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M. Loeve wrote that “the fundamental limit theorems of Probability theory may be
classified into two groups. One group deals with the problem of limit laws of sequences of
some of random variables, the other deals with the problem of limits of random variables,
in the sense of almost sure convergence, of such sequences. These problems will be labeled,
respectively, the Central Limit Problem (CLP) and the Strong Central Limit Problem (SCLP).
Like all mathematical problems, the CLP and SCLP are not static; as answers to old queries
are discovered they experience the usual development and new problems arise”.

The papers in this Special Issue present new directions and new advances for limit
theorems in probability theory and its applications. The list of topics is extensive, and it
includes classical models of sums of both independent and various types of dependent
random variables, probabilities of large deviations, functional limit theorems, and limit
theorems for random processes, in high-dimensional spaces, for spectra of random matrices
and random graphs, and more.

In [1], Xia Wang and Miaomiao Zhang obtain a large deviation principle for the
maximum of the absolute value of partial sums of independent, identically distributed,
centered, random variables. It is assumed that tail probabilities for “positive” and “negative”
tails of the summand have the same exponential decrease.

Estimating the expected value of a random variable via data-driven methods is one of
the most fundamental problems in statistics. In [2], Rundong Luo, Yiming Chen, and Shuai
Song present an extension of Olivier Catoni’s classical M-estimators of the empirical mean,
which focus on heavy-tailed data by imposing more precise inequalities on exponential
moments of Catoni’s estimator. The authors show that their estimators behave better than
Catoni‘s estimators, both in practice and theory. The results obtained are illustrated on
modeled and real data.

Paper [3], by Friedrich Götze and Andrei Yu Zaitsev, deals with studying a connection
of the Littlewood–Offord problem to estimations of the concentration functions of some
symmetric, infinitely divisible distributions. It is shown that the concentration function of
a weighted sum of independent, identically distributed, random variables is estimated in
terms of the concentration function of a symmetric, infinitely divisible distribution, whose
spectral measure is concentrated on the set of plus–minus weights.

There has been a renewed interest in exponential concentration inequalities for stochas-
tic processes in probability and statistics over the last three decades. De la Peña established
a good exponential inequality for a discrete time, locally square, integrable martingale.
In [4],, Naiqi Liu, Vladimir V. Ulyanov, and Hanchao Wang obtain de la Peña’s inequalities
for a stochastic integral of multivariate point processes. The proof is primarily based on the
Doléans-Dade exponential formula and the optional stopping theorem. As an application,
they obtain an exponential inequality for block counting process in the Λ–coalescent.
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In [5], Alexander N. Tikhomirov and Dmitry A. Timushev prove the local Marchenko–
Pastur law for sparse sample covariance matrices that corresponded to rectangular obser-
vation matrices and sparse probability. The new bounds of the distance between Laplace
transforms of the empirical spectral distribution function of the sparse sample covariance
matrices and the Marchenko–Pastur law distribution function are obtained in the complex
domain. It is assumed that a sparse probability and the moments of the matrix elements
satisfy some conditions.

In see [6], Mihailo Jovanović, Vladica Stojanović, Kristijan Kuk, Brankica Popović,
and Petar Čisar describe one of the non-linear (and non-stationary) stochastic models, the
Gaussian, or Generalized, Split-BREAK (GSB) process, which is used in the analysis of
time series with pronounced and accentuated fluctuations. In the beginning, the stochastic
structure of the GSB process and its important distributional and asymptotic properties
are given. To that end, a method based on characteristic functions (CFs) was used. Various
procedures for the estimation of model parameters, asymptotic properties, and numerical
simulations of the obtained estimators are also investigated. Finally, as an illustration of
the practical application of the GSB process, an analysis of the dynamics and stochastic
distribution of the infected and immunized populations in relation to COVID-19 in the
Republic of Serbia is presented.

The Poisson Stochastic Index process (PSI-process) represents a special kind of a
random process, when the discrete time of a random sequence is replaced by the continuous
time of a “counting” process of a Poisson type. In [7], Yuri Yakubovich, Oleg Rusakov,
and Alexander Gushchin establish a functional limit theorem for normalized cumulative
sums of PSI-processes in the Skorokhod space. This theorem can be used in different ways.
The PSI-processes are very simple, and some results can be obtained directly for their sums
and imply the corresponding facts of the limiting stationary Gaussian process. On the
other hand, the theory of stationary Gaussian processes has been deeply developed in the
last few decades, and some results of this theory can have consequences for pre-limiting
processes, which model a number of real life phenomena.

In [8], Igor Borisov and Maman Jetpisbaev consider a class of additive functionals of a
finite or countable collection of the group frequencies of an empirical point process that
corresponds to, at most, a countable partition of the sample space. Under broad conditions,
it is shown that the asymptotic behavior of the distributions of such functionals is similar to
the behavior of the distributions of the same functionals of the accompanying Poisson point
process. However, the Poisson versions of the additive functionals under consideration,
unlike the original ones, have the structure of sums (finite or infinite) of independent
random variables, which allows them to reduce the asymptotic analysis of the distributions
of additive functionals of an empirical point process to classical problems of the theory of
summation of independent random variables.

In [9], Shuya Kanagawa investigates asymptotic expansions for U-statistics and
V-statistics with degenerate kernels, and finds the order estimates for the remainder terms.
It implies the corresponding results for the Cramér–von Mises statistics of a uniform distri-
bution on (0,1). The scheme of the proof is based on three steps. The first one is the almost
certain convergence in a Fourier series expansion of the kernel function. The key condition
for the convergence is the nuclearity of a linear operator defined by the kernel function.
The second one is a representation of U-statistics or V-statistics, by single sums of Hilbert
space valued random variables. The third one is the application of asymptotic expansions
for single sums of Hilbert space valued random variables.

In [10], Alexander Bulinski and Nikolay Slepov study the convergence rate in the
famous Rényi theorem by means of the Stein method refinement. Namely, it is demon-
strated that the new estimate of the convergence rate of the normalized geometric sums to
exponential laws involving the ideal probability metric of the second order is sharp. Some
recent results concerning the convergence rates in Kolmogorov and Kantorovich metrics
are extended as well. In contrast to many previous works, there are no assumptions that
the summands of geometric sums are positive and have the same distribution. For the
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first time, an analogue of the Rényi theorem is established for the model of exchangeable
random variables. Furthermore, within this model, a sharp estimate of convergence rate to
a specified mixture of distributions is provided. The convergence rate of the appropriately
normalized random sums of random summands to the generalized gamma distribution
is estimated. Here, the number of summands follows the generalized negative binomial
law. The sharp estimates of the proximity of random sums of random summand distribu-
tions to the limit law are established both for independent summands and for the model
of exchangeable ones. The inverse to the equilibrium transformation of the probability
measures is introduced and, in this way, a new approximation of the Pareto distributions
by exponential laws is proposed. The integral probability metrics, and the techniques of
integration with respect to sign measures, are essentially employed.

In [11], Yasunori Fujikoshi and Tetsuro Sakurai consider the high-dimensional consis-
tencies of KOO methods for selecting response variables in multivariate linear regression
with some covariance structures. The method, which was named the knock-one-out (KOO)
method, determines “selection” or “no selection” for each variable by comparing the model
that removes that variable and the full model. It is assumed that the covariance structure
is one of three covariance structures: (1) an independent covariance structure with the
same variance, (2) an independent covariance structure with different variances, and (3) a
uniform covariance structure. A sufficient condition for model selection consistency is
obtained using a KOO method under a high-dimensional asymptotic framework, such that
sample size, the number of response variables, and the number of explanatory variables
are large.

In [12], Alexander N. Tikhomirov considers the limit of the empirical spectral distribu-
tion of Laplace matrices of generalized random graphs. Applying the Stieltjes transform
method, the author proves under general conditions that the limit spectral distribution
of Laplace matrices converges with the free convolution of the semicircular law and the
normal law.

In [13], Gerd Christoph and Vladimir V. Ulyanov complete their studies on the formal
construction of asymptotic approximations for statistics based on a random number of
observations. Second-order Chebyshev–Edgeworth expansions of asymptotically normally
or chi-squared distributed statistics from samples with negative binomial or Pareto-like
distributed random sample sizes are obtained. The results can have applications for a
wide spectrum of asymptotically normally or chi-square distributed statistics. Random,
non-random, and mixed scaling factors for each of the studied statistics produce three
different limit distributions. In addition to the expected normal or chi-squared distribu-
tions, Student’s t-, Laplace, Fisher, gamma, and weighted sums of generalized gamma
distributions also occur.

The Kolmogorov and total variation distance between the laws of random variables
have upper bounds are represented by the L1-norm of densities when random variables
have densities. In [14], Yoon-Tae Kim and Hyun-Suk Park derive an upper bound, in terms
of densities such as the Kolmogorov and total variation distance, for several probabilistic
distances (e.g., Kolmogorov distance, total variation distance, Wasserstein distance, Forter–
Mourier distance, etc.) between the laws of F and G in the case where a random variable F
follows the invariant measure that admits a density and a differentiable random variable
G, in the sense of Malliavin calculus, and also allows a density function.

In [15], Manuel L. Esquível and Nadezhda P. Krasii describe the structure of the
random matrices by deterministic matrices, forming the skeletons of the random matrices.
The authors propose to use an algorithm of matrix substitutions with entries in a finite
field of integers that modulo some prime number, akin to the algorithm of one dimensional
automatic sequences. A random matrix has the structure of a given skeleton if, to the same
number of an entry of the skeleton in the finite field, it corresponds a random variable
having, at least, as its expected value, the correspondent value of the number in the finite
field. Affine matrix substitutions are introduced, and fixed-point theorems that allow
for the consideration of steady states of the structure, which are essential for an efficient
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observation, are proven. For some more restricted classes of structured random matrices,
the parameter estimation of the entries is addressed, as well as the convergence in law,
and also some aspects of the spectral analysis of the random operators associated with
the random matrix. Finally, aiming at possible applications, it is shown that there is a
procedure to associate a canonical random surface to every random structured matrix of a
certain class.

In summary, this Special Issue proposes and develops new mathematical methods
and approaches, new algorithms and research frameworks, and their applications to solve
various nontrivial practical problems. We strongly believe that the selected topics and
results will be attractive and useful to the international scientific community, and will
contribute to further research in the field of limit theorems in probability theory.
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