitary addition Cayley graph containing the vertices that represent the idempotent
elements of the ring Zn were examined in [220], where the question of when a subset of the
idempotent elements in the ring Zn are a perfect code in this induced subgraph of a unitary
addition Cayley graph was answered.

It was shown, in [220], that the subgraph of X+
n induced by the idempotent elements

of the ring Zn admits a perfect code of size two if n is a product of two prime powers,
where one of the primes is even; a perfect code of size one if n is the product of k factors of
odd prime powers; and a perfect code of size 2t−1 for the unitary addition Cayley graph on
a ring which is the direct product of the factors of Zpk .

Analogous to the previously discussed unitary Cayley graphs, the notion of signed
algebraic graphs was also investigated for the unitary addition Cayley graphs. Similar to
the case of the unitary Cayley graphs on Zn, multiple signed graphs were defined on the
unitary addition Cayley graph in [221–223]. These definitions are given below, followed by
an example of these graphs, given in Figure 11.

Definition 20 ([222]). The unitary addition Cayley signed graph, denoted by S∨+n = (X+
n , σ∨+),

is a signed graph whose underlying graph is the unitary addition Cayley graph X+
n , n ∈ N, and the

sign of an edge vivj ∈ E(X+
n ) is assigned by the function σ∨+ : E(X+

n )→ {+,−} as follows. For
an edge vivj in X+

n ,

σ∨+(vivj)

{
+, if vi ∈ Z∗n or vj ∈ Z∗n;
−, otherwise.

Definition 21 ([221]). The unitary addition Cayley ring signed graph, denoted by
S⊕+n = (X+

n , σ⊕+), is a signed graph whose underlying graph is the unitary addition Cay-
ley graph X+

n , n ∈ N, and the sign of an edge vivj ∈ E(X+
n ) is assigned by the function

σ⊕+ : E(Xn)→ {+,−} as follows. For an edge vivj in X+
n ,

σ⊕+(vivj)

{
+, if either vi ∈ Z∗n or vj ∈ Z∗n;
−, otherwise.

Definition 22 ([223]). The addition signed Cayley graph, denoted by S∧+n = (Xn, σ∧+), is a
signed graph whose underlying graph is the unitary addition Cayley graph X+

n , n ∈ N, and the
sign of an edge vivj ∈ E(X+

n ) is assigned by the function σ∧+ : E(X+
n )→ {+,−} as follows. For

an edge vivj in X+
n ,

σ∧+(vivj)

{
+, if both vi ∈ Z∗n and vj ∈ Z∗n;
−, otherwise.

For all the above defined signed graphs, the properties of balance, clusterability, sign-
compatibility, and canonical consistency were studied in the corresponding articles. As
the the graphs Xn and X+

n coincide when n is even, the corresponding sign graphs also
coincide, as do their properties and characterisations. In [222], the unitary addition Cayley
sigraph was introduced, and the above-mentioned properties were studied, from which
the following characterisations were obtained.
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Figure 11. Examples of signed unitary addition Cayley graphs. (a) The unitary addition Cayley
signed graph S∨+10 . (b) The unitary addition Cayley ring signed graph S⊕+9 . (c) The addition signed
Cayley graph S∧+10 .

Theorem 98 ([222]).

(i) The unitary addition Cayley sigraph S∨+n is balanced if and only if either n is even or it does
not have more than one distinct prime factor;

(ii) The unitary addition Cayley sigraph S∨+n is clusterable if and only if it is balanced;
(iii) The unitary addition Cayley sigraph S∨+n , where n has at most two distinct odd prime factors,

is canonically consistent if and only if n is either odd or n is 2, 6, or a multiple of 4;
(iv) Every unitary addition Cayley sigraph S∨+n is sign-compatible.
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It has been shown, in [224], that all line signed graphs are sign-compatible. Hence, in
view of (iv) in Theorem 98, the question of realising a unitary addition Cayley sigraph as a
line sigraph had come up, and this was answered by characterising all the unitary addition
Cayley sigraphs that could be realised as a line graph and also a line signed graph, as given
in Theorem 99.

Theorem 99 ([222]). A unitary addition Cayley graph is a line graph if and only if n ∈ {2, 3, 4, 6}
and is a line signed graph if and only if it is a line graph.

Similarly, the unitary addition Cayley ring signed graph and the addition signed Cay-
ley graph were introduced, and similar properties were studied in [221,223], respectively.
Through the results obtained on all these signed graphs defined on the unitary addition
Cayley graphs, it can be seen that, even though the definitions of the signed graphs differ,
the properties are almost similar to each other, with the exception of a few. It can also
be noticed that, in some cases, the properties of the signed graphs defined on the unitary
Cayley graphs coincide with the properties of the corresponding signed graph defined on
the unitary addition Cayley graphs. Along with the characterisation of the signed graphs
based on the above-mentioned four properties, the characterisations of these properties of
balance, clusterability, etc. in certain derived signed graphs from the signed graphs, such
as the negation of the signed graph, and some variations of line signed graphs were also
investigated in [218,221,222].

5. Unit Graph of a Ring

As mentioned earlier, Grimaldi introduced the unitary addition Cayley graph as the
unit graph of Zn in [24], which remained latent for some years. This definition of the unitary
addition Cayley graph on Zn was generalised to all rings as the unit graph of a ring in [225]
as follows. Note that these graphs may be referred to as Grimaldi graphs in the literature
by some authors, owing to the fact that the unit graph of rings is generalised based on the
graph formerly introduced by Grimaldi in [24]. Following the definition of the unit graph
and the closed unit graph of a ring, examples of these graphs are given in Figure 12.

Definition 23 ([24]). The unit graph of a ring R, denoted by G+(R) = Cay+(R, R∗), is a graph
with the vertices set as the elements of the ring, and two distinct vertices are adjacent if their sum is
a unit of the ring, that is, for all u, v ∈ V(G+(R)), uv ∈ E(G+(R)) when u + v ∈ R∗, where R∗

is the group of units of the ring R. If the word“distinct" is omitted from this definition, it gives the
definition of the closed unit graph of a ring R, that is, a closed unit graph of a ring R is the unit
graph of R, where there may be a loop from the vertex to itself in the graph if the sum of an element
with itself is a unit.

00
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03 10 11
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20

212223

(a)

11 01

1000

(b)

Figure 12. Examples of unit and closed unit graphs of rings. (a) The unit graph of Z3 ×Z4. (b) The
closed unit graph of Z2 ×Z2.



Mathematics 2023, 11, 3643 51 of 80

Though this definition of the unit graphs is given for any associative ring with unity,
it can be seen that, for most of the studies, only a finite commutative ring with unity is
considered, owing to the symmetric structure of these rings. Furthermore, very limited
study on the unit graphs of associative rings can be seen, as the structure of an arbitrary
ring is very sophisticated to comprehend. This sophisticated structure of the ring gives rise
to highly complex and diverse graphs, whose structures cannot be generalised. Therefore,
it can be seen in the literature reviewed in this section that, in several instances, different
authors have considered rings with specific properties to obtain the results pertaining to
the unit graphs of rings in their study.

Note that the unit graphs of rings are the complement of the total graphs defined on
rings, which have the vertices of the graph set as the elements of the ring, and two vertices
are adjacent if their sum is a zero divisor. This relation between the unit and the total
graph of a rings is because of the fact that every element in a ring is either a unit or the
zero-divisor of the ring. The literature pertaining to total graphs is huge (c.f. [17,22,226]),
where certain properties of the complement of total graphs have also been investigated.
Though the complement of total graphs of rings represents the unit graphs, in this article,
we review the literature that has discussed the properties of unit graphs of rings under this
name only.

On observing the definition of the unit graph of a ring, it can be noticed that it is a
subgraph of the comaximal graph defined on a ring R, in which the vertices are the elements
of the ring, and any two vertices u and v are adjacent in the graph if Ru + Rv = R (refer
to [25]). Though certain properties of comaximal graphs (when restricted to their subgraphs)
also hold for the unit graphs, this article only focuses on the results that are specifically
obtained for the unit graphs of rings.

In [225], discussions on the unit graph of rings were initiated, where the properties
such as the regularity and connectedness were investigated for the unit graphs of all asso-
ciative rings, and some properties such as diameter, girth, and planarity were investigated
for the unit graphs of finite commutative rings. The unit graph of a ring was found to be
either |R∗|-regular or (|R∗|,|R∗| − 1)-biregular, based on the unit elements of the ring.

Recall that an element of a ring R is said to be k-good if it can be expressed as a sum
of k units of the ring R, and a ring is said to be k-good if every element is k-good. The
connectedness of the graph was characterised based on the unit sum number and the
k-goodness property of the ring as given below, and this discloses the fact that the unit
graphs are generally not connected, not all rings have finite unite set numbers. Additionally,
an interesting relation between the dominating set and the connectedness of the unit graph
of rings was also obtained in [225], as stated below.

Theorem 100 ([225]). The unit graph G+(R) of a ring R is connected if and only if the ring is
k-good for some integer k ≥ 1 or the ring R is not k-good but every element of R is k-good for some
k ≥ 1, that is, the units additively generate R.

Theorem 101 ([225]). If the set of all vertices that corresponds to the units of the ring form a
dominating set of the unit graph of the ring, then the unit graph is connected.

The connectedness of the unit graphs of some particular rings was investigated based
on the abovementioned characterisation that was obtained on the connectedness of the unit
graphs. The chromatic index of the unit graph of an associative ring was also computed
as ∆ + 1, where ∆ is the maximum degree of the vertices in the unit graph, and certain
structural characterisations of the unit graph, related to when the unit graph of a ring can
be a cycle, path, bipartite, and complete bipartite graph, were obtained in [225], which are
given below.

Theorem 102 ([225]). The unit graph G+(R) of a ring R is a cycle if and only if R is Z4, Z6, or

the set of all 2× 2 matrices of the form
(

a b
0 a

)
, where a, b ∈ Z2.
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Theorem 103 ([225]).

(i) The unit graph of a ring R is a complete graph if and only if R is a division ring with
characteristic 2;

(ii) The unit graph of a ring R is a complete bipartite graph if and only if R is a local ring with
the maximal ideal M, such that | R

M | = 2.

Following this, the structure of the cliques and co-cliques (independent sets) in the
unit graph of a finite commutative ring R was studied in relation with its Jacobson radical
JR and the corresponding quotient ring R

JR
. In addition to this, characterisations of finite

commutative rings based on their diameter, girth, and planarity were also obtained in [225].
Using this structure of cliques and co-cliques, as well as the structural realisations obtained
in in [225], the unit graph of a finite commutative ring was proven to be weakly perfect
in [227], that is, for a finite commutative ring R, χ(G+(R)) = ω(G+(R)), where χ and ω
denote the chromatic and the clique numbers of the graph.

This was proven by using a series of lemmas, where finite commutative rings having
different algebraic properties were considered, and the corresponding unit graphs were
proven to be weakly perfect by computing their clique and chromatic numbers. Owing to
the fact that every finite commutative ring R is isomorphic to the direct product of local
rings and their quotient ring R

JR
is isomorphic to the direct product of fields, the proof of the

main theorem was given in two cases, based on the structure of the fields that were present
in the direct product of the quotient ring R

JR
. The first case was considered as no field in the

local factors of R
JR

had its characteristic equal to two, and the second one was the existence
of at least one field in the local factors of R

JR
with characteristic two in the direct product.

The structure of the unit graphs of the quotient rings R
JR

in these cases followed
the values of the clique and the chromatic number of the unit graph of obtained in [24],
which correlated the structure of a ring R and its quotient ring R

JR
. Using this result, the

parameters were computed and the final result was proven. This discussion of the weak
perfect property led to the discussion of the property of perfection in the unit graphs of
rings in [228], where the perfection of the unit graphs of finite commutative Artinian rings
were examined and the results on classification of rings whose unit graphs were perfect
and not-perfect were obtained.

The girth of the unit graph of any finite commutative ring R was proven to be either
3, 4, 6, or ∞ in [225]. This result was extended in [229] to the unit graph of any arbitrary
ring and the same values were obtained as the girth of the corresponding unit graphs. On
obtaining these restricted values for the girth of unit graphs, the exact girth values of the
unit graph of specific rings were computed, and relations between the girth of the unit
graph of a ring R and R

JR
were also established. The rings R with semipotent quotient rings

R
JR

, such that the girth of the unit graph of the ring R was either six or ∞, were determined,
and some necessary conditions on the group of unit elements of a ring were obtained to
realise the unit graph of the corresponding ring based to its girth. Note that a semipotent
ring is a ring such that every left ideal that is not contained in the Jacobson radical of the
ring contains a non-zero idempotent element.

In an analogous manner, it was proven that the diameter of the unit graphs of finite
commutative rings take the values 1, 2, 3, or ∞ in [225], and this result was extended to the
unit graphs of rings that had a self-injective quotient ring R

JR
in [230]. Recall that a ring is

called self-injective if every homomorphism from the principal ideal to the ring extends to a
homomorphism of the ring to itself.

As the diameter of a graph is associated with its connectedness, certain discussions on
the connectedness of the unit graphs of some rings, based on their unit sum numbers, were
given, following which all rings that had a self-injective quotient ring R

JR
were classified

based on the values of the diameter of their unit graphs. Furthermore, characterisation
of rings based on the diameter values of their unit graphs were also obtained, as given in
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Theorem 104, and it was proven that, for any integer n ≥ 1, there exists a ring R such that
n ≤ diam(G+(R)) ≤ 2n.

Theorem 104 ([230]). For a ring R with its unit graph G+(R), diam(G+(R)) = 2 if and only if
usn(R) = 2 and R is not a division ring with char(R) = 2.

As an extension to the discussions on the diameter of the unit graphs of rings, the radii
of the unit graphs were investigated in [231]. It can be seen that the studies on the radii
of algebraic graphs are rare when compared to the studies on the diameter, though they
are closely related. This is because several graphs tend to have a minimum eccentricity
equal to one. In [231], the relation between the unit graph of a ring R and its corresponding
quotient ring R

JR
was obtained, and some characterisations of rings having the radius of

their unit graphs 1, 2, 3, or ∞ were given. It was also proven that, for every positive integer
n, there exists a ring R such that the radius of its unit graph is n. It can be seen that the
investigations in [231] on the radii of the unit graphs of rings were made in a similar pattern
of discussion as followed in [229,230].

This was followed by a cursory investigation on the connectedness of the complement
of unit graphs of finite commutative rings in [232], where the complement of the unit graph
was proven to always be connected, and the following equivalent statements were obtained
by relating connectedness to the dominating set and the number of the maximal ideals of
the ring, based on the results obtained in [24], relating the same notions.

Theorem 105 ([232]). Given a finite commutative ring R with the set of all maximal ideals of the
ring M , then the following statements are equivalent:

(i) The complement of the unit graph G+(R) is connected;
(ii) |M | ≥ 2;

(iii) R− {R∗} is a dominating set of the graph G+(R).

Note that Theorem 101 states the necessary condition of the set of all units to be just a
dominating set, not a minimal or a minimum dominating set, of the unit graph of a ring.
This conveys the possibilities of the graph having other minimal dominating sets, which
may possibly be a subset of the set of all vertices that also represent the units of the ring;
this led to an investigation of the domination numbers in the unit graphs of rings. In [233],
the finite commutative rings that had domination number less than four were characterised,
as given in Theorem 106, by studying the domination number of the unit graphs of fields,
product of fields, rings, local rings, etc. The unit graphs of the product of local rings were
also investigated by considering the cases of certain special rings as local factors, where
these special rings had unit graphs with structural properties that influenced the structure
of the overall unit graph of the ring.

Theorem 106 ([233]). Let R be a finite commutative ring with the unit graph G+(R). Then,

(i) γ(G+(R)) = 1 if and only if R is a field;
(ii) γ(G+(R)) = 2 if and only if either R is a local ring that is not a field or R is isomorphic

to the product of two fields such that only one of them have characteristic 2 or R ∼= Z2 × F,
where F is a finite field;

(iii) γ(G+(R)) = 3 if and only if R is not isomorphic to the product of two fields, such that only
one of them has characteristic 2 and R ∼= R1 × R2, where R1 and R2 are local rings with
maximal ideals M1 and M2, respectively, such that their quotient rings are not isomorphic
to Z2.

The concept of domination in unit graphs was also studied in [234], where the motive
of the study was to characterise commutative rings that had the domination number of
their unit graphs as half their order, that is, to characterise rings where γ(G+(R)) = |R|

2 or
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γ(G+(R)) = |R|−1
2 . A characterisation of the former one was obtained completely as given

in Theorem 107, whereas the latter problem was solved partially, considering only the rings
of integer modulo n.

Theorem 107 ([233]). Let R be a finite commutative ring with the unit graph G+(R). Then,
γ(G+(R)) = |R|

2 if and only if R ∼= Z2 ×Z2 × . . .×Z2︸ ︷︷ ︸
t−times

×S, t ≥ 0, where S is is either Z2, Z4

or Z2[x]
〈x〉 .

An open problem to determine the existence of a ring R such that, given an integer
n, the unit graph has domination number n was put forth in [234]. Though the question
is yet to be fully answered, in the same article, it was concluded that, for integers of the
form 2k, k ≥ 0, there exists a ring R such that γ(G+(R)) = 2k, using the results obtained
in that article. Continuing the investigation on the domination number of the unit graphs
of rings, the study in [235] examined the domination number of the unit graph G+(R) of
a ring R ∼= Zp

α1
1
× Zpα2

2
× Zp

α3
3

, where pi; 1 ≤ p ≤ 3 are primes was computed, and the
following characterisations were obtained in [235].

Theorem 108 ([235]). Let R ∼= Zp
α1
1
×Zpα2

2
×Zp

α3
3

, where pi; 1 ≤ p ≤ 3 and p1 < p2 < p3 are

primes and G+(R) be its unit graph having domination number γ(G+(R)). Then,

(i) 4 ≤ γ(G+(R)) ≤ 6;
(ii) γ(G+(R)) = 4 if and only if α1 = α2 = α3 = 1 or p1 > 3;
(iii) γ(G+(R)) = 5 if and only if α1α2α3 ≥ 2 or p1 = 3;
(iv) γ(G+(R)) = 6 if and only if α1α2α3 ≥ 2 or p1 = 2.

In [236], a relation between the domination number as well as the total domina-
tion number of the unit graph of a ring R and its Ore extension R[x; α1, α2]—the ring
of polynomials over R with usual addition and multiplication, defined as the relation
xy = α1(y)x + α2(y)—were studied, and it was discovered that, for all associative rings,
γt(G+(R)) = γt(G+(R[x; α1, α2])), where γt denotes the total domination number of
the graph.

Based on this, an open problem was presented, to investigate if the same equality
holds for the domination number of the unit graphs of all associative rings and their Ore
extension, that is, to check if γ(G+(R)) = γ(G+(R[x; α1, α2])) for all associative rings, was
posed in [236]. Note that, in the former study, the rings considered were general associative
rings and were not restricted to the finite commutative rings, whereas several bounds
for the domination number of the unit graphs of only the finite commutative rings were
obtained in [237] by using the existing results on the domination number of the unit graphs
of rings.

Examining planarity in algebraic graphs has caught the attention of several researchers,
due to which, for any new algebraic graph defined, these algebraic structures are charac-
terised based on the planarity of the algebraic graphs introduced. Such characterisations
of finite commutative rings for which the unit graph is planar were obtained in [225]
see (Theorem 109). This was followed by characterising any associative ring whose unit
graph was planar in [238], which was determined based on mainly the order of the ring
and its unit group, along with the structure of the ring, as given in Theorem 110; as an
application of the obtained result, all semipotent rings whose unit graphs were planar
were characterised in [239], and, based on this, a list of all semilocal rings with planar unit
graphs were obtained. Recall that a semipotent ring is a ring such that every left ideal that is
not contained in the Jacobson radical of the ring contains a non-zero idempotent element,
and a semilocal ring is a commutative Noetherian ring with finitely many maximal ideals,
where a ring is called Noetherian if every ideal of the ring is finitely generated.
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Theorem 109 ([225]). Let R be a finite commutative ring with the unit graph G+(R). Then,
G+(R) is planar if and only if R is Z5, Z3 ×Z3, or S is isomorphic to one of the following rings:

(i) Z2;
(ii) Z3;
(iii) Z4;
(iv) F4;

(v) The set of all 2× 2 matrices of the form
(

a b
0 a

)
, where a, b ∈ Z2.

Theorem 110 ([238]). Let R be an associative ring with the unit graph G+(R) and the group of
units R∗. Then, G+(R) is planar if and only if one of the following holds:

(i) |R∗| < 4 and |R| ≤ |R|;
(ii) |R∗| = 4 and char(R) = 0 with |R| ≤ |R|;
(iii) R ∼= Z5;
(iv) R ∼= Z3 ×Z3.

The planarity of the unit graphs of some local and quasilocal rings were examined
in [240–242], where a commutative ring R, which has only a finite number of maximal
ideals, is referred to as a quasilocal ring, and a ring with a unique maximal ideal is a local
ring. In [239], a characterisation of finite quasilocal rings that had planar unit graphs was
obtained, and it was proven that, if the unit graph of a quasilocal ring is planar, then the
ring is finite. This was proven by considering rings of two cases: when the ring has exactly
two maximal ideals, and when the quasilocal ring has more than two but finitely many
ideals. These cases were investigated in [241,242], respectively.

In succession to the planar unit graphs, the non-planar unit graphs of finite commu-
tative rings that had genus one were investigated in [243], where all finite commutative
rings with non-zero identity whose unit graphs were toroidal were determined up to
isomorphism, and it was proven that, for any positive integer k, there are finitely many
finite commutative rings with non-zero identity, such that the genus of their unit graph is
k. As a continuation of the study on the unit graphs of finite commutative rings with unit
genus, the rings having unit graphs with higher order genera were investigated in [244],
and all finite rings with unit graphs having genera one, two, and three were characterised.

As the spectra of algebraic graphs are another area of keen interest for researchers,
the adjacency spectrum of the closed unit graph was computed in [245], based on the
properties of the closed unit graphs obtained in [225]. The cases when the unit and closed
unit graphs coincided with each other, as well as a few structural properties of the closed
unit graphs when they did not coincide with the unit graph of the corresponding ring,
were determined in [225]. Utilising these results and properties from [225], especially the
result that established that the closed unit graph of product of two rings was the direct
product of the closed unit graphs of the corresponding rings, which arose as a consequence
of the structure theorem (refer to [31]), the spectra of the closed unit graphs of arbitrary
finite rings and their quotient rings R

JR
were determined. Using the spectral values, it was

shown that the unit graphs G+(R1) and G+(R2) of two arbitrary finite rings R1 and R2 are
isomorphic if and only if the unit graphs of their corresponding quotient rings G+( R1

JR1
)

and G+( R2
JR2

) are isomorphic.
As the closed unit graph and unit graph of rings coincide in a good number of cases,

these spectra can also be taken as the spectra of the unit graphs and, based on that, the
rings whose unit graphs are Ramanujan graphs were determined, from which, a necessary
and sufficient condition for the unit graph of a ring to be strongly regular was established
in [245], explained as follows.
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Theorem 111 ([245]). For a ring R with the unit graph G+(R), the following statements are
equivalent:

(i) G+(R) is a strongly regular graph;

(ii) R is a local ring with the maximal ideal M such that Char( R
M ) = 2 or R ∈ {Zt

2,F× F},
where F is a field with |F| = 2k, where t, k ≥ 2.

A biclique is a complete bipartite subgraph of a graph G, and a collection of subgraphs
of G is called a biclique partition covering of a graph G if every subgraph in the collection is a
biclique and, for every edge in the graph, there exists exactly one biclique in the collection
to which the edge belongs. The biclique partition number of a graph G, denoted by bp(G),
is the minimum cardinality among the biclique covers of the graph (refer to [246]). There
are several applications of this parameter in networks, but one of the main motivations to
study this parameter in graphs is to minimise the storage space, as listing the subgraphs in
a minimum complete bipartite decomposition of G consumes less space than the adjacency
list representation.

If a+(G) and a−(G) denote the number of positive and negative eigenvalues in the
adjacency spectrum of the graph G, then the graph is said to be eigensharp (almost eigen-
sharp) when bp(G) = max{a+(G), a−(G)} (bp(G) = max{a+(G), a−(G)}+ 1) (for more
details on the eigensharp properties of graphs, c.f. [247]). In [248], rings that had eigen-
sharp unit graphs were investigated, and, by computing the adjacency spectrum and the
corresponding biclique numbers, using the structural properties of the rings determined

in [225], it was found that, for prime p, the rings Zp, Z2p, and Zp [x]
〈x2〉 are eigensharp graphs.

The authors had also posited the problem to check if the unit graphs of rings Zpn , Zqp, and
Zp [x]
〈xn〉 , for prime p and q, are eigensharp, which still remains unsolved.

The other computational parameters that were determined for the unit graph of finite
commutative rings are the topological indices, namely, the Wiener index and the hyper-
Wiener index. These topological indices were computed for unitary addition Cayley graphs
in [204,249]; these results were extended to the unit graphs of all finite commutative rings,
and, from these results, the values of these indices for the graph X+

n were computed by
considering the finite commutative ring R as Zn.

The other graph properties such as the well-coveredness, Hamiltonicity and chordality
of the unit graphs of rings were examined in [250–252], respectively. In [251], a necessary
and sufficient condition for the unit graph of a finite commutative ring to be Hamiltonian
was derived, by constructing a graph based on the structural properties of the rings, whose
unit graph was connected as obtained in [225]. As connectedness of the unit graph of a
ring was given based on the unit sum number of the ring, a set of equivalent statements
involving all these aspects of the ring was given in [251], as follows.

Theorem 112 ([251]). Let R be a finite commutative ring R that is not isomorphic to Z2 and Z3,
with unit graph G+(R). Then, the following statements are equivalent:

(i) G+(R) is Hamiltonian.
(ii) The ring R cannot have Z2 ×Z2 as a quotient ring;
(iii) R is generated by its units;
(iv) G+(R) is connected.

Followeing the study on Hamiltonicity, the chordality in the unit graphs of finite
commutative rings was studied in [252], where the rings having quotient ring R

JR
as a

product of fields were characterised based on the chordality of the unit graphs, and, in [250],
a necessary and sufficient condition under which the unit graphs of finite commutative
rings were well-covered was deduced, from which the unit graphs whose edge rings
were Cohen–Macaulay and Gorenstein were characterised, as given in Theorem 113. This
characterisation led to the identification of a large class of non-Cohen–Macaulay graphs.
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Theorem 113 ([251]). Let R be a finite commutative ring R with unit graph G+(R). Then,

(i) G+(R) is Cohen–Macaulay if and only if R is a field with characteristic 2 or R ∼= Z2 ×Z2 ×
. . .×Z2;

(ii) G+(R) is Gorenstein if and only if R ∼= Z2 ×Z2 × . . .×Z2.

A graph G is called realisable as an algebraic graph (unit graph) if it is isomorphic to
the algebraic graph defined (unit graph G+(R), for some ring R). As already mentioned,
two prominent problems that exist for any algebraic graph introduced are to analyse the
graph parameters of the newly introduced graph and to check if any given graph G can
be realised as the defined algebraic graph. A partial solution to the second problem of
realising the given graph structure as a unit graph of a ring was given in [253], where the
classes of graphs which can be realised as a unit graph were determined, as given below.

Theorem 114 ([253]).

(i) Pn is realisable as a unit graph if and only if n = 2, 3;
(ii) Cn is realisable as a unit graph if and only if n = 4, 6;

(iii) Kn is realisable as a unit graph if and only if n = 2k, for some a positive integer k;

(iv) Ks1,s2 is realisable as a unit graph if and only if s1 = s2 = 2k, k ∈ N or s1 = 1 and s2 = 3.

It can be seen that the graph realisations in Theorem 114 are given based on the results
obtained in [225], where the rings were characterised based on the unit graph’s structure,
as given in Theorems 102 and 103. While using Theorems 102 and 103, for obtaining further
realisations of the unit graphs, the authors of [253] observed that the characterisation
of rings whose unit graph was complete bipartite was incomplete, as there emerged an
ambiguity if the authors of [225] assumed that the ring R was a local ring with or without
the condition | R

M | = 2, where M was the maximal ideal of the local ring. In both cases of this
assumption, counterexamples of rings with the corresponding properties were obtained
in [253], which led to a modification of the existing result.

In the case of such a ring for which | R
M | 6= 2 was considered, in [24], to prove the

result that was given in [24], a counterexample of a field with four elements, say, F4, whose
unit graph was K4, which is not complete bipartite, was given in [253], and, on the other
hand, if R was considered as a local ring with condition | R

M | = 2, the result was proven to
be incorrect because, if R ∼= Z3, then G+(R) ∼= K1,2, which is a complete bipartite. Based
on these observations, the result was modified in [253] by including the condition | R

M | 6= 2
or R ∼= Z3, along with the existing statement that was given in [225].

Recollect that, for a graph G, S ⊆ V(G) is a perfect code of the graph if S is an indepen-
dent set, such that every vertex in V(G)− S is adjacent to exactly one vertex in S. A perfect
code can also be called an efficient independent dominating set (c.f. [219]). By the definition
of a perfect code, the investigation of perfect codes can be seen as computing a variant of
the domination number of a graph, and, in [254], perfect codes in the unit graphs were
examined, where the rings were characterised first based on the existence of a perfect code
in their unit graphs or their complements, as finding whether a graph admits perfect code
is also a question that remains to be addressed. Following this characterisation of rings, the
commutative rings with identities in which their associated unit graphs accepted perfect
codes of order one and two were characterised, and a few results relating the structure of
the perfect code and the structure of the rings were obtained.

This study was extended to investigate the perfect codes in the induced subgraph of
the unit graph of finite commutative rings in [255], where the subgraph of the unit graph
of a ring induced by the set of all vertices that represented the elements of the ring that
were not units of the ring was considered. Here, the commutative rings in which their
associated induced subgraphs of unit graphs admitted the trivial and non-trivial perfect
codes were classified, and a characterisation of rings that did not admit perfect codes in this
induced subgraph of their unit graph was also deduced. Furthermore, it was proven that
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the complement of this induced subgraph of the unit graph of finite commutative rings
admits only the trivial subring perfect code, where a subring perfect code refers to the perfect
code on a subgraph induced by a subring of the ring. A similar investigation on some
other induced subgraphs of the unit graph of commutative rings was conducted in [256],
whose results were analogous to the ones obtained in [255], even though the vertex set of
the induced subgraphs differed. This gives an underlying property of the unit graph of the
ring itself rather than the subgraphs.

A Boolean ring is a ring with identity in which every element is idempotent. Perfect
codes in the unit graph of Boolean rings were investigated in [257,258], where the existence
of a subring perfect code in the unit graphs associated with the finite Boolean rings was
proven in [257], along with a necessary and sufficient condition for a subring of an infinite
Boolean ring to admit a perfect code of size infinity in the unit graph. In [258], the perfect
codes spanning subgraphs of a unit graph associated with a Boolean ring R of order 2k,
for some positive integer k ≥ 1, were determined, and, as a consequence of this, sharp
lower and upper bounds for the cardinality of a subset of the vertex set to be a perfect code
spanning subgraphs of a unit graph were established.

The line graph of a graph is a well-studied derived graph of a graph, and, as already
known, several properties of the line graph of a graph are interrelated with the properties
of the graph. In this regard, the line graphs of the unit graphs associated with the finite
commutative rings were exclusively studied in [259–261]. The basic properties of the line
graph of the unit graph of finite commutative rings such as the diameter, girth, clique, and
chromatic number, along with some classifications of rings whose unit graphs are planar,
as well as the Hamiltonian, were given in [260]. Observe that almost all the results in this
article [260] were deduced based on the properties of the unit graphs that were discussed
in [225].

An extended investigation on the line graph of the unit graph associated with finite
commutative rings was performed in [259], where characterisations of the line graphs of
the unit graphs of rings on the basis of their structural properties such as the completeness,
bipartiteness, traversability, diameter, girth, and chromatic number were obtained. Addi-
tionally, the domination number of this line graph of the unit graph of rings was computed
in [234], along with the domination number of the unit graphs of rings. Significant and
curious problems of identifying the structure of the unit graph of a given finite commutative
ring as a line graph of some graph, as well as identifying the finite commutative rings for
which the complement of the unit graph can be realised as a line graph of a graph, were
addressed in [261], and the list of rings of order two, three, and four with these realisation
conditions were given.

For better understanding of the structure of the graph based on the structure of the ring,
the unit graphs of certain specific rings whose structures are well known were investigated
in detail. In [262], the unit graph of the ring Zr × Zs, for any r, s ∈ N, was discussed
exclusively, where the basic structural and traversal properties of the graph G+(Zr ×Zs)
and its graph invariants were determined. Similarly, in [263], the rings of polynomials
and power series over a ring were examined, and all standard properties and invariants of
the unit graph of these rings were obtained, along with some results on the planarity of
the graph.

In [264], the unit graphs of group rings were discussed, where, if G is a group and
R is a ring, the group ring of G over R, denoted by R[G ], is a generalisation of a given
multiplicative group, produced by attaching to each element of the group a “weighting
factor" from a given ring. It is a set of mappings with certain properties involving module
operations. The basic graph invariants and certain structural properties of the unit graph
of these rings were deduced in [264]. As a detailed conceptual understanding of the group
rings was obtained with the knowledge of the structure of modules, we refer the reader
to [265,266] for more details on group rings.

For most of the study on the unit graphs of rings that had been conducted, it can
be seen that the unit graphs of finite commutative rings were considered and, in a few
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instances, the unit graph of an associative ring was considered. As already mentioned, this
is because of the symmetric nature of the commutative rings. In [267], the unit graph of a
left Artinian ring was exclusively examined and the connectedness, girth, and diameter
of the unit graph of this ring were determined. Additionally, the conditions under which
the unit graph of any finite ring was Hamiltonian were obtained in [267] by providing
an algorithm that found a spanning cycle of the unit graph, which took the required end
points as the inputs and provided the corresponding Hamiltonian cycle. In [268], a short
discussion on the unit graphs of non-commutative rings was given, wherein a very few
results of the unit graphs of commutative rings were extended by proving them without
using the commutative property of the ring. With this study, the challenge to investigate
the unit graphs associated with non-commutative rings was clearly visible.

The signed graph of the unit graph of rings was defined in [269], as given in Def-
inition 24, and an example of this graph is given in Figure 13. The rings for which this
signed unit graph is balanced were characterised in [269], and the line signed graphs of
these signed unit graphs were investigated in [270], where the commutative rings with
unity for which a line signed graph of a signed unit graph is balanced and consistent, were
characterised by establishing some sufficient conditions for balance and consistency of the
line signed graph of signed unit graphs.

Definition 24 ([269]). The signed unit graph, denoted by S(G+(R)) = (G+(R), σ+), is a
signed graph whose underlying graph is the unit graph G+(R) of the ring R, and the sign of an
edge vivj ∈ E(G+(R)) is assigned by the function σ+ : E(G+(R))→ {+,−} as follows. For an
edge vivj in G+(R),

σ+(vivj)

{
+, if vi ∈ R∗ or vj ∈ R∗;
−, otherwise,

where R∗ denotes the group of units of the ring.

An independent investigation on the signed unit graphs of the rings of the form
Zp1 × Zp

α1
1 pα2

2 ...pαr
r

, where pi, 1 ≤ i ≤ r are prime numbers and r ∈ N, was performed
in [271]. In this article, the sign compatibility, balance, and clusterability of the unit graphs
of these rings were discussed, and the rings were characterised according to the above-
mentioned properties.

11 01

1000

Figure 13. The signed unit graph of Z2 ×Z2.

It can be seen in the literature that several surveys and brief literature reviews of
the investigations on the unit graphs of rings have been performed periodically, since the
introduction of these graphs (c.f. [165,272,273]), to understand the dynamics of research
problems proposed and addressed related to the unit graphs of rings. Further, since unitary
addition Cayley graphs also possess the same definition, the unit graphs of some rings are
sometimes addressed as the unitary addition Cayley graphs of the respective ring and are
investigated along with the unitary Cayley graphs. Such articles, where more than one
graph among the graphs given in this review are discussed, are included in the section
of the first graph that is discussed, with appropriate explanation and cross-referencing.
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Additionally, it can be noticed that not many investigations have been performed on the
closed unit graphs of rings, unlike for unit graphs. This provides an area for further
exploration into this pseudo-graph structure.

6. Other Cayley Graphs Defined on Rings

Towards the end of the 18th century, the Cayley graph was defined on groups such
that the vertex set of the graph was the elements of the group, and the adjacency condition
was defined with respect to a symmetric subset of the group. This was considered as an
underlying principle to define a Cayley graph on any algebraic structure, and multiple
variations of Cayley graphs were defined on algebraic structures, based on several of its
well-known symmetric subsets. In this article, as we deal exclusively with rings, we collect
the literature on different Cayley graphs defined on rings, based on various symmetric
subsets of the ring, and provide a brief review in this section.

As we can observe, Zn is one of the most comprehensible ring structures, and the
properties of any symmetric subset of this ring are related to the number-theoretic properties
of n. Owing to this, it can be seen that several Cayley graph variations are defined on Zn
and investigated as the first step, following which the definitions are extended to a general
ring, based on the feasibility of investigation. Though almost all the graph definitions on
Zn can be extended to any ring R, the process of investigating these graphs for any general
ring is highly challenging, as the graph properties depend on the algebraic structure of
the ring. Additionally, even in the articles where the definitions are extended to a general
ring R, it can be observed that the commutative ring with unity, local rings, and rings that
can be factorised into products of local rings are mainly considered for determining the
properties of these graphs.

In this section, we denote the different Cayley graphs by the notation ξ with an
appropriate suffix, corresponding to the property by which the graph is defined, for brevity
and uniformity. Additionally, the symmetric subsets considered are denoted by S is all
the subsections, where, in each subsection, the set S corresponds to the symmetric subset
considered to define the corresponding graph in that subsection.

6.1. Absorption Cayley Graphs

The absorption Cayley graph of the ring Zn was introduced and studied in [274,275].
As the name conveys, this variant of Cayley graph was defined based on the absorption
property of the elements in the ring, as given below, following which an example of an
absorption Cayley graph is given in Figure 14.
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Figure 14. The absorption Cayley graph ξ
acg
8 .

Definition 25 ([275]). The Absorption Cayley graph, denoted by ξ
acg
n = Cay(Zn, S), is a graph

with the vertices set as the elements of the ring Zn, 0, 1, . . . , n− 1, and two vertices are adjacent
if their sum is an element of the set S, where S = {x ∈ Zn : xy = yx = x, and x 6= y, y ∈ Zn},
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that is, for all u, v ∈ V(ξ
acg
n ), uv ∈ E(ξacg

n ) when u + v ∈ S, where S is the set of all elements in
the ring, such that it absorbs some element in the ring (except for itself).

As the graph is defined on the subset formed by all the elements of the ring that
absorbs some other element of the ring, the properties of this set were first discussed
in [275]. The cardinality of this set and the properties of the elements in the set were
discussed, and it was found that, for n = 2k, where k is odd, this subset S ⊆ Zn coincides
with the set of zero-divisors of the ring. Following this, the subset was proven to be a
subgroup of the group Zn, which verified that the graph was defined with respect to a
symmetric subset of the ring Zn.

We know that both the adjacency matrix of a graph as well as the Cayley table of
a group are symmetric, such that each entry in a particular row and the corresponding
column is unique. An interesting relation was seen between the adjacency matrix of the
absorption Cayley graph on Zn and the Cayley table of Zn: if each element a ∈ S is replaced
with 1 in the Cayley table and all the other elements, including the diagonals, are given
0, the adjacency matrix for the absorption Cayley graph on Zn can be obtained. As the
absorption Cayley graph is defined based on the sum of two elements belonging to the
symmetric subset, an interesting relation between the unitary addition Cayley graphs and
the absorption Cayley graphs was given in [275], as follows.

Theorem 115 ([274,275]). Let k be an odd integer. For n 6= 2k, the complement of the unitary
addition Cayley graphs X+

n is isomorphic to the absorption Cayley graphs ξ
acg
n .

Several graph parameters of the graph ξ
acg
n were computed in [275], as given in

Theorem 116, along with the investigation on the connectedness, traversal properties,
perfection, and planarity of the graph, as given below. Owing to the relation between
the unitary addition Cayley graphs and the absorption Cayley graphs, only the results on
absorption Cayley graphs, which are not derived exactly from the properties of the unitary
addition Cayley graphs, are stated in this subsection.

Theorem 116 ([274,275]). Let ξn
acg = Cay(Zn, S) be the absorption Cayley graph of the ring Zn.

Then,

(i) The graph ξ
acg
n is either |S| − 1-regular or (|S|, |S| − 1)-semi regular;

(ii) |E(ξacg
n )| = kd n−1

2 e+ (|S| − k)
(
d n−1

2 e − 1
)

, where k is the number of odd elements in S;

(iii) diam(ξ
acg
n ) = 2;

(iv) The edge connectivity of ξ
acg
n , when connected, is |S| − 1;

(v) The girth of ξ
acg
n (when connected) is 4, when n = 6 or 3, otherwise.

Theorem 117 ([274,275]).

(i) An absorption graph ξn
acg is connected if and only if n has at least two distinct prime factors;

(ii) An absorption graph ξn
acg is disconnected if and only if n = pk, where p is prime and k ≥ 1

is an integer;
(iii) The number of components in a disconnected absorption Cayley graph ξ

acg
n is n−1

2 when n is
prime, and 2 otherwise.

Theorem 118 ([274,275]).

(i) An absorption Cayley graph is never Eulerian;

(ii) An absorption Cayley graph ξ
acg
n is Hamiltonian if |S| > n

2 , where n 6= 2k, for some odd
integer k.
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It can be observed that, due to the strong perfect graph theorem, which states that
a graph is perfect if and only if the graph as well as its complement do not contain any
induced cycle of odd length at least 5, and Theorem 115, the conditions for the perfection
of the graph ξ

acg
n coincide with those of the unitary addition Cayley graphs.

Theorem 119 ([274,275]). The absorption Cayley graph of the ring Zn is planar if and only if
n ∈ {2, 4, 6, 8, p}, where p is a prime number.

An important question that arises for defining a new algebraic graph is the realisation
of a given graph as the defined algebraic graph, that is, in this context, the question is,
when can a graph of order n be realised as an absorption Cayley graph of order n? This
was answered in [274,275] as follows.

Theorem 120 ([274,275]). A given graph G of order n is isomorphic to an absorption Cayley graph
ξ

acg
n if and only if there are |S| edge-disjoint subgraphs of the graph G, say, G1, G2, . . . , G|S|, whose

union is the graph G, such that the following conditions hold:

(i) ab ∈ E(Gi) if and only if a + b ≡ i mod n;

(ii) |E(Gi)| = d n−1
2 e − 1, when i is even and d n−1

2 e, when n is odd.

Owing to Theorem 120 and the fact that the absorption Cayley graph is disconnected,
the structure of the components of a disconnected absorption Cayley graph was also
examined in [275], and it was observed that these disconnected components are the union
of subgraphs that are generated by the prime factors of n, which are nothing but disjoint
cliques. This gave rise to the characterisation that an absorption Cayley graph ξ

acg
n is

bipartite if and only if n is prime, as S = {0} when n is prime.
As the graph coincides with the unitary addition Cayley graph, in some cases, and the

zero-divisor Cayley graphs (see Section 6.6), for some values of n, the existing literature on
these graphs determines most of their properties, which curtails the scope of unique study
on these graphs. Additionally, in the remaining cases, it was seen that the graph was a
union of disjoint cliques, which also does not extend the scope for much further exploration.

6.2. Nilpotent Cayley Graphs

The nilpotent Cayley graph of the ring Zn was introduced in [276] and was studied
in [276,277]. As the name suggests, this variant of Cayley graph is defined based on the
subset of all nilpotent elements of the ring, as given below. Recall that an element x of a
ring is said to be nilpotent if there exists a positive integer k, called the index, such that
xk = 0, where 0 is the additive identity of the ring.

Note that there are different graphs defined as the nilpotent and non-nilpotent graph
of a ring having different vertex sets, such as the set of all nilpotent elements, non-nilpotent
elements, etc., or they have been defined based on the product operation of the ring. We
do not include them in this review because we restricted ourselves to the graphs defined
on rings that are analogous to Cayley graphs—in other words, when the vertex set of the
graph is the elements of the rings, where the adjacency condition is defined based on either
the sum or the difference of two elements that must belong to a symmetric subset.

Definition 26 ([276]). The nilpotent Cayley graph of the ringZn, denoted by ξnil
n = Cay(Zn, S),

is a graph with the vertices set as the elements of the ring Zn, 0, 1, . . . , n− 1, and two vertices
are adjacent if their difference is an element of the set S, where S = {x 6= 0 ∈ Zn : xk =
0, for some k ∈ N}, that is, for all u, v ∈ V(ξnil

n ), uv ∈ E(ξnil
n ), when u− v ∈ S, where S is the

set of all non-zero nilpotent elements of the ring. An example of a nilpotent Cayley graph is given in
Figure 15.
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Figure 15. The nilpotent Cayley graph ξnil
12 .

The properties of the set of all nilpotent elements and the basic graph properties for
the nilpotent Cayley graphs of Zn were studied in [276], where the number of nilpotent
elements in the ring Zn was given, from which the regularity and size of the nilpotent
Cayley graph were determined. It was also proven that, for any integer which is a product
of distinct prime numbers, the nilpotent Cayley graph is a null graph, which gave rise to
the problem of investigating the connectedness of the graph. On solving this problem, it
was found that the nilpotent Cayley graph is disconnected in some cases, for which the
number of components in the graph was determined in [276], and each component was
proven to be a clique. This led to the result that the nilpotent Cayley graph on Zn is a union
of k disjoint cliques, where k is the product of all distinct prime factors of n. The number
of triangles in this graph was also enumerated in [276] based on the number of nilpotent
elements in the ring.

The study on the nilpotent Cayley graph on Zn was extended in [277] by investigating
the neighbourhood set and the neighbourhood graph of the nilpotent Cayley graph. A
subset S ⊆ V(G) is called a neighbourhood set of the graph G if G =

⋃
v∈S
〈N[v]〉, where

〈N[v]〉 is the subgraph induced by the closed neighbourhood N[v] of the vertex v, and
the cardinality of a minimum neighbourhood set is called the neighbourhood number of the
graph. The neighbourhood graph N[G] of a graph G is a graph with the same vertex as G, and
two vertices u and v are adjacent in N[G] if their closed neighbourhood does not intersect
(see [277]).

The neighbourhood number of the graph ξnil
n was determined as the number of distinct

prime factors of n in [277], and the structure of the neighbourhood graph of the graph ξnil
n ,

along with the properties such as regularity and Hamiltonicity of the graph N[ξnil
n ], were

also discussed in [277]. It is known that all nilpotent elements are zero-divisors of the ring,
and the set of all non-zero nilpotent elements form a symmetric subset of a ring. Thus, in
several cases, it can be seen that the nilpotent Cayley graphs coincide with the zero-divisor
Cayley graphs defined for a ring (see Section 6.6).

Recall that an element x is idempotent when x2 = x. Usig this idempotent property
of the elements of a ring, the concept of the idempotent graph of a ring R was introduced
in [278]; the definition is given below, following which an example of an idempotent graph
of a ring is provided in Figure 16.

Definition 27 ([278]). The idempotent graph of a ring R is defined for all rings R with unity
such that the vertex set of the graph is the set of all elements of the ring R, and two vertices u and v
are adjacent if and only if u + v is an idempotent element of the ring.
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Figure 16. The idempotent graph of the ring Z2 ×Z2 ×Z2.

It can be seen that a slight modification to the ring considered and the binary operation
of addition in the definition make the graph distinct from a subgraph of the other Cayley
graphs defined on a ring. In [278], the structural properties of the idempotent graph of
a finite non-local commutative ring R with unity were investigated, and a necessary and
sufficient condition on the ring R for its idempotent graph to be planar was obtained. Using
this result, it was proven that the idempotent graph of a ring can never be outerplanar.
Moreover, when analysing the structure of the idempotent graphs of rings, all the finite
non-local commutative rings having their idempotent graph as cograph, split graph, and
threshold graph were classified.

Note that a graph is said to be a cograph if it has no induced subgraph isomorphic
to P4, and it is a threshold graph if it does not contain an induced subgraph isomorphic to
P4, C4, or 2K2. Graphs whose vertex set can be partitioned into a clique and an independent
set, where each vertex of the independent set is adjacent to some vertices in the clique, is
a split graph. As the idempotent graphs have been defined very recently, several avenues,
such as investigating their relation with the other related graphs (such as nilpotent Cayley
graphs, zero-divisor graphs, etc.) or studying the traversal, structural properties, graph
invariants, etc., are open to further exploration.

6.3. Mixed Unitary Cayley Graphs

A mixed graph is a graph that contains directed as well as undirected edges. In [279],
the mixed adjacency matrix M(G) of a graph G of order n is defined as an n× n matrix on
the vertex set of the graph, such that

mij =


1, if (vi, vj) is an edge or arc;
−1, if (vj, vi) is an arc;
0, otherwise.

From this, the mixed energy of the graph is defined as the sum of the absolute values of
eigenvalues of this mixed adjacent matrix. As it was seen that the unitary Cayley graphs
have significant spectral properties, investigating the mixed spectra of the unitary Cayley
graphs was a curious area to explore. Hence, the mixed Cayley graphs were defined
in [279], and their spectra was investigated. The definition of the mixed unitary Cayley,
followed by an example, are given in Definition 28 and Figure 17.

Definition 28 ([279]). The mixed unitary Cayley graph, denoted by ξmix
n = Cay(Zn,Z+

n ), is a
graph whose underlying graph is the unitary Cayley graph Xn, and the conditions for an edge uv to
be an arc or an edge are defined based on the properties of the end vertices u and v of the edge, as
given below:

(i) uv is an edge if v−u
n = 1;
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(ii) (u, v) is an arc if v−u
n = −1 and (j− i) < d n

2 e;
(iii) (v, u) is an arc if v−u

n = −1 and (j− i) > d n
2 e.

0 1

23

4

Figure 17. The mixed unitary Cayley graph on Z5.

Using these definitions of the mixed unitary Cayley graph and the mixed adjacency
matrix, the spectra of the graph and the corresponding energy were determined in [280].
This investigation on the mixed spectra was performed for a few values of n, based on their
number-theoretic properties, because a general structure of this mixed graph is yet to be
studied in detail. As the structures become determined more clearly, other studies can be
taken up in the future.

6.4. Divisor Cayley Graphs

The Cayley graph variation defined on the ring Zn with respect to the subset of all
divisors of n is called the divisor Cayley graphs, which were first introduced in [281]. An
example of a divisor Cayley graph, following its definition, is given in Figure 18.

Definition 29 ([281]). The divisor Cayley graph, denoted by ξdiv
n = Cay(Zn, S), is a graph

with the vertices set as the elements of the ring Zn; 0, 1, . . . , n− 1, and two vertices are adjacent
if their difference is an element of the set S, where S = {x, n − x : x ∈ Zn}. That is, for all
u, v ∈ V(ξdiv+

n ), uv ∈ E(ξdiv+
n ), when u− v ∈ S, where S is the set of all divisors of n and their

inverse in Zn.
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Figure 18. The divisor Cayley graph ξdiv
10 .

Note that the definition of divisor Cayley graphs may seem similar to the gcd-graphs
defined in Section 2, but the key difference between these graphs is that, in the definition of
a gcd-graph, the subset considered was not a symmetric subset, whereas the divisor Cayley
graphs are defined with respect to the symmetric subset of divisors and their inverses.

The graph properties of the divisor Cayley graphs such as regularity, Eulerianness,
and Hamiltonicity were examined in [281], and the number of triangles in the divisor
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Cayley graph was also enumerated. The number of triangles in the divisor Cayley graph
was enumerated by partially following the technique that was used for the enumeration
of triangles in the unitary Cayley graphs in [40]. Here, the triangles with vertices {0, a, b}
were given the term fundamental triangles, and the number of fundamental triangles was
calculated as an intermediate step to compute the total number of triangles in the graph.
This result was substantiated by several examples, which led to an interesting question as
to the relationship between the number of divisors of n and the number of triangles in the
divisor Cayley graph of the corresponding Zn, which still remains open.

Following this, the problem of enumerating the disjoint Hamiltonian cycles in the
divisor Cayley graph was addressed in [282]. Using the previously determined properties
of the divisor Cayley graphs in [281], it was proven that a divisor Cayley graph ξdiv

n can
be decomposed into disjoint Hamiltonian cycles if and only if n is odd, and, for this case,
it was determined that the graph ξdiv

n can be decomposed into k + 1 disjoint Hamiltonian
cycles, where k is the number of proper divisors of n.

In [282], an algorithm to find disjoint Hamiltonian cycles in the graph according to the
values of n and to enumerate them was also given. This was followed by computing the
domination number of the divisor Cayley graphs in [283], where an algorithm to construct
a minimal dominating set of the graph was given, from which the domination number of
the graph was determined. Certain topological indices of the divisor Cayley graph were
computed in [284]. Note that the divisor Cayley graphs are also known as unitary divisor
Cayley graphs and are different from difference divisor graphs, which appear to be almost
similar to divisor Cayley graphs (see [285]).

Based on the unitary divisor Cayley graph, the unitary divisor addition Cayley graph,
denoted by ξdiv+

n , was introduced in [286] by modifying the adjacency relation in the
unitary divisor graphs to the sum of the elements to be a divisor. An example of a unitary
divisor addition Cayley graph is given in Figure 19, which succeeds the definition of the
graph, given as follows.

Definition 30 ([286]). The divisor addition Cayley graph, denoted by ξdiv+
n = Cay+(Zn, S),

is a graph with the vertices set as the elements of the ring Zn; 0, 1, . . . , n− 1, and two vertices are
adjacent if their difference is an element of the set S, where S = {x, n− x : x ∈ Zn}. That is, for
all u, v ∈ V(ξdiv

n ), uv ∈ E(ξdiv
n ), when u + v ∈ S, where S is the set of all divisors of n and their

inverse in Zn.
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Figure 19. The divisor addition Cayley graph ξdiv+
8 .

The article [286] is the only study available on the unitary divisor addition Cayley
graph in which the graph is defined and the basic invariants of the graph such as the size,
diameter, matching number, and the degree of the vertices were computed. In addition to
this, unitary divisor addition Cayley graphs were characterised based on their traversal
properties, such that the graph ξdiv+

n is Eulerian if and only if n = 2t, for some integer t > 1,
and ξdiv+

n is Hamiltonian if and only if n is even. Several properties of the graph and its
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association with other addition Cayley graphs defined on Zn, such as gcd-graphs, etc., can
be explored further.

6.5. Involutory Cayley Graphs

In mathematics, the term involution means an entity which is its own inverse, and
the elements of any algebraic structure which is its own inverse are called the involutory
elements of the structure. This set of all involutory elements of a ring is called the involution
set of the ring, which is a symmetric subset. With respect to this involution set, the involutory
Cayley graph of the ring Zn, denoted by ξ inv

n , was defined in [287], as follows.

Definition 31 ([287]). The involutory Cayley graph, denoted by ξ inv
n = Cay(Zn, S), is a graph

with the vertices set as the elements of the ring Zn; 0, 1, . . . , n− 1, and two vertices are adjacent if
their difference is an element of the set S, where S = {x 6= 0 ∈ Zn : x2 ≡ 1 mod n}, that is, for
all u, v ∈ V(ξ inv

n ), uv ∈ E(ξ inv
n ), when u− v ∈ S, where S is the set of all involutory elements in

the ring.

Similarly, the addition variant of this Cayley graph, called the involutory addition Cayley
graph of the ring Zn, denoted by ξ inv+

n , was defined in [287], as given below. Illustrations of
an involutory Cayley graph and an involutory addition Cayley graph are given in Figure 20.

Definition 32 ([288]). The involutory addition Cayley graph, denoted by ξ inv+
n = Cay+(Zn, S),

is a graph with the vertices set as the elements of the ring Zn; 0, 1, . . . , n− 1, and two vertices are
adjacent if their difference is an element of the set S, where S = {x 6= 0 ∈ Zn : x2 ≡ 1 mod n},
that is, for all u, v ∈ V(ξ inv+

n ), uv ∈ E(ξ inv+
n ), when u+ v ∈ S, where S is the set of all involutory

elements in the ring.
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Figure 20. Examples of involutory and involutory addition Cayley graphs. (a) Involutory Cayley
graph ξ inv

8 . (b) Involutory addition Cayley graph ξ inv+
8 .

The basic properties of the graphs ξ inv
n and ξ inv+

n were discussed in [287,288], respec-
tively. In comparing the properties that were obtained for both graphs, the differences as
well as the similarities between the graphs and the values of n for which they coincide can
be obtained. The involutory Cayley graph is S-regular, whereas the involutory addition
Cayley graphs can be |S|-regular or (|S|, |S| − 1)-semi regular, depending on the value of
n. As the degree of each vertex in the involutory addition Cayley graph and the diameter
of the graph depend on the value of n, the degree and the diameter of the graph were
only explored in the article [288]; conversely, in [287], apart from computing the degree of
the vertices in the graph, it was proven that the involutory Cayley graphs are connected,
Eulerian, and Hamiltonian. The domination number and related parameters for the involu-
tory Cayley graph were computed in [289], where the parameters were computed for the
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involutory Cayley graphs that fall under the standard graph classes, using the exact values
that had been obtained for these graph classes.

6.5.1. Quadratic Unitary Cayley Graphs

The symmetric subset of the involutory elements of a ring is also called the quadratic
units modulo n, as the square of an element becomes the unit of the ring Zn with integers
modulo n. As such, the involutory Cayley graphs of Zn were also studied independently
under the name quadratic unitary Cayley graphs for the ring Zn in [290]. For the values of n
such that n ≡ 1 mod 4 and is prime, these graphs were found to coincide with a class of
graphs called the Paley graphs on n vertices (refer to [291] for more details on Paley graphs).
Some structural properties of the quadratic unitary Cayley graphs of Zn were presented
in [290], where the diameter of the graph was determined for odd and even values of n by
analysing the paths of different lengths in the graph. This analysis led to the examination
of self-complementary quadratic unitary Cayley graphs on Zn, from which the following
characterisation of perfect quadratic unitary Cayley graphs was obtained, as described
in [290].

Theorem 121 ([290]). The quadratic unitary Cayley graph on Zn is perfect if and only if n is even
or n = pk, for prime p ≡ 3 mod 4.

The structural analysis of the graph also led to the characterisation of the quadratic uni-
tary Cayley graph on Zn that decompose into direct products of graphs
(see Definition 7) over relatively prime factors of n. Based on the proof techniques used to
prove the results, a linear operator, called the sympletic operator, was defined in [290] as a
2k× 2k matrix, called the sympletic form (modulo n),

σ2k =

(
0k −Ik
Ik 0k

)
,

where Ik and 0k denote the identity matrix and the zero matrix of order k, respectively.
It was proven in [290] that the set of all these sympletic operators with coefficients in Zn
form the sympletic group modulo n. These sympletic operators were examined in [290],
and a corollary regarding the decomposition of sympletic matrices in terms of these row
operations was obtained. This led to the final result that gave a bound on the complexity of
decompositions of these sympletic operators modulo n, which followed from the bounds
on the diameter of the quadratic unitary Cayley graph on Zn that was obtained in the
same article.

This notion of quadratic unitary Cayley graphs was extended to all finite commutative
rings R in [292] as the graph with the vertices set as the elements of the ring R, and two
vertices are adjacent if their difference is an element of the set S, where S∗ = {x2 : x ∈
R− {0}} and S = S∗ ∪ −S∗. In fact, it can be seen that, when the ring is a finite field of
prime order k such that k ≡ 1 mod 4, the quadratic unitary Cayley graph of that field is a
Paley graph, which, by definition, is the graph with the vertices set as the elements of the
field, such that the vertices u and v are adjacent if and only if u− v is a non-zero square of
the field.

For a finite commutative ring R that is decomposed as R = R1 × R2 × . . .× Rt, where
each Ri, 1 ≤ i ≤ t is a local ring with the maximal ideal Mi and, for a local ring R0 with the
maximal ideal M0 such that |R0|

|M0|
≡ 3 mod 4, the spectra of the quadratic unitary Cayley

graphs of the ring R0 and R0 × R, with the condition that |Ri |
|Mi |
≡ 1 mod 4, 1 ≤ i ≤ t,

were determined, along with their energies. The spectral moments of the quadratic unitary
Cayley graphs of the above-mentioned rings were also computed, and the conditions
under which these graphs were hyperenergetic or Ramanujan graphs were determined. A
prefatory study on the same graphs was performed in [293], where only a very few results
on the structure of the graph and its eigenvalues were obtained.
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6.5.2. Quadratic Residue Cayley Graphs

Another variant of Cayley graphs similar to the involutory Cayley graphs are quadratic
residue Cayley graphs. These can be seen as an extension of the quadratic residue property
to a prime number. Accordingly, these graphs are defined on the rings Zn, where n is
an odd prime. If p is an odd prime and n ∈ N, such that p divides n and the quadratic
congruence x2 ≡ n mod p has a solution, then n is called a quadratic residue mod p, and
the set of all quadratic residues mod p, along with their inverse, is a symmetric subset of
Zp. With respect to this symmetric subset, the quadratic residue Cayley graph was defined
in [294], exclusively for the rings Zp, where p is an odd prime, as given in Definition 33,
which is followed by an example of a quadratic residue Cayley graph of a ring in Figure 21.

Definition 33 ([294]). For an odd prime integer p, the quadratic residue Cayley graph of Zp,
denoted by ξ

qrcg
n = Cay(Zp, S), is a graph with the vertices set as the elements of the ring Zp,

0, 1, 2, . . . , p, and two vertices u and v are adjacent if their difference u− v ∈ S, where S the set of
all quadratic residues mod p, along with their inverse elements.

0

1
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34
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7

8

9 10
11

12

Figure 21. The quadratic residue Cayley graph of the ring Z10.

The studies on the quadratic residue Cayley graph of the ring Zp have mainly been
focused on finding dominating functions and some of their variants for the graph. The
graph was defined, along with the basic invariants and properties such as the degree,
regularity, number of triangles, disjoint Hamiltonian cycles, in [294]. Following this, all the
investigations were on different dominating functions on the graph.

A function f : V(G) → [0, 1] is a dominating function of a graph G if f (N[v]) =

∑
u∈N[v]

f (u) ≥ 1 for every vertex v ∈ V(G), and the dominating function f is minimal if

f (v) ≥ g(v) for all v ∈ V(G), where g is also a dominating function. A minimal dominating
function f is a basic minimal dominating function if it cannot be expressed as a proper convex
combination of two distinct minimal dominating functions (see [295]). These definitions
related to replacing the vertex with an edge give the corresponding definitions of edge
dominating functions.

The edge dominating functions, basic minimal edge dominating functions, and basic
minimal dominating functions of the quadratic residue Cayley graphs were computed
in [295–297], respectively. Different functions were proven to be the corresponding domi-
nating functions for the graph, and several examples to convey the significance of these
functions were also given. Following this, the variations in the total dominating functions
for the graph were explored in [298,299] in a similar way.

In [300], the quadratic residue Cayley graph of the ring Z2k was studied exclusively.
Only for integers of the form 2k, the quadratic residue Cayley graph was constructed and
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investigated. This was the earliest known attempt to define a Cayley graph based on
quadratic residues. In this article, it was shown that the diameter of these quadratic residue
Cayley graphs defined on Z2k was two, following which a recursive formula to determine
the number of triangles in the graph was obtained. In addition, a small discussion on the
number of k residue modulo pr (prime p) was also given in [300], to extend the defined
quadratic residue Cayley graphs on Z2k .

6.6. Zero-Divisor Cayley Graphs

A symmetric subset of a ring which is highly significant in order to understand the
structure of the ring is the set of all zero-divisors. The Cayley graph defined with respect to
this symmetric subset of zero-divisors is called the zero-divisor Cayley graphs. This graph
was first defined on the finite commutative rings in [161], after which it was defined on the
rings of integer modulo n, Zn in [301]. Illustrations of zero-divisor Cayley graphs of the
integer modulo ring and that of a ring R are given in Figure 22.

Definition 34 ([301]). The zero-divisor Cayley graph of a ring R, denoted by ξ
zdcg
R =

Cay(R, Z(R)), is defined as the graph whose vertex set is the set of all elements of the ring,
and two distinct vertices are adjacent if their difference is a non-zero zero-divisor, that is, for all
u, v ∈ V(ξ

Z(R)
R ), uv ∈ E(ξZ(R)

R ), when u − v ∈ Z(R), where Z(R) is the set of all non-zero
zero-divisors of the ring R. The zero-divisor Cayley graph of the ring Zn is denoted by ξ

zdcg
n .
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Figure 22. Examples of zero-divisor Cayley graphs of rings. (a) Zero-divisor Cayley graph ξ
zdcg
8 . (b) The

zero-divisor Cayley graph of Z2 ×Z6.

In [161], the graph parameters such as the clique number, chromatic number, edge
chromatic number, domination number, and girth of the graph ξ

Z(R)
R were computed, and

the rings for which the zero-divisor Cayley graphs were strongly regular and planar were
characterised. By restricting this definition to the ring Zn, more properties such as the
enumeration of triangles, connectivity, etc. were explored in [302].

We know that any element in a ring is either a zero-divisor or a unit, and the set of all
non-coprime integers of n are the zero-divisors in the ring Zn. Hence, in the zero-divisor
Cayley graphs of Zn, two vertices are adjacent if and only if their difference is not relatively
prime to n; more precisely, it can be seen as the complement of the unitary Cayley graphs
Xn defined on Zn. As many properties of the unitary Cayley graphs and their complements
have already been studied in the literature, only the basic invariants and the basic properties
of the graph were studied in [301,302]. The number of triangles in the graph, along with
the traversal properties, were studied in [301], and the connectedness of the graph and
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the properties of the components when the zero-divisor Cayley graphs were disconnected
were investigated in [301].

Note that, by modifying the adjacency condition of the zero-divisor Cayley graphs
defined on a ring R from the difference to the sum of two elements to be a zero divisor,
the definition of a total graph of a ring is obtained. As the literature on total graphs is
hugely growing, along with several exclusive and detailed surveys and review papers (for
examples, see [17,22]), we have not included them in this review.

It can be noted that, for all the variations in Cayley graphs that have been discussed
in this section, only a cursory investigation has taken place in the literature. This can
be because of two reasons: one is that, while investigating the structure of the newly
defined graph, a high similarity with the properties of an already defined, existing Cayley
graph were observed and, sometimes, the graphs may also coincide with them, leaving
no scope for further study; the other reason to not proceed further is because of the
ambiguous structure of the symmetric subset that is considered to define the Cayley graph,
or the realisation that the graph structure might not reflect the important properties or the
structure of the ring, failing to serve the main purpose of the study.

7. Conclusions

It can be seen that the introduction of the unitary Cayley graphs of the ringZn provided
a new direction for research in algebraic graph theory, using the number-theoretic properties
of the rings to define variants of Cayley graphs with respect to different symmetric subsets
of the group by considering the operations of both sum and difference, giving rise to
twin-type variants of such graphs. Apart from some specific open problems that were
discussed in their respective sections , there are several other open problems that can be
investigated with respect to these algebraic graphs defined on rings that are discussed in
the review, among which a few are presented in this section.

It can be observed that there is an overall pattern in the investigations performed on a
particular graph when reviewing the literature, as well as while reading this article. Before
moving to the open problems, it is important that this pattern is explicitly mentioned, for
a better understanding. As a new variant of Cayley graph is defined, its first properties
that are determined are the regularity, the degree of the vertices, and the size. Following
these, the other parameters of diameter, girth, chromatic number, clique number, etc.
are computed. Connectedness, traversability, planarity, and perfection are significant
properties through which characterisations of rings are obtained. Investigating different
matrices associated with the graphs and their spectra, especially the adjacency spectrum,
the eigenvalues and energy of the graph are an inevitable problem. From these spectra,
different properties such as hyperenergecity, realising the given graphs as Ramanujan
graphs, etc. are discussed.

Furthermore, several matrices are associated, corresponding to which analogous
investigations have been made. Realisation of the graph based on isomorphism and
structural characterisations of the graph are important problems to address. Apart from
these, different chromatic numbers, domination numbers, topological indices, centrality
measures, covering numbers, vulnerability parameters, etc. can be computed for the
graph, and the possibility of characterisations of the graphs and the rings based on these
parameters are also examined. All possible studies are extended to the complements of
these graphs, as they are also regular, in most cases.

Moving on to further areas of exploration with respect to the graphs discussed in
the review, in most of the graphs that are given, not many studies on different types
of domination and colouring parameters exist, except for the unitary Cayley graphs of
Zn. Computation of different topological indices and centrality measures, and associating
different matrices to these graphs and computing their energies and colour energies, are also
open, especially for the graphs defined in Section 6; different types of vertex-partitioning of
the algebraic graphs are also promising problems to work on.
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Similarly, several parameters such as covering numbers, metric dimension, resolving
sets, etc. have not been computed so far for the graphs; computing them and checking
the feasibility of obtaining Nordhaus–Gaddum-type inequalities is also an open avenue to
explore. In terms of signed graphs, the signed graph varieties have not been introduced for
many Cayley graph variations, and even for the ones that have been introduced, properties
apart from balance, clusterability, sign-compatibilty, and canonical consistency can be
studied. Furthermore, induced sign graphs based on other properties of the ring elements
can also be introduced, instead of introducing modified definitions based on the existence
of the end vertices of an edge in a considered subset.

As seen in the literature, several Cayley graphs form an increasing sequence of graphs,
where each graph can be related to the previous graph structure, from which various
constructions of graph classes with different properties can be obtained. One other such
type of study is constructing and realising sequences of self-similar graphs, where a self-
similar graph is defined as follows.

For any graph G on n vertices and for any symmetric subgraph H of Kn,n, we construct
an infinite sequence of graphs based on the pair (G, H). The first graph in the sequence
is G, then, at each stage replacing every vertex and edge of the previous graph by a copy
of G, a copy of H, the new graph in the sequence, is constructed. We call these graphs
self-similar graphs (see [303,304]). As certain Cayley graphs on groups are realised as ones
that generate self-similar graphs, an investigation of a similar kind can be taken up for
research in Cayley graphs defined on rings.

Based on the definition of the variants in Cayley graphs presented in this review, it can
be seen that they are related to each other in some aspects. Hence, chain-like inequalities
of these graphs can be identified for certain rings and characterisations of rings when the
graphs are equal or when one is a subgraph of another. On the other hand, a similar type
of investigation can be performed exclusively with respect to the complements of these
graphs or by considering both the graphs defined, as well as their complements, as the
complement of some variants of Cayley graphs discussed in this article coincide with some
graphs. Based on the huge literature available on Cayley graphs of groups, power graphs,
zero-divisor graphs, and other graphs derived from them, certain analogous studies can
also be introduced to these types of graphs.
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