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Abstract: Identifying the weak buses in power system networks is crucial for planning and operation
since most generators operate close to their operating limits, resulting in generator failures. This
work aims to identify the critical/weak node and reduce the system’s power loss. The line stability
index (Lmn) and fast voltage stability index (FVSI) were used to identify the critical node and lines
close to instability in the power system networks. Enhanced particle swarm optimization (EPSO)
was chosen because of its ability to communicate with better individuals, making it more efficient to
obtain a prominent solution. EPSO and other PSO variants minimized the system’s actual/real losses.
Nodes 8 and 14 were identified as the critical nodes of the IEEE 9 and 14 bus systems, respectively.
The power loss of the IEEE 9 bus system was reduced from 9.842 MW to 7.543 MW, and for the IEEE
14 bus system, the loss was reduced from 13.775 MW of the base case to 12.253 MW for EPSO. EPSO
gives a better active power loss reduction and improves the node’s voltage profile than other PSO
variants and algorithms in the literature. This suggests the feasibility and suitability of EPSO to
improve the grid voltage quality.

Keywords: voltage stability; identification of weak bus; FVSI and Lmn; diminish power loss;
PSO variants; EPSO

MSC: 90C11; 90C30

1. Introduction

Voltage stability (VS) is a major focus of modern power system (PS) utility companies.
Therefore, VS is the ability of systems to keep the voltage profile stable when undergoing
large or small disturbances. Different means have been used to improve the voltage profile
in modern PS, such as battery storage systems and distributed energy resources (DER) [1–4].
The increase in the infrastructure and load demand rate leads to the high utilization of PS
energy equipment. This has made systems experience voltage instability that has led to
blackouts in some parts of the world, destruction of some businesses and daily activities,
and increased power loss. Based on this problem, this study is motivated by identifying
the weak bus that could cause a blackout in a system and reducing system transmission
loss, which is caused by a shortage of reactive power (RP), which significantly affects the
quality of energy delivery to the consumer end. Environmental and economic factors are
two leading causes for establishing a new transmission line (TL). As the load increases,
the system is heavily loaded, and maintaining stability becomes difficult; thus, the system
operates close to the instability point [5–8]. Evaluation of system stability is based on the
node/bus voltage profile. Presently, there are numerous techniques for finding system
stability. The line voltage stability index (LVSI) [9], a simplified voltage stability index
(SVSI) [10], L-index [11], a global voltage stability index (GVSI) [12], etc. Some classical
voltage stability assessments and various techniques have been proposed for weak bus
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identification in power system networks. Some of them are genetic algorithms based on
support vector machine (GA-VSM) [13], ant colony (AC) [14], electric cactus structure
(ECS) [15], and network response structural characteristic (NRSC) [16].

A shortage of RP in a PS network causes a tremendous waste of electricity in the
distribution system, resulting in extra emission of carbon and power generation cost.
Therefore, reducing losses in transmission line networks (TLN) is essential for system safety.
However, the best way to reduce losses in TLs of PS networks is RP optimization (RPO).
Two methods used in solving the RPO problem are traditional and evolutionary algorithms.
Traditional methods include the Newton–Raphson (NR) method, interior point methods,
quadratic programming, and linear programming [17]. Recently, evolution algorithms have
been used to solve RPO problems, such as the hybrid pathfinder algorithm (HPFA) [18],
hybrid PSO (HPSO-PFA) [17], modified PFA (mPFA) [19], chaotic krill herd [20], ant lion
optimizer (ALO) [21], the tree seed algorithm (TSA) [22], and the improved pathfinder
algorithm (IPFA) [23]. However, PSO is good in search capacity and has less programming
than others [17].

Harish et al. used the fast voltage stability index (FVSI) and line stability index (Lmn)
to identify the location of flexible alternating current transmission system (FACTS) devices
along with PSO, artificial bee colony (ABC), and the hybrid genetic algorithm (H-GA)
to find the sizing of the FACTS devices [24]. Also, a novel method for strengthening
PS stability was proposed by Jaramillo et al. [25]. FVSI was used to identify the node
on which the SVC should be installed under an N-1 scenario. It was reported that the
result obtained could reestablish the FVSI in each contingency before the outage [25]. The
voltage collapse critical bus index (VCCBI) [26], L-Index, voltage collapse proximity index
(VCPI), and modal analysis [27], which are part of voltage stability indices (VSI), were
used to identify weak/vulnerable buses in electrical power systems. Power loss reduction
was made using a hybrid loop-genetic-based algorithm (HLGBA) [28], the Jaya algorithm
(JAYA), diversity-enhanced (DEPSO), etc. [29].

This research considers the identification of critical nodes and loss reduction, which
serve as merit over the previous work mentioned above. FVSI and Lmn were used to
find the critical node in the system based on load flow (LF) results from MATLAB 2018b
software (MathWorks, Inc., Natick, MA, USA). FVSI and Lmn were chosen because of their
efficiency in identifying the weak/vulnerable bus (i.e., the fastness of FVSI and the accuracy
of Lmn) [30]. The critical node was determined by the value of the indices (i.e., FVSI and
Lmn). When the indices value reaches unity or is close to unity, that node is the critical node
of the system. The reactive powers of all the load buses were increased one after the other
to determine the maximum RP on each of the load buses/nodes. Also, each line’s value
of FVSI and Lmn was computed to determine the load-ability limit on each load bus. The
ranking was carried out based on the indices value of each node; hence, the node with
the highest indices values is the system’s critical bus. This bus contained the smallest RP
when the load bus was varied. The identified node needs reactive power support to avoid
voltage collapse. Also, enhanced PSO (EPSO) was used to minimize the PS network loss
along with PSO variants that have been developed by previous research, such as PSO-based
time-varying acceleration coefficients (PSO-TVAC) [31], random inertia weight PSO (RPSO),
and PSO based on success rate (PSO-SR) [32]. To overcome the premature convergence
of PSO, the chosen EPSO was applied, and it uses neighborhood exchange to share more
information with the other best individual (neighborhood) to improve itself, which makes
it more efficient in getting a prominent solution (i.e., exploitation stage) to optimizing the
objective function. The novelty of this research and this paper’s contribution is that each
particle learns from its own personal and global positions in the PSO algorithm in the social
cognitive system. Apart from personal experience and better information received from the
search areas, it is advisable to share with better individuals to enhance or improve itself.
Therefore, a new acceleration constant ( c3) is added to the original PSO equation, making
obtaining the best solution more efficient. Also, additional c3 gives the swarm the capability
to reach the exploitation stage, which helps to overcome the premature convergence of PSO.
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However, this paper has contributed by (1) comparing different PSO variants and EPSO
for power loss reduction; (2) identifying the power system critical node for the perfect
operation of generators to avoid breakdown.

The rest of the paper is structured as follows: Section 2 presents the problem formula-
tion of voltage stability indices and RPO, and Section 3 discusses the PSO, its variants, and
EPSO. The results and discussion are presented in Section 4, and the conclusion and future
work is the last section.

2. Problem Formulation
2.1. Formulation of Voltage Stability Indices

FVSI and Lmn are part of the VSI methods for identifying weak buses. They were
formed based on two bus systems. For a system to be stable, the value of FVSI and Lmn
must be smaller than unity and unstable when it equals unity and above.

2.1.1. FVSI

FVSI was developed [33] based on the concept of a single line of power flow (PF). The
FVSI is evaluated by:

FVSI =
4Zj2Q1

V2
1 Xr

≤ 1 (1)

where Zj is the impedance, Q1 is the RP at sending ends, Xr is the reactance of the line, and
V1 is the voltage at the sending end.

2.1.2. Lmn

Lmn was proposed by the authors of [34]. Using the concept of PF from a single-line
diagram, the discriminant of the quadratic voltage equation is set to be higher than or equal
to zero. The equation is given below.

Lmn =
4XQ2

[V1sin(θ − δ)]2
≤ 1 (2)

where θ is the angle of the TL, δ is the power angle, and Q2 is the RP at receiving end.

2.2. Steps Involve in Identifying Critical Node in EPS

Identifying critical nodes in EPS is essential for delivering stable electricity to the
consumer end. The following steps are involved:

1. Input the line and bus data of the IEEE test case;
2. Run the PF solution in MATLAB using the NR method at the base case;
3. Calculate the stability values of FVSI and Lmn of the IEEE test system;
4. Gradually increased the RP of the load bus until the values of FVSI and Lmn are closer

to one (1);
5. The load bus with the highest FVSI and Lmn value is selected at the critical node;
6. Steps 1 to 5 are repeated for all the load buses;
7. The highest RP loading is selected and called maximum load-ability;
8. The voltage magnitude at the critical loading of a particular load bus is obtained and

is called the critical voltage of a specific load bus.

2.3. Formulation of RPO

The main objective of RPO is to reduce the network’s actual power loss.

2.3.1. Objective Function

The main goal of RPO is to reduce the network’s actual power losses, which are
described as follows.

Minimize f= Ploss(x, u) (3)
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which satisfying {
g(x, u) = 0
h(x, u) ≤ 0

(4)

where f (x, u) is the objective function, g(x, u) is the equality constraints, h(x, u) is the
inequality constraints, x is the vector of the state variables, and u is the vector of the
control variables.

The real power loss minimization in the TL is given below, and its purpose is to reduce
the overall loss in the TLN.

Min f = Ploss

NL

∑
K=1

Gk

(
v2

i + v2
j − 2ViVjcos θij

)
(5)

where Ploss is the real total losses, k is the branch, Gk is the conductance of the branch k,
Vj and Vi is the voltage at the ith and jth bus, NL is the total number of TL, and θij is the
voltage angle between bus i and j.

2.3.2. Equality Constraints

The PS network’s active and reactive PF equation are called the equality constraints.

Pgi − Pdi − Vi

N

∑
j=1

Vj(g ijcos θij + bijsin θij
)
= 0 (6)

Qgi − Qdi − Vi

N

∑
j=1

Vj(g ijsin θij − bijcos θij) = 0 (7)

Here, gij and bij are conductance and susceptance, and θij is the phase difference
of voltages.

2.3.3. Inequality Constraints

Inequality constraints are operational variables that must be kept within acceptable limits.

(1). Generator constraints

Vmin
gi ≤ Vgi ≤ Vmax

gi i = 1 . . . , Ng (8)

Qmin
gi ≤ Qgi ≤ Qmax

gi i = 1 . . . , Ng (9)

(2). Reactive compensation constraints

Qmin
ci ≤ Qci ≤ Qmax

ci i = 1 . . . , NC (10)

(3). Transformer tap ratio constraints

Tmin
k ≤ Tk ≤ Tmax

k i = 1 . . . , NT (11)

where Vmin
gi and Vmax

gi are voltage amplitude limits, Qmin
gi and Qmax

gi are the generation

limits of reactive power, Pmin
gi and Pmax

gi are the limits of active power, Qmin
ci and Qmax

ci

are the reactive compensation limits, and Tmin
k and Tmax

k are the transformer tap limits.

The penalty function is used to make optimization problems more straightforward
and rigorous. In other to solve the optimization problem, the penalty function has to be
selected. The primary function of the penalty function is to keep system security within the
acceptable limits.
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fT = f + λV

NB

∑
K=1

(
Vi − V lim

i

)2
+ λg

NB

∑
K=1

(
Qgi − Qlim

gi

)2
+ λs

NB

∑
K=1

(
Si − Slim

i

)2
(12)

where λV , λg, and λs

V lim
i =

{
V lim

i , i f Vi < Vmin
i

V lim
i , i f Vi > Vmax

i
(13)

Qlim
gi =

{
Qlim

gi , i f Qgi < Qmin
gi

Qlim
gi , i f Qgi > Qmax

gi
(14)

Slim
i =

{
Slim

i , i f Si < Smin
i

Slim
i , i f Si > Smax

i
(15)

3. Particle Swarm Optimization (PSO)
3.1. PSO and Its Variants
3.1.1. Overview of PSO

PSO was created in 1995 by Kennedy and Eberhart [35]. The social behavior of birds
and schooling fish was the basis for the population-based stochastic optimization method
known as PSO. In the search space, PSO makes use of the promising area. Each particle
moves and adjusts its position following its past behavior and the best particle within a
decision time. Each particle is identified by a d-dimensional vector that depicts its location
in the search space. The position of the vector is represented as a possible solution to the
optimization issue. Whenever an iterative process is performed, the velocity is added
to update each particle’s position [36]. The best particle in the swarm (population) and
the distance from the best cognitive both impact the particle’s velocity. The formulae for
velocity and position are shown below.

Vk+1
i = wvk

i + c1 × r1

(
pbest − sk

i

)
+ c2 × r2

(
gbest − sk

i

)
(16)

sk+1
i = sk

i + Vk+1
i (17)

where Vk
i is the velocity of the particle, sk

i is the position of the particle, r1 and r2 are two
randomly generated numbers between (0, 1), c1 and c2 are the coefficients of accelerated
particles, w is the inertia weight, pbest is the personal best, and gbest is the global best.

3.1.2. RPSO

In RPSO, the weight factor was usually between 0.5 and 1 [37]. Roy Ghatak et al. claim
that the random inertia weight component enhanced the initial objective function. Stocking
to the local optimal at the end of the iteration may affect the accuracy of the solution [32].
The value of w is found in Equation (19).

w = 0.5 + rand()/2 (18)

3.1.3. PSO-SR

To find the best method for the effective management of inertia weight (w), a novel
adaptive w was developed based on success rate (SR) [37]. At each iteration, the swarm
position is determined using the SR. Indicate that a big value of w is necessary to advance
toward the optimal point when the SR is large. Additionally, for a low value, the particle
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oscillates around the ideal location and requires a small increase in the w value to reach the
perfect result [32].

w(t) =
(

wmax − wmin
)
∗ SR + wmin (19)

where SR is the success rate and is chosen to be 1 (otherwise, it is zero), wmin and wmax are
the minimum and maximum limits of the w [32].

3.1.4. PSO-TVAC

Due to the lack of diversity towards the end of the search area, PSO with PSOTV-
w was utilized, which locates the optimal solution more quickly but is less effective at
tuning the optimal solution. The accuracy and effectiveness of the PSO to obtain optimal
solutions are significantly influenced by the tuning parameter [31,38]. Based on this
concept, a TVAC was proposed to enhance the global search at the start of optimization,
allowing the particle to move to the global optimum at the end of the search space. As
the search progresses, c1 and c2 alter over time, decreasing the cognitive components and
increasing the social components. This indicates that the particle converges to the global
optimum towards the end of the search process due to minor cognitive and greater social
components. Additionally, the particle can roam throughout the search area rather than
initially gravitating toward the best population due to enhanced cognitive and minor social
components [31].

C1 = (C1t − C1k)
z

itermax
+ C1k (20)

C2 = (C2t − C2k)
z

itermax
+ C2k (21)

where z is the current iteration, itermax is the maximum iteration, and C1k, C1t, C2t, and C2k
are the initial and final values of the cognitive and social acceleration factors. The value for
C1t and C2k is 0.5, and 2.5 for C1k and C2t is the most accurate value [39].

3.2. EPSO

To overcome the issue of falling into a local optimal from the standard PSO, the
chosen EPSO added some expansion to the basic PSO, such as a constriction factor and a
neighborhood model.

3.2.1. Exchange of Neighborhood

Since each particle learns from its own personal and global positions in the PSO algo-
rithm in the social cognitive system, apart from personal experience and better information
received from the search areas, it is advisable to share with better individuals to enhance
or improve itself [40]. Therefore, using that concept, a new acceleration constant (c3) is
added to the original PSO equation, making it more efficient to obtain the best solution.
The additional c3 gives the swarm the capability to reach the exploitation stage.

Vk+1
i = ϕ

(
w1vk

i + c1r1

(
pbest − sk

i

)
+ c2r2

(
gbest − sk

i

)
+ c3 × r3

(
pbest, t − sk

i

))
(22)

where pbest,t is the vector position for an excellent individual domain (i.e., the overall best
position), ϕ is the constriction factor, and r3 is random numbers in the interval of (0,1).

3.2.2. Implementation of EPSO to RPO

The steps involved in solving the RPO problem are given below, and the flow chart is
shown in Figure 1:

1. Initialize: Set the number of particles, initial velocity, the total number of iterations,
generator voltages, the transformer tap settings, and accelerated constants;

2. Run load flows to determine the objective function (real power loss) and evaluate the
penalty function concerning inequality constraint violation;
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3. Counter updating: Update the iter = iter + 1;
4. Evaluate each particle and save the global and personal best positions;
5. Update the velocity as given in Equation (22);
6. Update the position as given in Equation (17);
7. Check whether solutions in Steps 3 and 4 are within the limit; if it is above the limit,

apply Equation (12) to keep the violation;
8. The position of the local best should be updated if the current fitness value is smaller

than the best one;
9. Update global best;
10. Search for minimum value: The minimum value in all the individual iterations is

considered the best solution;
11. Stopping criteria: If the stopping criteria have been satisfied, stop; if not, go back to

Step 5.
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4. Result and Discussion

This section is divided into two. The first section discusses the results of voltage
stability indices. The second section discusses the results of the RPO algorithm. The
algorithm settings used in the second section is shown in Table 1. The simulation was
executed using MATLAB 2018b. The IEEE 9 and 14 bus systems were employed to evaluate
the effectiveness of the techniques for actual power reduction. The best outcomes are
documented after each test system has been run 30 times.
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Table 1. Optimum setting of the algorithm.

Parameters Value

Number of iterations 200

Particle number 50

Acceleration constant C1 = C2 = C3 = 2.05

Maximum and minimum w 0.9 and 0.4

Constriction factor 0.729

4.1. Voltage Stability Indices
4.1.1. IEEE 9 Bus System

The system consists of three generators located at buses 1, 2, and 3; three load buses
located at buses 5, 6, and 8; and three transformers located at buses 1, 2, and 3. Also, the
system has six transmission lines and 100 MVA at the base. The line and bus data are
taken [41,42]. The single-line diagram/scheme of the IEEE 9 bus system was given in
Figure 2. The MATLAB 2018b software was used to validate the FVSI and Lmn and the
results obtained after varying reactive power of load buses are presented in Table 2. The
critical node of the system was selected by varying/increasing the RP of the load bus until
one of the indices values approaches unity, and the bus contains the lowest permissible
RP. The load buses’ RP was increased one after the other to find the maximum reactive
power of each load bus. In Table 2, the value of the indices, the voltage magnitude, and
each load bus ranking are presented. The bus with the highest values of the index and a
smaller load-ability value of RP is ranked first and is the system’s critical node. Node 8 is
the critical node and ranks first in the system because it contains a small RP load variation
of 240 MVar and a value of 1.028 for FVSI. The lines connected to it are 7–8 and 8–9. This
bus needs urgent attention to avoid the breakdown of the generator.
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Table 2. The indices value and ranking of the bus in the IEEE 9 bus system.

Bus Numbers Q (MVar) Lmn FVSI Voltage Magnitude (p.u) Ranking

5 260 0.902 0.933 0.800 2

6 290 0.865 0.889 0.824 3

8 240 0.998 1.028 0.802 1
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4.1.2. IEEE 14 Bus System

The IEEE 14 bus system contains four generators, a slack bus, twenty transmission
lines, and nine load buses located at buses 4, 5, 7, 9, 10, 11, 12, 13, and 14. The line and
bus data were taken [29,30]. The single-line diagram/scheme of the IEEE 14 bus system
is given in Figure 3. Table 3 shows each load bus’s indices value, ranking, and voltage
magnitude. The validation was carried out on MATLAB 2018b software, the FVSI and
Lmn results were obtained after varying the reactive power of load buses. The RP of the
load bus was varied one bus at a time until the value of indices reached unity, or the LF
solution failed to converge. When varying the RP of each load bus, one of the indices values
makes the bus vulnerable to voltage collapse; at this stage, the indices values were noted,
and the bus was selected as the critical bus. The result obtained was compared with the
previous study reported by Samuel et al. [30], and it was observed that the result of this
study shows its validity and effectiveness as it aligned with that of the literature [30]. It
also presents the ranking of each bus, which was carried out based on the highest values of
the indices and the least RP injected into the load bus. The load node/bus with the highest
indices value and the small permissible reactive load was selected as the critical node of the
system and ranked first. It clearly shows that node 14 is the critical bus/node of the system
because it had the highest values of the index of 1.023 for FVSI and a small permissible
reactive load of 76.5 MVar. This node/bus had two connected lines, 9–14 and 13–14.
The load connected to the line experienced voltage instability. This was identified as the
weakest bus that needs proper attention to avoid voltage collapse. The most stable bus are
nodes/buses 4 and 5. They had the height value of RP injected into the bus, 360 MVar, and
352.5 MVar, respectively.
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Table 3. The indices value and ranking of the bus in the IEEE 14 bus system.

Bus Number Q (Var) Voltage Magnitude (p.u) Ranking Lmn FVSI

4 360 0.833 9 0.944 0.892

5 352.5 0.997 8 0.998 0.999

7 160 0.771 7 0.929 0.928

9 150 0.712 5 0.981 0.970

10 120 0.663 4 0.942 0.904

11 103 0.748 3 0.912 0.974

12 78 0.790 2 0.865 0.868

13 151.8 0.747 6 0.923 0.993

14 76.5 0.693 1 0.966 1.023

4.2. Reactive Power Optimization

To test the chosen EPSO for RPO, EPSO and other PSO variants are coded in MATLAB
2018b software. Table 4 shows the control variable limits of the two test systems. The
maximum and minimum limits for voltage magnitude are 1.1 p.u and 0.95 p.u, respectively.
Also, the maximum and minimum limits for the transformer tab limits are 1.025 and 0.975,
respectively. However, the limits for the shunt compensator are set in the ranges of 0 MVar
and 20 MVar [44].

Table 4. Control variable limits for the IEEE 9 and 14 bus system.

Voltage Test Systems

Vmax 1.10

Vmin 0.95

Tmax 1.025

Tmin 0.975

Qmax 20

Qmin 0.0

4.2.1. IEEE 9 Bus System

Table 4 illustrates the variable control limits of the algorithms used in this research.
The N-R was used to obtain the base case power loss. EPSO and other PSO variants are
compared to obtain the smallest power loss. Figure 4 illustrates the convergence curve of the
system. The loss of PSO, EPSO, PSO-TVAC, PSO-SR, and RPSO are 7.608 MW, 7.543 MW,
7.589 MW, 7.600 MW, and 7.602 MW, respectively, from the base case of 9.842 MW. The
optimized power loss is expected to be smaller than the base case result. Therefore, EPSO
gives the smallest power loss of 7.543 MW; this shows the significance of the chosen method
in power loss reduction. Figure 5 illustrates the voltage profile at each bus before and
after the optimization. It can be seen that EPSO offered the highest voltage profile. This
shows that EPSO is more suitable for improving the node voltage than the rest of the PSO
variants. Table 5 gives the comparison of power loss for EPSO with other PSO variants and
algorithms. It can be seen that EPSO gave the smallest power loss of 7.543 MW. This shows
the effectiveness of EPSO in offering accurate results and outperforms all of them.
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Table 5. Comparison of the IEEE 9 bus system with other algorithms.

Algorithms PSO EPSO PSO-TVAC PSO-SR RPSO DA [45] CA [45]

Best MW 7.6077 7.543 7.5894 7.600 7.6023 14.74 14.82

Worst MW 8.957 8.257 8.685 8.878 8.989 - -

Mean MW 8.282 7.900 8.137 8.239 8.296 - -

STD 0.954 0.505 0.775 0.902 0.957 - -

The bold value indicates the lowest power loss and the superiority of this study to others presented in the table.
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4.2.2. IEEE 14 Bus System

The control variable is given in Table 4. The N-R was used as the base case, while
EPSO was chosen and compared with other PSO variants. The initial/base case system
loads, total generation, and power losses of the test system from the LF solution by NR
method are given below.

Pload = 259 MW, Ploss = 13.775 MW, and PG = 272.757 MW

The curve of the real power loss of EPSO is demonstrated in Figure 6. The power
loss reduction of PSO, EPSO, PSO-TVAC, PSO-SR, and RPSO are 12.263 MW, 12.253 MW,
12.260 MW, 12.261 MW, and 12.264 MW, respectively, from the base case of 13.775 MW.
After optimization, the power loss is expected to be less than the base case result. It can be
seen that EPSO outperforms all other PSO variants, giving a lower reduction of 12.253 MW.
However, EPSO has more computation times. Furthermore, Figure 7 shows the voltage
magnitude of each bus/node before and after optimization. EPSO effectively increases
each node’s voltage and gives the smallest loss reduction. The superiority of EPSO was
validated by comparing the real power loss, mean, and standard deviation (STD) of the
result obtained with other algorithms, like PSO, PSO-TVAC, RPSO, LCA, JAYA, and PBIL,
as presented in Table 6. Notably, it shows that EPSO reduced the power loss to 12.253 MW,
while PSO offers 12.263 MW, PSO-TVAC offers 12.260 MW, RPSO offers 12.259 MW, etc.
Thus, EPSO methods give excellent results by lowering power loss and outperforming
other techniques.
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Table 6. Comparison of the IEEE 14 bus system with other algorithms.

Algorithms Best Worst Mean STD

PSO 12.263 12.879 12.571 0.436

EPSO 12.253 12.311 12.282 0.041
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Table 6. Cont.

Algorithms Best Worst Mean STD

PSO-TVAC 12.260 12.587 12.424 0.232

PSO-SR 12.261 12.762 12.512 0.354

RPSO 12.259 12.324 12.292 0.046

HLGBA [28] 13.1229 - - -

LCA [46] 12.9891 13.1638 - 5.5283 × 10−3

PBIL [46] 13.0008 13.1947 - 9.7075 × 10−4

JAYA [47] 12.281 - - -

PSO [44] 12.36 - - -
The bold value indicates the lowest power loss and the superiority of this study to others presented in the table.
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5. Conclusions and Future Work

The role of PS operations is to ensure a stable voltage at the consumer end. Unfortu-
nately, the PS failed to meet the desired goal due to generator failures and losses in the TL.
This work applied EPSO to reduce the real power loss and other PSO variants. FVSI and
Lmn were used to identify the critical bus and to learn the stressfulness of the lines in a PS.
For the IEEE 9 bus system, bus 8 is the critical node, and the lines connected to it are the
most stressful lines of the system. It has the lowest value of RP of 240 MVar, and one of the
indices reaches unity (1). Node 14 was the critical node in the IEEE 14 bus system, and the
lines connected to it experienced voltage instability. EPSO was used to reduce/diminish the
actual/real power loss on the IEEE 9 and 14 bus systems. The loss was reduced from 9.842
MW to 7.543 MW for EPSO and 7.608 MW, 7.602 MW, 7.589 MW, and 7.600 MW for PSO,
RPSO, PSO-TVAC, and PSO-SR, respectively, for the IEEE 9 bus system. Also, the losses on
the IEEE 14 bus system were reduced from 13.775 MW (the base case) to 12.253 MW for
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EPSO and 12.263 MW, 12.259 MW, 12.260 MW, and 12.261 MW for PSO, RPSO, PSO-TVAC,
and PSO-SR, respectively. The result shows that the EPSO algorithm gives a better loss
reduction than other techniques and PSO variants in the literature. This indicates that EPSO
is suitable for improving grid voltage quality, thereby suggesting that the technique will be
a valuable tool for PS engineers in the planning and operation of electrical PS networks.
This work recommends applying EPSO to other metaheuristic algorithms to form a hybrid
method to solve engineering problems and some standard IEEE benchmark functions. Also,
the computation time should be improved in future work.
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Nomenclature

FVSI fast voltage stability index
Lmn line stability index
TL transmission line
RP reactive power
Zj is the impedance
Q1 is the RP at sending end
Xr is the reactance of the line
θ is the angle of the TL
V1 is the voltage at the sending end
δ is the power angle
Q2 is the RP at receiving end
Ploss is the real total losses
k is the branch
Gk is the conductance of the branch k
Vj and Vi are the voltage at the ith and jth bus
NL is the total number of TL
θij is the voltage angle between bus i and j
gij and bij are conductance and susceptance

Vmin
gi and Vmax

gi are voltage magnitude limits
Qmin

gi and Qmax
gi are the generation limits of reactive power

Pmin
gi and Pmax

gi are the limits of active power
Qmin

ci and Qmax
ci are the reactive compensation limits

Tmin
k and Tmax

k are the transformer tap limits
Vk

i is the velocity of the particle
sk

i is the position of the particle
pbest is the personal best
gbest is the global best
r1 and r2 are two randomly generated numbers between (0, 1)
c1 and c2 are the coefficients of accelerated particles
w is the inertia weight
SR is the success rate
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wmin and wmax is the minimum and maximum limits of the w
z is the current iteration
itermax is the maximum iteration
C1k, C1t, C2t, and C2k are the initial and final values of the cognitive and social acceleration factors

pbest,t
is the vector position for an excellent individual domain (i.e., the overall
best position)

ϕ is the constriction factor
PSO particle swarm optimization
PF power flow
P.U per unit
RPSO random inertia weight PSO
TVAC time-varying acceleration coefficients
VS is the voltage stability
DER is the distributed energy resources
PS is the power system
RPO is the reactive power optimization
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