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Abstract: In this paper, a new formula for the Drazin inverse for the Sum of Two Matrices is given
under conditions weaker than those used in some current literature. Further, we apply our results
to obtain new representations for the Drazin inverse of an anti-triangular block matrix under some
conditions, which also extend some existing results.
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1. Introduction

Let Cn×n denote the set of all the n × n matrices over the complex field C. For
A ∈ Cn×n, if X ∈ Cn×n satisfies the following conditions

AX = XA, XAX = X, AkXA = Ak,

then X is called the Drazin inverse [1] of A, denoted by Ad; Ad exists and is unique [2]. The
smallest nonnegative integer k that satisfies rank(Ak+1) = rank(Ak) is called the index of
A, denoted by k = ind(A). Let Aπ = I − AAd, where I is the identity matrix. For p ∈ Z,
[ p

2 ] represents the largest integer not exceeding p
2 .

Since the middle of last century, the Drazin inverse of a matrix has become a very
important research field. Up to now, it is still one of the most active research branches in
the world. The Drazin inverse of a matrix has been widely used in many fields, such as
differential equations, integral equations, operator theory, statistics, cybernetics, Markov
chains, optimization, etc. (see [2,3]).

For P, Q ∈ Cn×n, Drazin first gave the explicit formula of (P + Q)d in the case of
PQ = QP = 0 (see [1]), which led to later research on the Drazin inverse representation
of the sum. In 2001, Hartwig et al. gave the formula (P + Q)d under the condition
PQ = 0 (see [4]). In 2009, the formula (P + Q)d was established under the conditions
P2Q = 0, Q2 = 0 (see [5]). In 2011, an additive formula was given under the conditions
PQ2 = 0, PQP = 0 (see [6]). In 2016, Sun et al. (see [7]) derived a formula for (P + Q)d

under the conditions:

(1) PQ2 = 0, P2QP = 0 and (QP)2 = 0;
(2) P2Q = 0, QPQ2 = 0 and (QP)2 = 0;
(3) P2QP = 0, P3Q = 0, Q2 = 0.

Other representations of the Drazin inverse for P + Q were developed in Refs. [8–12].
One of the reasons for the study on the representations for the Drazin inverse of block

matrices essentially originated from finding the general expressions for the solutions to
singular systems of differential equations [13–15]. Then, Campbell and Meyer [3] posed
a problem: establishing an explicit representation for the Drazin inverse of 2× 2 block
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complex matrix M =

(
A B
C D

)
in terms of the blocks of the partition, where the blocks

A and D are assumed to be square matrices. This problem has not been solved so far but,
in recent decades, some results are presented in Refs. [16–19].

In addition, the representation of the Drazin inverse of anti-triangular block matrix
M(D = 0) has always concerned many scholars, which can be applied to the study of
solutions of second-order differential equations, graph theory, saddle point problems,
optimization, and other problems [20–23]. In recent years, the problem has been widely
studied, and some results have been obtained under some conditions [22,24–28], but it still
remains open.

This objective of this paper is to present the representations for the Drazin inverse
of the sum of two matrices and anti-triangular block matrix M(D = 0). In Section 2,
we first present some preliminary lemmas which are used in the subsequent proof. In
Section 3, we give the explicit formula of (P + Q)d when P2QP = 0, PQ2P = 0, PQ3 = 0,
P2Q2 = 0, (QP)2 = 0 which also extends some existing results in Ref. [7]. In Section 4, we
give the representation for the Drazin inverse of M(D = 0) under the following conditions:

(1) ABCAAπ = 0, ABCAπ B = 0, AdBC = 0;
(2) BCAAπ = 0, (BC)d Aπ B = 0, CBCAd = 0, AdBC = 0;
(3) ABCAAπ = 0, ABCAπ B = 0, CBCAAπ = 0, CBCAπ B = 0, AdBCA = 0.

These can be regarded as the generalizations of some results given in Refs. [5,22,28].

2. Some Lemmas

Lemma 1 ([3]). Let B, C ∈ Cn×n. For any positive integer i, we obtain ((BC)d)i = B((CB)d)i+1C.

Lemma 2 ([6]). Let P, Q ∈ Cn×n, ind(P) = r and ind(Q) = s. If PQP = 0 and PQ2 = 0, then

(P + Q)d =
r−1

∑
i=0

(Qd)i+1PiPπ + Qπ
s−1

∑
i=0

Qi(Pd)i+1 + Qπ
s−1

∑
i=0

Qi(Pd)i+2Q

+
r−2

∑
i=0

(Qd)i+3Pi+1PπQ−QdPdQ− (Qd)2PPdQ.

Lemma 3 ([18]). Let M =

(
A B
0 D

)
is 2 × 2 block complex matrix, A ∈ Cm×m,

D ∈ Cn×n, ind(A) = r and ind(D) = t. Then

Md =

(
Ad X
0 Dd

)
,

where X = ∑t−1
i=0(Ad)i+2BDiDπ + Aπ ∑r−1

i=0 AiB(Dd)i+2 − AdBDd.

Lemma 4 ([22]). Let M =

(
A B
C 0

)
is 2 × 2 block matrix, A ∈ Cm×m, 0 ∈ Cn×n,

ind(A) = r . If BCAπ = 0 and (I − Aπ)BC = 0, then

Md =

(
Ad + V (Ad)2B + VAdB

C(Ad)2 + CVAd C(Ad)3B + CV(Ad)2B

)
,

where V = ∑r−1
n=0 AnBC(Ad)n+3.
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3. The Drazin Inverse for the Sum of Two Matrices

Theorem 1. Let P, Q ∈ Cn×n. If P2QP = 0, PQ2P = 0, PQ3 = 0, P2Q2 = 0, and (QP)2 = 0,
then

(P + Q)d =
[(

Qπ −QdP + PQ(Pd)2)(Pd)2 + (Qd)3(P + Q)Pπ
]
(P + Q)

+
l−1

∑
i=0

(Qd)2i+5(P + Q)P2i+1(P + Q)Pπ(P + Q)

+
s−1

∑
i=0

QπQ2i+1(P + Q)(Pd)2i+5(P + Q)2,

where l = ind(P2 + PQ), s = ind(Q2 + QP).

Proof. Using the definition of the Drazin inverse, we have that

(P + Q)d = (P + Q)(M + N)d,

where M := P2 + PQ, N := QP+ Q2. Since P2Q2 = 0, P2QP = 0, PQ3 = 0, and PQ2P = 0,
by Lemma 2, we obtain

(M + N)d =
l−1

∑
i=0

(Nd)i+1Mi Mπ +
s−1

∑
i=0

Nπ Ni(Md)i+1,

where l = ind(M), s = ind(N). Since PQ3 = 0 and (QP)2 = 0, by Lemma 2, we obtain

Nd =
r−1

∑
i=0

(Qd)2(i+1)(QP)i +
r−2

∑
i=0

(Qd)2(i+3)(QP)i+1Q2

=(Qd)2 + (Qd)3P + (Qd)5PQ2,

where r = ind(QP). Since PQd = 0, for any positive integer i, we obtain

(Nd)i = (Qd)2(i−1)((Qd)2 + (Qd)3P + (Qd)5PQ2), (1)

Nπ = I − (Q2 + QP)
(
(Qd)2 + (Qd)3P + (Qd)5PQ2)

= Qπ −QdP− (Qd)3PQ
2
.

(2)

From PQ3 = 0, PQ2P = 0, for any positive integer i, we obtain

Ni = Q2i + Q2i−1P + Q2i−3PQ2. (3)

Since P2QP = 0, (QP)2 = 0, by Lemma 1, we obtain that

Md = P(P4 + QP3)d(P + Q).

Noting that P2QP = 0, by Lemma 2, we obtain (P4 + QP3)d = (Pd)4 + Q(Pd)5. Hence,

Md = (Pd)2 + (Pd)3Q + PQ(Pd)4 + PQ(Pd)5Q.

By PdQP = 0, for any positive integer i, we have

(Md)i = (Pd)2i + (Pd)2i+1Q + PQ(Pd)2i+2 + PQ(Pd)2i+3Q. (4)
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From P2QP = 0, QP(QP)d = 0, we obtain

Mπ = Pπ − PdQ− PQ(Pd)2 − PQ(Pd)3Q.

For any positive integer i, we can prove by induction that

((P + Q)P)i = (P + Q)P2i−1, (5)

Mi Mπ = Mi(Pπ − PdQ) = (P(P + Q))i(Pπ − PdQ). (6)

By substituting Equations (1), (5) and (6) into ∑l−1
i=1(Nd)i+1Mi Mπ , it yields that

l−1

∑
i=1

(Nd)i+1Mi Mπ

=
l−1

∑
i=1

(Qd)2i((Qd)2 + (Qd)3P + (Qd)5PQ2)(P(P + Q))i(Pπ − PdQ)

=
l−1

∑
i=1

(Qd)2i+3(P + Q)(P(P + Q))i(Pπ − PdQ)

=
l−1

∑
i=1

(Qd)2i+3((P + Q)P)i(P + Q)(Pπ − PdQ)

=
l−1

∑
i=1

(Qd)2i+3(P + Q)P2i−1(P + Q)(Pπ − PdQ).

Moreover,

Nd Mπ = (Qd)2Pπ − (Qd)2PdQ + (Qd)3PPπ − (Qd)3PPdQ + (Qd)5PQ2.

Since P2QP = 0, P2Q2 = 0, PQ3 = 0, we obtain

Nd Mπ(P + Q) =
(
(Qd)2Pπ + (Qd)3PPπ

)
(P + Q) = (Qd)3(P + Q)Pπ(P + Q). (7)

Using P2QP = 0, Q2 = 0, we obtain

l−1

∑
i=1

(Nd)i+1Mi Mπ(P + Q) =
l−1

∑
i=1

(Qd)2i+3(P + Q)P2i−1(P + Q)Pπ(P + Q). (8)

Combining Equations (7) and (8), we have

l−1

∑
i=0

(Nd)i+1Mi Mπ(P + Q) =
l−1

∑
i=0

(Qd)2i+5(P + Q)P2i+1(P + Q)Pπ(P + Q)

+
(
(Qd)3(P + Q)

)
Pπ(P + Q).

(9)

Substituting Equations (2)–(4) into ∑s−1
i=1 Nπ Ni(Md)i+1, we have

s−1

∑
i=1

Nπ Ni(Md)i+1 =
s−1

∑
i=1

QπQ2i−1(P + Q)(Pd)2i+3(P + Q). (10)

Further,

Nπ Md =Qπ(Pd)2 + Qπ(Pd)3Q + Qπ PQ(Pd)4 + Qπ PQ(Pd)5Q

−QdPd −Qd(Pd)2Q.
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From P2QP = 0, P2Q2 = 0, (QP)2 = 0, we have

Nπ Md(P + Q) =
(
Qπ(Pd)2 + PQ(Pd)4 −QdPd)(P + Q). (11)

Combining Equations (10) and (11), we obtain

s−1

∑
i=0

Nπ Ni(Md)i+1(P + Q) =
s−1

∑
i=0

QπQ2i+1(P + Q)(Pd)2i+5(P + Q)2

+
(
Qπ −QdP + PQ(Pd)2)(Pd)2(P + Q).

(12)

Finally, combining with Equations (9) and (12), we conclude the representation for
(P + Q)d.

Now, we state the symmetrical formulation of Theorem 1.

Theorem 2. Let P, Q ∈ Cn×n. If QPQ2 = 0, QP2Q = 0, P3Q = 0, P2Q2 = 0, and (QP)2 = 0,
then

(P + Q)d =(P + Q)
[
Qπ(P + Q)(Pd)3 + (Qd)2(Pπ −QPd + (Qd)2PQ)

]
+

l−1

∑
i=0

(P + Q)Qπ(P + Q)Q2i+1(P + Q)(Pd)2i+5

+
s−1

∑
i=0

(P + Q)2(Qd)2i+5(P + Q)P2i+1Pπ ,

where l = ind(P2 + PQ), s = ind(Q2 + QP).

The following result is a direct corollary of Theorem 1, the conditions of which were
considered in [7] (Theorem 1).

Corollary 1. Let P, Q ∈ Cn×n. If PQ2 = 0, P2QP = 0, and (QP)2 = 0, then

(P + Q)d =
[(

Qπ −QdP + PQ(Pd)2)(Pd)2 + (Qd)3(P + Q)Pπ
]
(P + Q)

+
m2−1

∑
i=0

Q2i+1Qπ(P + Q)(Pd)2i+4(P + Q)

+
m1−1

∑
i=0

(Qd)2i+5(P + Q)P2i+2Pπ(P + Q),

where m1 = ind(P2), m2 = ind(Q2).

Proof. It follows from (QP)2 = 0 and P2QP = 0 that ∑m1−1
i=0 (Qd)2i+5(P + Q)P2i+1Pπ(P +

Q) = 0, thus we obtain the representation.

Theorem 3. Let P, Q ∈ Cn×n. If P2QP = 0, Q2 = 0, then

(P + Q)d =

( t−1

∑
i=0

(
((PQ)d)i+1 + ((QP)d)i+1)P2iPπ

+
s−1

∑
i=0

(
(PQ)π(PQ)i + (QP)π(QP)i)(Pd)2(i+1) − (Pd)2

)
(P + Q),

where t = ind(P2), s = max{ind(PQ), ind(QP)}.
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Proof. It follows that

(P + Q)d = (P2 + QP + PQ)d(P + Q)

:= (P1 + Q1)
d(P + Q),

(13)

where P1 = P2 + QP, Q1 = PQ. Since P2QP = 0, we have P1Q1 = 0. Lemma 2 shows that

Pd
1 = (P2 + QP)d

= (QP)π
l−1

∑
i=0

(QP)i(Pd)2i+2 +
t−1

∑
i=0

((QP)d)i+1P2iPπ ,
(14)

where l = ind(QP), t = ind(P2). Since P1Q1P1 = 0, P1Q2
1 = 0, by Lemma 2, we obtain

(P1 + Q1)
d =(PQ)π

s1−1

∑
i=0

(PQ)i((P2 + QP)d)i+1 − (PQ)d(P2 + QP)dPQ

+
r−2

∑
i=0

((PQ)d)i+3(P2 + QP)i+1(P2 + QP)π PQ

+
r−1

∑
i=0

((PQ)d)i+1(P2 + QP)i(P2 + QP)π

+ (PQ)π
s1−1

∑
i=0

(PQ)i((P2 + QP)d)i+2PQ

− ((PQ)d)2(P2 + QP)(P2 + QP)dPQ,

(15)

where s1 = ind(PQ), r = ind(P2 + QP). Combining Equation (14) and Q2 = 0, Q(QP)d = 0,
we have

(PQ)π
t−1

∑
i=0

(PQ)i((P2 + QP)d)i+1

= (PQ)π
t−1

∑
i=1

(PQ)i(Pd)2i+2 + (PQ)π(P2 + QP)d.

(16)

For any positive integer i, we can prove by induction that

r−1

∑
i=0

((PQ)d)i+1(P2 + QP)i =
r−1

∑
i=0

((PQ)d)i+1P2i,

(P2 + QP)(P2 + QP)d = PPd + (QP)π
l−1

∑
i=0

(QP)i+1(Pd)2i+2 + QP
s−1

∑
i=0

((QP)d)i+1P2iPπ ,

r−1

∑
i=0

((PQ)d)i+1(P2 + QP)i(P2 + QP)π =
r−1

∑
i=0

((PQ)d)i+1P2iPπ .

(17)

From (PQ)dQ = 0, Q(QP)d = 0, we obtain

(PQ)π(P2 + QP)d =(PQ)π
[
(QP)π

l−1

∑
i=0

(QP)i(Pd)2i+2 +
s−1

∑
i=0

((QP)d)i+1P2iPπ
]

=(QP)π
l−1

∑
i=0

(QP)i(Pd)2i+2 − PQ(PQ)d(Pd)2 +
s−1

∑
i=0

((QP)d)i+1P2iPπ .

(18)

Since (P2 + QP)PQP = 0, Q2 = 0, substituting Equation (15)–(18) into Equation (13),
we obtain
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(P + Q)d =
[ r−1

∑
i=0

((PQ)d)i+1(P2 + QP)i(P2 + QP)π

+ (PQ)π
s1−1

∑
i=0

(PQ)i((P2 + QP)d)i+1](P + Q)

=
[ r−1

∑
i=0

((PQ)d)i+1P2iPπ + (PQ)π
s1−1

∑
i=1

(PQ)i(Pd)2i+2 − PQ(PQ)d(Pd)2

+ (QP)π
l−1

∑
i=0

(QP)i(Pd)2i+2 +
t−1

∑
i=0

((QP)d)i+1P2iPπ
]
(P + Q)

=
[ r−1

∑
i=0

((PQ)d)i+1P2iPπ + (PQ)π
s1−1

∑
i=0

(PQ)i(Pd)2i+2 − (Pd)2

+ (QP)π
l−1

∑
i=0

(QP)i(Pd)2i+2 +
t−1

∑
i=0

((QP)d)i+1P2iPπ
]
(P + Q).

Let s = max{s1, l} and t ≥ r; we thus conclude the representation for (P + Q)d.

Theorem 4. Let P, Q ∈ Cn×n. If PQP2 = 0 , Q2 = 0, then

(P + Q)d =(P + Q)

( t−1

∑
i=0

Pπ P2i((PQ)d)i+1 + ((QP)d)i+1)− (Pd)2

+
s−1

∑
i=0

(Pd)2(i+1)((PQ)i(PQ)π + (QP)i(QP)π
))

,

where t = ind(P2), s = max{ind(PQ), ind(QP)}.

Applying Theorem 3, we can easily deduce the formula of (P + Q)d under the condi-
tions P2Q = 0 and Q2 = 0 in Ref. [5].

4. Representations for the Drazin Inverse of Anti-Triangular Block Matrices

This section is devoted to the Drazin inverse of 2× 2 anti-triangular block matrix

M =

(
A B
C 0

)
, (19)

where A ∈ Cm×m, 0 ∈ Cn×n.
First, as the application of Theorem 3, we give some representations for the Drazin

inverse of M.

Theorem 5. Let M be the form as in (19). If ABCAAπ = 0, ABCAπ B = 0, and AdBC = 0,
then

Md =

(
Ad + Σ (Ad)2B + Λ

Ω Φ

)
, (20)

where
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Σ =
l−1

∑
i=0

(BC)i(BC)πΓ(Ad)2i+1 +
r−1

∑
i=0

((BC)d)i+1(A2iΥ + (BC)d A2i+1BCAπ),

Λ =
l−1

∑
i=0

(BC)π(BC)iΓ(Ad)2i+2B +
r−1

∑
i=0

((BC)d)i+1 A2i(Aπ − Γ)B,

Ω = −C(BC)d AΓAd + δ +
r−1

∑
i=0

C((BC)d)i+2 A2i(ΥA + BC),

Φ = −C(BC)d AΓ(Ad)2B + δAdB +
r−1

∑
i=0

C((BC)d)i+2 A2iΥB,

δ =
l−1

∑
i=0

C(BC)π(BC)i(Ad)2i+2 + C(BC)π(BC)i AΓ(Ad)2i+3,

Υ = AAπ − ΓA, Γ =
p−1

∑
n=0

AnBC(Ad)n+2,

and ind(A) = p, ind(BC) = l, r = [ p
2 ].

Proof. We split the matrix M = P + Q, where

P =

(
A B

CAAd 0

)
, Q =

(
0 0

CAπ 0

)
.

Obviously, Q2 = 0. Since ABCAAπ = 0, ABCAπ B = 0, we have P2QP = 0. Applying
Theorem 3, it yields that

(P + Q)d =

( s−1

∑
i=0

(
(PQ)π(PQ)i + (QP)π(QP)i)(Pd)2(i+1) − (Pd)2

+
t−1

∑
i=0

(
((PQ)d)i+1 + ((QP)d)i+1)P2iPπ

)
(P + Q),

(21)

where t = ind(P2), s = max{ind(PQ), ind(QP)}.
From AdBC = 0, we obtain Ad(BC)d = 0, Aπ BC = BC, Aπ(BC)d = (BC)d. Since

Aπ BC = BC, by Lemma 1, we have

(CAπ B)d = C((Aπ BC)d)2 Aπ B = C((BC)d)2 Aπ B,

(BCAπ)d = BC
(
(Aπ BC)d)2 Aπ = (BC)d Aπ .

From Lemma 3, it follows that

(QP)d =

(
0 0

C((BC)d)2 Aπ A C((BC)d)2 Aπ B

)
,

(QP)π =

(
I 0

−C(BC)d Aπ A I − C(BC)d Aπ B

)
,

and for any positive integer i, we can verify that

(QP)i =

(
0 0

C(BC)i−1 Aπ A C(BC)i−1 Aπ B

)
,
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((QP)d)i =

(
0 0

C((BC)d)i+1 Aπ A C((BC)d)i+1 Aπ B

)
.

Similarly, by Lemma 3, for any positive integer i, we have

((PQ)d)i =

(
((BC)d)i Aπ 0

0 0

)
.

From (BCAπ)π = I − BC(BC)d Aπ , for any positive integer j, we can verify that

(PQ)π =

(
I − BC(BC)d Aπ 0

0 I

)
,

(PQ)j(PQ)π =

(
(BC)j(BC)π Aπ 0

0 0

)
.

Since BCAAd Aπ = 0, AAdBCAAd = 0, matrix P satisfies the condition of Lemma 4
and therefore

Pd =

(
(I + Γ)Ad (I + Γ)(Ad)2B

C(Ad)2 C(Ad)3B

)
,

where Γ = ∑
p−1
n=0 AnBC(Ad)n+2. From AdBC = 0, for any positive integer j, we obtain

(Pd)j =

(
(I + Γ)(Ad)j (I + Γ)(Ad)j+1B

C(Ad)j+1 C(Ad)j+2B

)
.

Since ΓAAd = Γ, for any positive integer k, we obtain

Pπ =

(
Aπ − Γ −(I + Γ)AdB
−CAd I − C(Ad)2B

)
,

P2kPπ =

(
A2k−1(AAπ − ΓA) A2k−2(AAπ − ΓA)B

0 0

)
.

For any nonnegative integer i, we have

((PQ)d)i+1 + ((QP)d)i+1 =

(
((BC)d)i+1 Aπ 0

C((BC)d)i+2 AAπ C((BC)d)i+2 Aπ B

)
.

Therefore, we obtain

t−1

∑
i=1

(
((PQ)d)i+1 + ((QP)d)i+1)P2iPπ

=
r−1

∑
i=1

(
((BC)d)i+1 Aπ A2i−1Υ ((BC)d)i+1 Aπ A2i−2ΥB

C((BC)d)i+2 AAπ A2i−1Υ C((BC)d)i+2 AAπ A2i−2ΥB

)
,

where r = [ p
2 ], Υ = AAπ − ΓA.

From AdBC = 0, ΓA = BCAd + AΓ, we obtain ΓBC = 0, Aπ BC = BC , ΓABC = 0,
AπΓ = Γ, AΓA = ΓA2 − BCAAd, ΓA2 = BCAAd + AΓA, we compute

t−1

∑
i=1

(
((PQ)d)i+1 + ((QP)d)i+1)P2iPπ(P + Q)

=
r−1

∑
i=1

(
((BC)d)i+1 A2iΥ + ((BC)d)i+1 A2i−1BCAπ ((BC)d)i+1 A2i−1ΥB
C((BC)d)i+2 A2iΥA + C((BC)d)i+2 A2iBC C((BC)d)i+2 A2iΥB

)
,
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where Υ = AAπ − ΓA. Further,(
(PQ)d + (QP)d)Pπ

=

(
(BC)d Aπ − (BC)dΓ −(BC)dΓAdB

C((BC)d)2 AAπ − C((BC)d)2 AΓ− C((BC)d)2BCAd Θ

)
,

where
Θ = −C((BC)d)2 AΓAdB + C((BC)d)2 Aπ B− C((BC)d)2BC(Ad)2B.

Therefore,

((PQ)d + (QP)d)Pπ(P + Q)

=

(
(BC)dΥ ((BC)d Aπ − (BC)dΓ)B

C((BC)d)2(A2 Aπ − ΓA2) + C(BC)d C((BC)d)2(AAπ − ΓA)B

)
.

Then

t−1

∑
i=0

(
((PQ)d)i+1 + ((QP)d)i+1)P2iPπ(P + Q)

=
r−1

∑
i=0

(
((BC)d)i+1(A2iΥ + (BC)d A2i+1BCAπ) ((BC)d)i+1 A2i(Aπ − Γ)B

C((BC)d)i+2 A2i(ΥA + BC) C((BC)d)i+2 A2iΥB

)
.

(22)

For any positive integer i, we can prove by induction that

(QP)i(QP)π

=

(
0 0

(CB)πC(BC)i−1 AAπ (CB)πC(BC)i−1 Aπ B

)
,

(PQ)π(PQ)i + (QP)π(QP)i

=

(
(BC)i(BC)π Aπ 0

(CB)πC(BC)i−1 AAπ (CB)πC(BC)i−1 Aπ B

)
,

let ∆i = (PQ)π(PQ)i + (QP)π(QP)i, we have

∆i(Pd)2i =

(
(BC)i(BC)πΓ(Ad)2i (BC)i(BC)πΓ(Ad)2i+1B

αi αi AdB

)
, (23)

where αi = C(BC)π(BC)i−1 AΓ(Ad)2i + C(BC)π(BC)i(Ad)2i+1. Further,

(Pd)2(P + Q) =

(
(I + Γ)Ad (I + Γ)(Ad)2B

C(Ad)2 C(Ad)3B

)
,

therefore, we have

s−1

∑
i=1

∆i(Pd)2(i+1)(P + Q)

=
l−1

∑
i=1

(
(BC)i(BC)πΓ(Ad)2i+1 (BC)i(BC)πΓ(Ad)2i+2B

αi Ad αi(Ad)2B

)
,

where αi is shown in Equation (23). In addition, by Equation (21), calculate that(
(PQ)π + (QP)π − I

)
(Pd)2(P + Q)

=

(
Ad + (BC)πΓAd (Ad)2B + (BC)πΓ(Ad)2B

C(BC)π(Ad)2 − C(BC)d AΓAd −C(BC)d AΓ(Ad)2B + C(BC)π(Ad)3B

)
,
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thus, we obtain( s−1

∑
i=0

(
(PQ)π(PQ)i + (QP)π(QP)i)(Pd)2i+2 − (Pd)2

)
(P + Q)

=

(
Ad + ∑l−1

i=0(BC)i(BC)πΓ(Ad)2i+1 (Ad)2B + ∑l−1
i=0(BC)π(BC)iΓ(Ad)2i+2B

−C(BC)d AΓAd + δ −C(BC)d AΓ(Ad)2B + δAdB

)
,

(24)

where δ = ∑l−1
i=0 C(BC)π(BC)i(Ad)2i+2 + C(BC)π(BC)i AΓ(Ad)2i+3.

Finally, substituting Equations (22) and (24) into Equation (21), we conclude the
representation for Md.

The following conditions are discussed in Ref. [28].

Corollary 2. Let M be the form as in (19). If ABCAπ = 0, AdBC = 0, then

Md =

(
Ad + Σ̃ (Ad)2B + Λ

Ω Φ

)
,

where Υ, Γ, Λ, Ω, Φ, δ are defined by Equation (20), Σ̃ = ∑l−1
i=0(BC)i(BC)πΓ(Ad)2i+1 + ∑r−1

i=0
((BC)d)i+1 A2iΥ, and ind(A) = p, r = [ p

2 ], ind(BC) = l.

As corollary of Theorem 5, the following results were discussed in Refs. [5,22],
respectively.

Corollary 3. Let M be the form as in (19). If ABC = 0, then

Md =

(
Φ̃A Φ̃
CΦ̃ CΦ̃2 AB

)
,

where Φ̃ = ∑l−1
j=0(BC)j(BC)π(Ad)2j+2 + Φ , Φ = ∑r

k=0((BC)d)k+1 A2k Aπ , and ind(A) = p,
r = [ p

2 ], ind(BC) = l.
In particular, if BC = 0, we obtain Φ̃ = (Ad)2.

Corollary 4. Let M be the form as in (19). If BCAπ is nilpotent matrix, ABCAπ = 0,
AAdBC = 0, then

Md =

(
ΨA ΨB
CΨ CΨAdB

)
,

where Ψ = (Ad)2 + ∑l−1
j=0(BC)jΓ(Ad)2j+2 , Γ = ∑

p−1
n=0 AnBC(Ad)n+2, and ind(BC) = l,

ind(A) = p.

The following result is obtained by applying Theorem 4.

Theorem 6. Let M be the form as in (19). If BCAAπ = 0, (BC)d Aπ B = 0, and CBCAd = 0,
AdBC = 0, then

Md =

(
∑r−1

i=0 A2i+1((BC)d)i+1 Aπ + Ψ̃ Ψ̃AdB
∑r−1

i=0 CA2i((BC)d)i+1 Aπ + CΨ̃(Ad)2 CΨ̃(Ad)2B

)
,

where Ψ̃ = Ad + ∑
p
n=0 AnBC(Ad)n+3, and ind(A) = p, r = [ p

2 ].
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Proof. Consider the splitting of matrix M,

M =

(
A B

CAAd 0

)
+

(
0 0

CAπ 0

)
:= P + Q.

Obviously, Q2 = 0. From AdBC = 0, BCAAπ = 0, CBCAd = 0, we obtain PQP2 = 0.
Since AdBC = 0, by Theorem 5, we have

(QP)d =

(
0 0

C((BC)d)2 Aπ A C((BC)d)2 Aπ B

)
.

From BCAAπ = 0, (BC)d Aπ B = 0, we obtain (QP)d = 0.
Applying Theorem 4, we obtain

(P + Q)d =(P + Q)

( s−1

∑
i=0

(Pd)2(i+1)((PQ)i(PQ)π + (QP)i)
+

t−1

∑
i=0

Pπ P2i((PQ)d)i+1 − (Pd)2
)

,

(25)

where t = ind(P2), s = max{ind(PQ), ind(QP)}.
Similar to the proof of Theorem 5, we can obtain

(P + Q)
t−1

∑
i=0

Pπ P2i((PQ)d)i+1 =

(
∑r−1

i=0 A2i+1((BC)d)i+1 Aπ 0
∑r−1

i=0 CA2i((BC)d)i+1 Aπ 0

)
. (26)

From AdBC = 0, we compute

(Pd)2((PQ)π + I
)
− (Pd)2 =

(
(I + Γ)(Ad)2 (I + Γ)(Ad)3B

C(Ad)3 C(Ad)4B

)
,

s−1

∑
i=1

(Pd)2i+2((PQ)i(PQ)π + (QP)i) = 0,

and then

(P + Q)(Pd)2(PQ)π

=

(
A(I + Γ)(Ad)2 + BC(Ad)3 A(I + Γ)(Ad)3B + BC(Ad)4B

C(I + Γ)(Ad)3 C(I + Γ)(Ad)3B

)
.

Denoting by Ψ̃ = A(I + Γ)(Ad)2 + BC(Ad)3 and substituting the above three equa-
tions and Equation (26) into Equation (25), we obtain

Md =

(
∑r−1

i=0 A2i+1((BC)d)i+1 Aπ + Ψ̃ Ψ̃AdB
∑r−1

i=0 CA2i((BC)d)i+1 Aπ + C(I + Γ)(Ad)3 C(I + Γ)(Ad)3B

)
,

since CA(I + Γ) = C(I + Γ)A, we have

Md =

(
∑r−1

i=0 A2i+1((BC)d)i+1 Aπ + Ψ̃ Ψ̃AdB
∑r−1

i=0 CA2i((BC)d)i+1 Aπ + CΨ̃(Ad)2 CΨ̃(Ad)2B

)
,

where Ψ̃ = Ad + ∑
p
n=0 AnBC(Ad)n+3.

Next, we give another result by using the additive result of the Drazin inverse of
Corollary 1.
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Theorem 7. Let M be the form as in (19). If ABCAAπ = 0, ABCAπ B = 0, and CBCAAπ = 0,
CBCAπ B = 0, AdBCA = 0, then

Md =

(
(I + BCAπΨ̂)(Ψ̂A + Ψ̂AdBC) (I + BCAπΨ̂)Ψ̂B

CΨ̂(I + (Ad)2BC) CΨ̂AdB

)
,

where Ψ̂ = (Ad)2 + ∑
p
n=0 AnBC(Ad)n+4, and ind(A) = p.

Proof. Decompose the matrix M as follows:

M =

(
A B

CAAd 0

)
+

(
0 0

CAπ 0

)
:= P + Q.

From ABCAAπ = 0, ABCAπ B = 0, Aπ BC = BC, CBCAAπ = 0, CBCAπ B = 0, we
obtain

P2QP =

(
ABCAπ A ABCAπ B

CAAdBCAπ A CAAdBCAπ B

)
= 0,

(QP)2 =

(
0 0

CAπ BCAAπ CAπ BCAπ B

)
= 0.

Using Corollary 2, we obtain

(P + Q)d =
(

I + PQ(Pd)2)(Pd)2(P + Q) + Q(P + Q)(Pd)4(P + Q). (27)

Using Lemma 4, for any positive integer j, we obtain

(Pd)j =

(
Ψ̂A(Ad)j−1 Ψ̂(Ad)j−1B
C(Ad)j+1 C(Ad)j+2B

)
,

where Ψ̂ = (Ad)2 + ∑
p
n=0 AnBC(Ad)n+4.

Since Ψ̂AAd = Ψ̂, AdBCAd = 0, Ψ̂2 = Ψ̂(Ad)2, then(
I + PQ(Pd)2)(Pd)2(P + Q)

=

(
(I + BCAπΨ̂)(Ψ̂A + Ψ̂AdBC) (I + BCAπΨ̂)Ψ̂B

C(Ad)2 + C(Ad)4BC C(Ad)3B

)
,

(28)

and

Q(P + Q)(Pd)4(P + Q)

=

(
0 0(

CAAπΨ̂Ad + CBC(Ad)4)(I + (Ad)2BC) CAAπΨ̂(Ad)2B + CBC(Ad)5B

)
.

(29)

Substituting Equations (28) and (29) into Equation (27) and noting that CAAπΨ̂Ad +
CBC(Ad)4 + C(Ad)2 = CΨ̂, we obtain

Md =

(
(I + BCAπΨ̂)(Ψ̂A + Ψ̂AdBC) (I + BCAπΨ̂)Ψ̂B

CΨ̂(I + (Ad)2BC) CΨ̂AdB

)
.

Thus, the statement of the theorem is valid.

The following Corollary 5 was discussed in Ref. [28].
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Corollary 5. Let M be the form as in (19). If BCAAπ = 0, BCAπ B = 0, AdBCA = 0, then

Md =

(
Ψ̂A
(

I + (Ad)2BC
)

Ψ̂B
CΨ̂
(

I + (Ad)2BC
)

CΨ̂iAdB

)
,

where Ψ̂ = (Ad)2 + ∑
p
n=0 AnBC(Ad)n+4, and ind(A) = p.

Proof. This result follows from Theorem 7 by noting that BCAπΨ̂ = 0.

5. Examples

In this section, we give some applications of the theorems in Sections 3 and 4.

Example 1. Let

P =


0 0 0 1 1
0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

, Q =


0 1 0 1 0
0 0 0 1 1
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0

.

It can be checked that

PQ2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

,

therefore PQ2 6= 0. One of the conditions from Corollary 1 is not be satisfied, but it is easy to verify
that P and Q satisfy the conditions in Theorems 1 and 2.

Example 2. Let

P = Q =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

It can be checked that

PQ2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

,

therefore PQ2 6= 0 . One of the conditions from Corollary 1 is not be satisfied, but it is easy to verify
that P and Q satisfy the conditions in Theorems 1 and 2.

Example 3. Let

P =

 1 1 1
1 1 1
1 1 1

, Q =

 0 −1 1
0 0 0
0 0 0

.

Since

P2Q =

 0 −3 3
0 −3 3
0 −3 3


and Q2 = 0, therefore P2QP = 0, PQP2 = 0, P2Q 6= 0 . The matrix P and Q do not satisfy the
conditions given in Corollary 1, but satisfies that in Theorems 3 and 4.
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Example 4. Let M =

(
A B
C 0

)
, where A =


0 0 1 0
0 0 −1 0
0 0 0 0
0 0 0 0

,

B =


1 1 0
−1 −1 0
0 1 0
0 0 0

, C =

 2 2 0 0
−2 −2 0 0
0 0 0 0

.

Since ABCAπ 6= 0, the conditions given in Corollaries 2–4 are not satisfied. On the other
hand, we can check that M satisfy the conditions of Theorem 5.

Example 5. Let M =

(
A B
C 0

)
, where A =

 0 −1 1
0 0 0
0 0 0

,

B =

 1 0 0
0 1 0
1 0 0

, C =

 1 0 −1
1 0 −1
1 0 −1

.

Since BCAAπ 6= 0, BCAπ B 6= 0, the conditions mentioned in Corollary 5 are not satisfied.
However, we can check that M satisfies the conditions of Theorem 7.
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