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Abstract: Cervical cancer is a prevalent chronic malignant tumor in gynecology, necessitating high-
quality images of cervical precancerous lesions to enhance detection rates. Addressing the challenges
of low contrast, uneven illumination, and indistinct lesion details in such images, this paper proposes
an enhancement algorithm based on retinex and histogram equalization. First, the algorithm solves
the color deviation problem by modifying the quantization formula of retinex theory. Then, the
contrast-limited adaptive histogram equalization algorithm is selectively conducted on blue and
green channels to avoid the problem of image visual quality reduction caused by drastic darkening
of local dark areas. Next, a multi-scale detail enhancement algorithm is used to further sharpen
the details. Finally, the problem of noise amplification and image distortion in the process of
enhancement is alleviated by dynamic weighted fusion. The experimental results confirm the
effectiveness of the proposed algorithm in optimizing brightness, enhancing contrast, sharpening
details, and suppressing noise in cervical precancerous lesion images. The proposed algorithm has
shown superior performance compared to other traditional methods based on objective indicators
such as peak signal-to-noise ratio, detail-variance–background-variance, gray square mean deviation,
contrast improvement index, and enhancement quality index.
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1. Introduction

Ranked fourth in terms of both incidence and mortality, cervical cancer contributes
significantly to the high number of female fatalities [1]. Fortunately, practice shows that the
process from cervical precancerous lesions to invasive cancer can persist for 10–15 years [2].
In other words, early detection is of great importance for prognosis and treatment. With
the development of colposcopy technology, colposcopy has been considered a main auxil-
iary approach to diagnose cervical intraepithelial lesions and can effectively improve the
detection rate of cervical cancer [3]. However, due to the diversity of different vaginal
internal environments and the limitations of human internal imaging technology, colpo-
scopic images often have problems such as low contrast, uneven illumination, and blurred
details. These problems will directly affect the accuracy of diagnosis. Theoretically, there
are two ways to solve these problems with colposcopic images. One is to improve the
hardware for colposcopy, but upgrading equipment often means high costs. The other is to
use image processing technology, which could optimize the colposcopy image visual effect
efficiently with a low cost. Medical image enhancement technology can not only improve
the diagnosis rate of diseases, but also greatly help other subsequent medical image analysis
tasks, such as specific structure segmentation, medical image classification, focus detection,
and computer-aided diagnosis. Therefore, the development of medical image processing
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technology is very important. Over the decades, researchers have proposed a number of
medical image enhancement methods.

These methods can be divided into two categories: traditional medical image en-
hancement methods and deep-learning-based medical image enhancement methods. Fur-
thermore, traditional medical image enhancement algorithms can be divided into spatial-
domain-based enhancement methods and frequency-domain-based enhancement meth-
ods according to different scopes of image processing [4]. Medical image enhancement
methods based on the spatial domain mainly include histogram algorithms [5–9], filter
algorithms [10–14], and algorithms based on retinex theory [15–19]. The medical image
enhancement algorithm based on the frequency domain converts the image from the spatial
domain to the frequency domain and enhances the image with a frequency domain filter.
It mainly includes the enhancement algorithm based on the Fourier transform, wavelet
transform, and local statistics [20–24]. Deep learning [25–27] technology has recently been
developing rapidly in the field of medical image enhancement. It mainly uses convolutional
neural networks, autoencoders, and generative adversarial networks to learn and enhance
image features and has outstanding performance in image detail enhancement and color
preservation. However, in the field of medical image enhancement, due to the different
manifestations of different diseases, enhancement algorithms need to be targeted. Overall,
there are few studies on images of cervical precancerous lesions. It should be noted that
the doctor mainly makes a diagnosis based on the color, thickness, margin, and blood
vessel morphology of the vinegar white epithelium after the acetic acid staining test during
colposcopy. Thus, this paper proposed an enhancement method for cervical precancerous
lesion images based on retinex and histogram equalization. Experimental results show
that the proposed method has good effects on contrast enhancement, detail sharpening,
color preservation, and noise reduction. Under the current situation, doctors are in urgent
need of high-quality cervical lesion images, but the relevant research work is very few; the
study of this paper is helpful for the diagnosis of cervical precancerous lesions and related
computer-assisted therapy.

The primary works of this paper are as follows:

1. This paper introduces the channel peak ratio and average brightness into the quan-
tization formula of retinex, effectively improving the issue of color distortion in the
multi-scale retinex (MSR) algorithm when processing cervical precancerous lesion
images. The improved MSR achieves the preliminary goal of image enhancement in a
simple and efficient manner.

2. This paper selectively applies the contrast-limited adaptive histogram equalization
(CLAHE) algorithm to the blue and green channels, which contain more detailed
information, to improve the contrast between lesion areas and the background without
excessive enhancement.

3. Based on the characteristics of cervical precancerous lesion images, this paper selec-
tively adopts a pixel-based dynamic weighted fusion strategy to fuse the enhanced
image with the original image. This approach effectively preserves details while
reducing the amplification of noise during the image enhancement process.

The other parts of this paper are as follows: the second part introduces the related
work and research status in the field of medical image enhancement; the third part describes
the method proposed in detail; the fourth part includes experiments that are compared
with traditional medical image enhancement algorithms; finally, the conclusion of this
paper is drawn in the fifth part.

2. Related Work

In traditional medical image enhancement algorithms, histogram equalization (HE) [28]
is one of the most commonly used methods. It is good at enhancing the image con-
trast by using a transformation function to make pixels of the output image relatively
uniformly distributed. However, it usually leads to noise amplification and excessive
enhancement problems. As a result, a contrast-limited adaptive histogram equalization
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(CLAHE) method [9] is proposed, which processes the image in blocks and uses a threshold
to limit the contrast. Similarly, by introducing mean and variance to divide the image, a
quad-histogram equalization algorithm [6] is proposed to avoid excessive enhancement.
Chang et al. [29] proposed automatic contrast-limited adaptive histogram equalization with
a dual gamma correction algorithm. This method redistributes the histogram of CLAHE
blocks according to the dynamic range of each block and then uses double gamma correc-
tion to enhance the brightness, which effectively improves the contrast and brightness of
the image. Subramani et al. [30] applied the fuzzy gray difference histogram equalization
algorithm to MRI image enhancement, and it provided a clear path for the effective analysis
of fine details and infected parts. Histogram-based algorithms need to be improved accord-
ing to the characteristics of the processed images to achieve a relative balance in contrast,
detail, and noise. Retinex theory [31] estimates and filters the incident component of the
original image to decompose the reflected component that retains the original information
of the substance itself to achieve image enhancement. Based on retinex theory, researchers
successively proposed single-scale retinex (SSR) [32] and multi-scale retinex (MSR) [33]
algorithms. MSR theory can overcome the problem of missing detail to a certain extent,
but it still suffers from color deviation, local unbalanced enhancement, and the “halo”
effect. Therefore, the researchers proposed multi-scale retinex with a color restoration algo-
rithm (MSRCR) [34]. Although the algorithm can effectively improve the color deviation
problem, the introduction of multiple experimental parameters increases the complexity
and uncertainty of the algorithm. Fu et al. [35] proposed a weighted variational model to
estimate the reflectance and light component of the image at the same time. In addition,
for the purpose of optimizing the naturalness, the corrected light component is added
to the reflection component. To further preserve the detail and color of the image, Wang
et al. [36] used a guided filter to estimate the light component and then made use of bilateral
gamma correction to adjust the image. The downside of this method is the unsatisfactory
visual brightness. Based on the retinex theory, Wang et al. [37] introduced the inverse
square law of illumination and proposed an algorithm for endoscope image enhancement
with satisfactory brightness correction. The wavelet transform is derived from the Fourier
transform and has a good ability to process and analyze local signals by adjusting the
time and frequency resolution scale of the signals. Yang Y et al. [38] proposed an image
enhancement method using the wavelet transform and Harr transform. They made use
of the Harr transform to decompose all of the high-frequency images and enhanced the
high-frequency component with different weights. It can enhance the details efficiently but
becomes very computationally complex. In the method that is based on the improvement
correction strategy in the wavelet transform domain [39], low-frequency components were
processed by the improved gamma algorithm and the details were enhanced by the fuzzy
contrast function. Image fusion is a highly effective visual correction technology that
enables the integration of complementary advantages from various medical images. By
fusing medical images, we can enhance image sharpness, eliminate noise and redundancy,
and amplify distinctive image features. Thus, in recent years, many researchers have used
image fusion technology to enhance medical images. Li et al. [40] categorized focused
regions and unfocused regions with sparse coefficients and then combined them with a
guided filter to implement image fusion, which effectively reduced the halo effect. To
preserve the structural and textural information of the image, Chen et al. [41] proposed a
novel medical image fusion method based on a rolling guidance filter. In addition, meta-
heuristic algorithms have been widely used in medical image enhancement due to their
distinct advantages in multi-objective problem solving and parameter optimization. Daniel
et al. [42] combined an enhanced cuckoo search algorithm with the optimum wavelet to
enhance the contrast of medical images and achieved results worthy of reference. Zhou
et al. [43] proposed a novel optimized method for medical image enhancement based on an
improved shark smell optimization algorithm.

For deep-learning-based medical image enhancement algorithms, enhancement and
denoising of low-dose CT images are fields in which deep neural networks are applied
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intensively. Xia et al. [27] proposed a novel algorithm aimed at low-dose CT images. En-
hancement was introduced into a deep neural network consisting of multiple alternating
enhancement modules and reverse projection modules. In the endoscopic image enhance-
ment network, researchers used transfer learning to train a decomposed network model
based on retinex theory and proposed a self-attention guided multi-scale pyramid net-
work to obtain a satisfactory illumination component [44]. In contrast to fully supervised
learning frameworks, some approaches apply unsupervised learning techniques to train
neural network models without explicit labeling of training pairs. For example, an efficient
unsupervised generative adversarial network was proposed to make the neural network
free from data training [45]. It is characterized by the usage of information extracted from
the input itself to regulate unpaired training. Fan et al. [46] built a decomposition network
based on retinex theory and used a conditional generation network as the enhancement
network. The method added a conditional entropy distance loss to prevent overfitting in
the training process and achieved a good visual effect. However, medical image enhance-
ment algorithms based on deep learning need the support of reliable and high-quality
data sets and computational resources. On the other hand, its experimental results lack
interpretability, which means insufficient reliability in medical diagnosis.

3. Methods

The object of this study is the imaging of cervical precancerous lesions taken by
colposcope after acetic acid staining test. In Figure 1, acetic acid staining images of non-
lesion, low-grade, and high-grade cervical precancerous lesions are shown from left to
right. As shown in Figure 1a, the healthy cervical epidermis was smooth and was not
stained by acetic acid. In the image of low-grade cervical precancerous lesions in the
middle, the vinegar white epithelium (an abnormal colposcopic manifestation of whitening
of the dense nuclear area after acetic acid application) presents a translucent and thin white
state, and the lesion area is accompanied by small, punctured vessels or small mosaics.
In the image of high-grade cervical precancerous lesions on the right, the vinegar white
epithelium often presents a dense and strong white state, and the lesion area has thick
punctate vessels and extensive irregular mosaic. In addition, the highly diseased cervical
epidermis may even bleed or generate large, atypical blood vessels. In view of the above,
the core of cervical precancerous lesion image enhancement is to enhance the vinegar white
epithelium, vascular morphology, and lesion margins.
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Figure 1. Images of different lesion grades after acetic acid staining test: (a) Normal cervical staining
image; (b) Low-grade cervical staining image; (c) High-grade cervical staining image.

Figure 2 shows the overall flow of the proposed algorithm. The whole process mainly
includes four parts. The execution sequence of these four parts will affect the final im-
age quality to some extent. However, our proposed scheme, with the current order of
algorithms, consistently achieved superior efficiency and performance compared to other
combinations. First, the input image is decomposed into R, G, and B channels, and then
the improved MSR algorithm is applied to each of the three channels to achieve prelimi-
nary enhancement of brightness, detail, and contrast. Next, the CLAHE algorithm, which
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introduces adaptive shear values, is applied to the G and B channels to further stretch
the contrast. The R, G, and B channels are merged, and then the details are sharpened to
further highlight the lesion features. Finally, to suppress noise, dynamic weighted fusion is
implemented between the original image and the image after detail boosting. The proposed
algorithm can effectively improve the quality of cervical precancerous lesion images and is
described in detail below.
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Figure 2. Overall flowchart of the proposed algorithm.

3.1. Enhancement Based on the Improved MSR

The retinex theory aims to enhance image brightness on the basis of optimizing the
edges. According to this theory, a visual image can be divided into two components: the
incident light component and the object reflection component. The reflection component is
responsible for defining the inherent properties of the object. Therefore, the core of retinex
theory is to remove the influence of the incident light component and preserve the reflection
component. The MSR algorithm [33] is proposed on the basis of the SSR algorithm [32],
and it combines the results of multi-scale Gaussian filter to compensate for the possible
halo phenomenon and compensate for the absence of a light component. The formula is
as follows:

log(R(x, y)) =
K

∑
k=1

ωklog(Ri(x, y)) =
K

∑
k=1

ωk[log (Si(x, y))−log(Li(x, y))] (1)

where S(x, y) is the visual image, R(x, y) is the reflection component, L(x, y) is the incident
light component, k represents three different Gaussian surround function scales, i represents
one of the channels from the R, G, B color space in the image, and ωk represents the weights
corresponding to a three-scale Gaussian surround function. Generally, the value of each
weight is one third.

The MSR algorithm needs to quantify the pixels to the range of 0–255 at the end. The
quantization formula is as follows:

RMSRi (x, y) =
Value−Min
Max−Min

(255− 0) (2)
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where Value, Min, and Max are the pixel value, minimum, and maximum of log(R(x, y)),
respectively, and RMSRi (x, y) is the output image by the MSR algorithm.

However, linear quantization is much smoother than exponential curves. This causes
the difference between the channels to be greatly reduced, which leads to color distortion
of the output image. In this case, the MSRCR algorithm [34] is developed to adjust the color
distortion resulting from the local enhancement of the image by adding a color recovery
factor. The color recovery factor solves color problems by adjusting the proportional
relationship among the three channels. It is expressed as follows:

RMSRCRi (x, y) = Ci(x, y)RMSRi (x, y) (3)

where i still represents one of the channels from the R, G, B color space in the image, and
Ci(x, y) is the color recovery factor of the i channel, which is used to adjust the ratio of the
three channels.

Figure 3b,c are images processed by MSR and MSRCR, respectively. The MSRCR
algorithm can repair the image color to a certain extent, but the processed image is still
slightly white overall. The root cause of color distortion in the MSR algorithm is that the
unified linear quantization reduces the dynamic range of pixels and the difference between
each channel. Therefore, the problem of color distortion can be solved by modifying the
quantization formula. In this paper, the ratio of the peak value of each channel to the sum
of peak values for the three channels is introduced into the quantization formula. The
average pixel value of the input image is used as the brightness compensation. The image
processed by the improved MSR algorithm is shown in Figure 3d, whose color effect is the
best among Figure 3b–d. The quantization formula is modified as follows:

R(x, y) = ∑i∈{R,G,B}

[
ϕIpi

IpR + IpG + IpB

Valuei + Imean

]
(4)

where Ip· is the peak value of each channel, Imean is the average pixel of the input image,
Valuei represents the pixel, and ϕ is a control parameter, which is set to 500. In the course
of the experiment, a value exceeding 255 should be set to 255 to prevent overflow.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

The MSR algorithm needs to quantify the pixels to the range of 0–255 at the end. The 
quantization formula is as follows: 𝑅ெௌோ(𝑥, 𝑦) = 𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑀𝑎𝑥 − 𝑀𝑖𝑛 (255 − 0) (2) 

where 𝑉𝑎𝑙𝑢𝑒 , 𝑀𝑖𝑛 , and 𝑀𝑎𝑥  are the pixel value, minimum, and maximum of log൫𝑅(𝑥, 𝑦)൯, respectively, and 𝑅ெௌோ(𝑥, 𝑦) is the output image by the MSR algorithm. 
However, linear quantization is much smoother than exponential curves. This causes 

the difference between the channels to be greatly reduced, which leads to color distortion 
of the output image. In this case, the MSRCR algorithm [34] is developed to adjust the 
color distortion resulting from the local enhancement of the image by adding a color re-
covery factor. The color recovery factor solves color problems by adjusting the propor-
tional relationship among the three channels. It is expressed as follows: 𝑅ெௌோோ(𝑥, 𝑦) = 𝐶(𝑥, 𝑦)𝑅ெௌோ(𝑥, 𝑦) (3) 

where 𝑖 still represents one of the channels from the R, G, B color space in the image, and 𝐶(𝑥, 𝑦) is the color recovery factor of the 𝑖 channel, which is used to adjust the ratio of 
the three channels.  

Figure 3b,c are images processed by MSR and MSRCR, respectively. The MSRCR al-
gorithm can repair the image color to a certain extent, but the processed image is still 
slightly white overall. The root cause of color distortion in the MSR algorithm is that the 
unified linear quantization reduces the dynamic range of pixels and the difference be-
tween each channel. Therefore, the problem of color distortion can be solved by modifying 
the quantization formula. In this paper, the ratio of the peak value of each channel to the 
sum of peak values for the three channels is introduced into the quantization formula. The 
average pixel value of the input image is used as the brightness compensation. The image 
processed by the improved MSR algorithm is shown in Figure 3d, whose color effect is 
the best among Figure 3b–d. The quantization formula is modified as follows: 𝑅(𝑥, 𝑦) =  ቈ 𝜑𝐼𝐼ೃ + 𝐼ಸ + 𝐼ಳ 𝑉𝑎𝑙𝑢𝑒 + 𝐼∈ሼோ,ீ,ሽ  (4) 

where 𝐼∙ is the peak value of each channel, 𝐼 is the average pixel of the input image, 𝑉𝑎𝑙𝑢𝑒  represents the pixel, and 𝜑  is a control parameter, which is set to 500. In the 
course of the experiment, a value exceeding 255 should be set to 255 to prevent overflow. 

    
(a) (b) (c) (d) 

Figure 3. (a) original image; (b) image processed by MSR; (c) image processed by MSRCR; (d) image 
processed by the improved MSR. 

Compared with the MSRCR algorithm, the improved MSR algorithm can solve the 
color distortion problem existing in retinex theory more effectively. At the same time, it 
introduces only one control parameter, which means that higher quality images are ob-
tained in a simpler way. 

3.2. Enhancement Based on CLAHE 
To further observe the acetowhite epithelium of the cervical precancerous lesion im-

age, stretching the contrast is of great significance. Histogram equalization is the most 

Figure 3. (a) original image; (b) image processed by MSR; (c) image processed by MSRCR; (d) image
processed by the improved MSR.

Compared with the MSRCR algorithm, the improved MSR algorithm can solve the
color distortion problem existing in retinex theory more effectively. At the same time,
it introduces only one control parameter, which means that higher quality images are
obtained in a simpler way.

3.2. Enhancement Based on CLAHE

To further observe the acetowhite epithelium of the cervical precancerous lesion
image, stretching the contrast is of great significance. Histogram equalization is the most
commonly used contrast stretching algorithm. Its main idea is to adjust the distribution of
the histogram to an approximately uniform distribution. It utilizes the cumulative density
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function of the image to improve the overall contrast. The cumulative distribution function
is shown as follows:

Sm =
m

∑
j=0

nj

n
, m = 1, 2, . . . , L− 1 (5)

where m represents the gray level, n is the sum of the pixel number in the image, nj is the
number of pixels in the current gray level, and L is the number of possible gray levels in
the image. Using the cumulative distribution function, the pixels of the enhanced image
can be calculated by the following formula:

pm = (L− 1)
m

∑
j=0

nj

n
, m = 1, 2, . . . , L− 1 (6)

The global histogram equalization algorithm will lose details in the local bright or
dark regions and amplify the global noise. The CLAHE algorithm [9] divides the image
into several subregions for histogram equalization and introduces the clipping threshold to
limit noise amplification. The detailed algorithm steps are shown as follows:

• The input image is divided into 8 × 8 nonoverlapping subblocks, each of which
contains M pixels;

• Compute the histogram of the subblocks;
• Set the clipping threshold;
• For each subblock, use the excess pixels from the previous step to reallocate;
• Each subblock is histogram-equalized;
• The bilinear interpolation method is used to reconstruct the pixels.

In the CLAHE algorithm, the clipping threshold is proportional to the degree of
contrast stretching. However, if the clipping threshold is too large, it will lead to excessive
enhancement of the bright area. Thus, the clipping threshold is set to 1.4. Figure 4 shows
the corresponding histograms of Figure 1b,c. It can be seen that the histograms of the G and
B channels are similar, and the pixels are mostly concentrated in the range of 50 to 150. The
pixels in the R channel are mostly concentrated in the range of 150 to 250. The distribution
is related to the light absorption characteristics of the human mucosa. The blue and green
channels in the images contain more detailed information about the blood vessels [47].
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Figure 5 shows the B-channel image, G-channel image, and R-channel image for
Figure 1b. Figure 6 shows the B-channel image, G-channel image, and R-channel image for
Figure 1c. It is found that there are more details in the blue and green channels of cervical
precancerous lesion images. According to Figures 4–6, this paper applies CLAHE only to
the G and B channels.
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Figure 7 shows the results of performing the CLAHE on the R, G, B channels and G,
B channels. It is found that if the R, G, B channels are all stretched, the local dark area
in the image will darken sharply, which seriously affects the visual effect of the image.
According to Figure 4, the local image darkening is caused by the fact that the pixels of
the red channel are too concentrated in the range of 150–250, so that the pixels of the red
channel are overstretched. By contrast, it can be seen that images created through the
CLAHE algorithm on the G, B channels have a better visual effect.
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3.3. Enhancement Based on Multi-Scale Detail Boosting

The details need to be boosted for the purpose of highlighting the local vascular
morphology. In this paper, a multi-scale detail enhancement algorithm [48] is used to
optimize the visual effects of local details by adding high-frequency components to the
input image. A main advantage of the method is that it will not lead to halo or excessive
saturation problems when boosting details. First, the input image is convolved with three
Gaussian kernels of different scales to obtain blurred images. It is shown as follows:

B1 = G1 ∗ I*, B2 = G2 ∗ I*, B3 = G3 ∗ I*, (7)

where G1, G2, and G3 are the Gaussian kernels with the corresponding standard deviations
σ1 = 1.0, σ2 = 2.0, and σ3 = 4.0, respectively. Then, fine details D1, medium details D2,
and rough details D3 can be obtained according to the following formula:

D1 = I* − B1, D2 = B1 − B2, D3 = B2 − B3 (8)

Next, the three detail images are weighted merged to obtain the overall detail image.
It is shown as follows:

D* = (1− λ1sgn(D1))D1 + λ2D2 + λ3D3,
λ1 = 0.5,
λ2 = 0.5,
λ3 = 1.0,

(9)

where λ1, λ2, and λ3 are the merged weights corresponding to the three detailed images.
It should be noted that fine detail may lead to partial gray level saturation. Therefore,
the multi-scale detail boosting algorithm uses the step function to reduce the positive
component while enlarging the negative component. The step function is given by the
following formula:

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

(10)

Through the compensation strategy, the balance of detail enhancement and saturation
inhibition can be achieved. Finally, the overall detail image is added to the input image in
this section.
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3.4. Enhancement Based on Dynamic Weighted Fusion

Pixel-based fusion is the most basic fusion method and it shows unique advantages in
details, edges, color optimization, and noise reduction. In this paper, the original image and
the detail-enhanced image are dynamically weighted and fused based on pixels, to suppress
noise and reduce distortion. Generally, precancerous lesions start from the opening of
the cervix and spread outward. Colposcopy is aimed at the opening of the cervix to
obtain images. It means that in the area near the opening of the cervix, more detailed
information should be fused so that the doctor can make a correct diagnosis. Therefore, the
fusion weights should change dynamically based on the distance between the pixel and
the center of the image. The fusion strategy proposed in this paper can be given by the
following formulas:

d(i,j) =
√
(i− cx)

2 +
(

j− cy
)2 (11)

η(i,j) =
d(i,j)√
c2

x + c2
y

ρ

(12)

I f(i,j) = η(i,j) Iori(i,j) +
(

1− η(i,j)

)
Imb(i,j) (13)

where d(i,j) is the distance from position (i, j) to the image center, cx and cy represent the
position of the image center, η(i,j) is the weight of the original image when fusing, I f(i,j) is
the fused image, and Imb(i,j) is the detail-enhanced image, while ρ is a fixed parameter that
is set to 3 based on the experimental results. According to the above fusion strategy, the
weight of the original image is smaller in areas near the center of the image and larger in
areas away from the center of the image. The weight of the detail-enhanced image changes
in the opposite way. Under the pixel-based dynamic weighted fusion method, the image
noise is effectively suppressed, and the details are well preserved.

4. Experimental Results and Discussion

In this section, the effectiveness of the proposed algorithm is verified by comparing
the experimental results with those of six other traditional medical image enhancement
algorithms. First, the setup of the experiment is introduced in Section 4.1. Then, the
selection of parameters involved in the algorithm is introduced in Section 4.2. Finally, the
experimental results are analyzed in Section 4.3.

4.1. Experimental Setup

The experimental operating system was Windows 10, 64-bit. Visual Studio 2017 and
Visual Studio Code were used. To verify the applicability of the proposed algorithm to
cervical precancerous lesion images, four images of cervical precancerous lesions from low
to high lesion grades were selected as input images, as shown in Figure 6.

In Figure 8, Img1 and Img2 belong to low-grade lesions, while Img3 and Img4 belong
to high-grade lesions. Img1 contains almost invisible vinegar white epithelium and small
vascular mosaic. In Img2, a relatively thick vinegar white epithelium and a small number
of tiny, punctured blood vessels near the cervical opening can be seen. In Img3, obvious
vinegar white epithelium can be observed, with large and small punctured blood vessels
distributed in the range of vinegar white epithelium, and some atypical blood vessels in
development can be seen. The vinegar white epithelium in Img4 is very dense, while a
large vascular mosaic and some obscure punctured vessels can be clearly seen.

Then, this paper selected MSR, MSRCR, image enhancement algorithm of electronic
medical endoscope based on singular value equalization (IESVE) [49], endoscopic im-
age enhancement algorithm based on luminance correction and fusion channel prior
(LCLCP) [50], and research on endoscopic image enhancement algorithm based on con-
trast fusion (IECF) [51] to carry out comparative experiments. Starting from subjective
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and objective aspects, this paper used full-reference metrics and no-reference metrics for
comprehensive evaluation.
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The peak signal-to-noise ratio (PSNR) is a full-reference metric, that can be used to
evaluate the distortion degree of the processed image. The value of PSNR is proportional
to the image quality. It can be given as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−O(i, j)]2 (14)

PSNR = 10× log10

(
MAX2

I
MSE

)
(15)

where MSE is the mean square error, I(i, j) and O(i, j) represent the original image and
the processed image, respectively, and m and n are the height and width of the image,
respectively, while MAX I denotes the maximum pixel value of image I.

The detail-variance–background-variance (DV–BV) of an image can be used to evalu-
ate the degree of detail enhancement, which is a no-reference metric. When calculating the
DV–BV value of an image, the first step is to convert the color image to a gray image. Then,
the gray image is expanded and eroded to obtain two resulting images. These two resulting
images are subtracted to obtain the detail image. The background image can be obtained
by Gaussian blur (kernel size is 5) from the original grayscale image. The next step is to
calculate the average square variance of the detail image and background image. Finally,
the ratio of the two average square variance values is calculated to obtain the DV–BV value.
The value of the DV–BV is also proportional to the detail enhancement degree of the image.

The gray square mean deviation (SMD2) is also a no-reference indicator to describe
the clarity of the image. The larger the value is, the clearer the image is. It can be given
as follows:

SMD2 = ∑
i

∑
j
[|I(i, j)− I(i + 1, j)|×|I(i, j)− I(i, j + 1)|] (16)

where I(i, j) represents the input image.
Contrast improvement index (CII) is an index used to evaluate the effect of image

contrast improvement. By calculating the contrast of the original image and the contrast of
the enhanced image, and dividing their difference by the contrast of the original image, the
contrast improvement index can be obtained. A higher value indicates a more significant
improvement in contrast. The principle formula for calculating the contrast improvement
index is as follows:

CII =
(

I′max − I′min
)
/
(

I′max + I′min
)
− (Imax − Imin)/(Imax + Imin)

(Imax − Imin)/(Imax + Imin)
(17)

where Imax and I′max represent the largest pixel of the original image and the enhanced
image, respectively, while Imin and I′min represent the largest pixel of the original image and
the enhanced image, respectively.
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The image enhancement quality index (EQI) considers three key indicators: contrast,
saturation, and brightness. This approach allows for a comprehensive evaluation that takes
into account multiple visual features, aligning more closely with human perception of
the enhancement effect. By considering these factors, the index provides a more holistic
assessment of image quality.

4.2. Selection of Parameters Involved in the Algorithm
4.2.1. Parameter ϕ

In Figure 9, it can be seen that an increase in the control parameter will improve the
image enhancement effect. However, if the control parameter is too large, the degree of
image distortion will increase, which can be demonstrated in Figure 10. Figure 10 shows
the change trend of the average PSNR of 100 images with the increase of the parameter
ϕ. When the parameter exceeds 500, PSNR begins to decline, which means that the image
has a certain degree of distortion. Therefore, to balance image enhancement and avoiding
distortion, the value of the control parameter is set to 500.
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4.2.2. Parameter ρ

The parameter ρ can control the speed of fusion weights changing. In the cervical
opening area, the greater the value, the more enhanced information will be fused into the
fusion image. As can be seen in Figure 11, the noise reduction effect decreases as ρ increases.
Figure 12 shows the trend of the three evaluation indicators with the increase in parameters.
The decrease of PSNR indicates the increase in image noise and distortion. The increase
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in DV–BV and SMD2 indicate an increase in image details remaining. It can be seen from
Figure 12 that the slope of indicators is highest when the parameter increases from 1 to 2.
Therefore, to suppress noise and preserve detail at the same time, the parameter ρ is set
to 3.
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4.3. Subjective and Objective Evaluation

The proposed algorithm mainly consists of four steps. To explain its rationality, a
vertical comparison analysis is carried out in this paper. Figure 12 draws the line charts of
PSNR, DV–BV, and SMD2 of the four images obtained after each step. Figure 13a shows
the variation trend of the PSNR values. The increase in PSNR at the end proves that the
pixel-based dynamic weighted fusion step can effectively suppress the image noise and
alleviate the image distortion caused by the enhancement process. Figure 13b describes
the change in the third indicator, SMD2, whose change process is similar to that of DV–BV.
It proves the validity and rationality of the first three steps from the perspective of image
clarity. Although its values also decrease in pixel-based dynamic weighted fusion, it can be
seen from the figure that the SMD2 value after the decrease is still significantly higher than
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that after applying CLAHE. Figure 13c shows the change in DV–BV. As seen from the figure,
the value of DV–BV shows a gradual upward trend in the first three steps, which proves
that the lesion details are continuously enhanced in the process of improved multi-scale
retinex, CLAHE, and multi-scale detail enhancement. The decrease in the DV–BV value
in the fusion process is an inevitable result of image noise reduction. Moreover, the final
value of DV–BV is still higher than the value after the second step, which demonstrates the
necessity of multi-scale detail enhancement.
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Figure 13. The changing chart of objective evaluation indexes in the course of algorithm implementa-
tion. Red line indicates the change of Img1 corresponding to objective indicators, blue line indicates
the change of Img2 corresponding to objective indicators, green line indicates the change of Img2
corresponding to objective indicators, and yellow line indicates the change of Img2 corresponding
to objective indicators. The horizontal coordinate indicates the process of the algorithm, and the
vertical coordinate indicates the index value. ORI represents the original image; M, MC, MCM, and
MCMF represent the image after the first, second, third, and fourth steps in the whole proposed
algorithm, respectively. (a) Line chart of PSNR change, (b) Line chart of SMD2 change, (c) Line chart
of DV–BV change.

For subjective evaluation, Figures 14–17 show the results of Img1, Img2, Img3, and
Img4 processed by different algorithms. Overall, the vinegar white epithelium, punctate
vessels, and vascular mosaics were enhanced to different degrees. However, in the four
images, the two algorithms based on retinex (MSR, MSRCR) caused serious color deviation,
and the image showed a gray tone. By comparing the results of low-grade lesions and
high-grade lesions, it can be found that the MSRCR algorithm has a better enhancement
effect on thick vinegar white epithelium. Although the color distortion of the image
after MSRCR is alleviated with the aid of the color recovery algorithm, the overall color
deviation of the image is still serious. The LCLCP algorithm yielded satisfactory results
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in image Img3. However, in the remaining three images, there was significant distortion
at the cervical opening and a significant decrease in image clarity. Although the IESVE
algorithm enhances contrast and detail in focal areas, its impact is comparatively limited
when compared to the proposed method. Examining the four outcomes, it becomes
apparent that the IECF algorithm reduces the image brightness, leading to subpar image
quality. The image processed by the CLAHE algorithm not only maintains its original color
but also significantly enhances the lesion area. However, for some images, the CLAHE
algorithm will have the problem of the appearance of dark regions due to local over-
enhancement, which can be clearly seen in the processed images of Img2 and Img4. Through
the comparison of experimental results, it can be clearly seen that the proposed algorithm is
superior to the other six traditional medical image enhancement algorithms in terms of color
preservation, contrast improvement, detail enhancement, and brightness optimization.
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In terms of objective evaluation, this paper first evaluates the results of the horizontal
comparison experiment. PSNR, DV–BV, SMD2, CII, and EQI are used to evaluate the
quality of the output images of different algorithms, and the results are shown in Tables 1–5.
As seen from Table 1, the proposed scheme has the highest PSNR in Img1, Img2, and Img4,
and the IESVE algorithm has the highest PSNR in Img3. The results in Table 1 indicate
that the proposed algorithm has a better effect on noise reduction and image distortion
reduction, which is consistent with the subjective evaluation results.

From Table 2, it is evident that the proposed scheme yields DV–BV values that sur-
pass those of other comparative experiments. This observation indicates a significant
enhancement in image details following the application of this method.

Table 3 displays the calculation results of SMD2, highlighting the remarkable disparity
between the proposed algorithm and other comparative experiments. The significantly
larger SMD2 value obtained by the proposed algorithm implies a substantial improvement
in image quality, resulting in enhanced clarity.
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Table 4 shows the CII values of images processed by different algorithms. Through
comparison, it can be found that there are three optimal values (Img2, Img3, and Img4) and
one suboptimal value (Img1) after being processed by the proposed algorithm. It proves
that the proposed algorithm is effective in improving image contrast.

As depicted in Figure 5, the proposed algorithm demonstrates superior results in Img2,
Img3, and Img4 under the comprehensive evaluation index EQI when compared to other
comparative experiments, with the IECF algorithm following closely behind. This outcome
aligns with the findings of the subjective evaluation, indicating that the algorithm presented
in this paper effectively enhances the visual effect of cervical precancerous lesion images.

Table 1. PSNR calculation results. The best result is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

Img1 28.824 28.595 29.658 28.059 27.328 29.299 29.664
Img2 28.070 28.122 29.656 28.627 27.344 29.621 29.657
Img3 28.529 28.504 30.546 27.695 27.445 29.699 29.824
Img4 28.807 28.147 29.240 28.280 27.343 28.865 29.532

Table 2. DV–BV calculation results. The best result is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

Img1 0.174 0.131 0.181 0.105 0.233 0.180 0.316
Img2 0.130 0.120 0.043 0.035 0.059 0.046 0.323
Img3 0.049 0.041 0.033 0.023 0.048 0.031 0.094
Img4 0.108 0.070 0.108 0.058 0.138 0.106 0.197

Table 3. SMD2 calculation results. The best result is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

Img1 25.738 61.539 41.769 50.971 62.629 46.705 78.928
Img2 10.175 30.501 18.665 24.588 31.315 22.238 31.880
Img3 3.949 14.920 6.343 10.843 9.660 7.119 16.197
Img4 17.970 44.097 26.738 34.052 43.119 30.112 55.879

Table 4. CII calculation results. The best result is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

Img1 0.062 0.367 0.042 0.223 0.108 0.006 0.255
Img2 0.174 0.306 0.147 0.306 0.121 0.210 0.310
Img3 0.018 0.858 0.234 1.031 0.152 0.359 1.092
Img4 0.049 0.299 0.009 0.262 0.163 0.050 0.301

Table 5. EQI calculation results. The best result is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

Img1 0.068 0.091 0.745 0.671 1.101 0.575 0.748
Img2 0.009 0.036 1.211 0.960 1.051 0.856 1.22
Img3 0.003 0.013 1.103 0.829 1.046 0.913 1.115
Img4 0.068 0.153 0.975 0.982 1.076 0.550 1.080

Table 6 presents the time complexity of various algorithms. It is evident that classical
algorithms (MSR, MSRCR, CLAHE) exhibit lower time complexity compared to the im-
proved enhanced algorithms (IESVE, LCLCP, IECF, Proposed). Additionally, the proposed
method demonstrates a lower time complexity in comparison to other improved algorithms.
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Considering that real-time requirements are not critical for the enhancement processing of
cervical precancerous lesion images, the slightly higher time complexity of the proposed
algorithm is deemed acceptable.

Table 6. Time complexity (unit: second). The best result is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

Img1 1.49 2.117 38.352 10.451 7.729 1.03 3.72
Img2 6.319 8.749 367.187 86.09 38.179 1.12 15.68
Img3 3.726 5.157 158.426 38.176 21.502 1.16 8.85
Img4 1.474 1.967 40.525 10.386 7.75 1.09 3.68

To verify the applicability of the proposed algorithm, 100 cervical precancerous lesion
images with different lesion grades were used in the experiment to calculate the average
values of PSNR, DV–BV, SMD2, CII, and EQI under different algorithms, as shown in
Table 7. As demonstrated in Table 7, the objective evaluation index values associated with
the algorithm presented in this paper surpass those of the comparative experiment. This
clearly establishes that the proposed algorithm outperforms other comparison algorithms
in terms of enhancing cervical precancerous lesions.

Table 7. The average PSNR, DV–BV, SMD2, CII, and EQI calculated from 100 pictures. The best result
is shown in bold.

Source Images MSR MSRCR IESVE LCLCP IECF CLAHE Proposed

PSNR 28.916 28.071 29.689 28.253 27.215 28.815 29.914
DV–BV 0.080 0.061 0.063 0.079 0.066 0.086 0.193
SMD2 18.806 35.019 21.644 28.790 40.384 30.384 45.384

CII 0.056 0.374 0.091 0.606 0.167 0.406 0.628
EQI 0.027 0.076 0.862 0.813 0.929 0.797 0.988

In conclusion, the subjective evaluation confirms that the proposed algorithm ef-
fectively enhances image contrast, sharpens lesion details, optimizes image brightness,
and suppresses noise interference while preserving color. As a result, the visual effect is
more conducive to the diagnostic process for doctors. The objective evaluation further
substantiates the validity and stronger competitiveness of the proposed algorithm.

5. Conclusions

In this paper, an enhancement algorithm for cervical precancerous lesion images
based on retinex and histogram equalization is proposed. The algorithm consists of four
parts. In the first part, it solves the color deviation problem of the retinex algorithm by
modifying the quantization formula. Using the improved multi-scale retinex algorithm,
the brightness of the image is enhanced, and the details are initially sharpened. In the
second part, the contrast is effectively stretched by the CLAHE algorithm, which can avoid
excessive enhancement and suppress noise. It is worth noting that the CLAHE algorithm
is specifically implemented in the blue and green channels according to the histogram
distribution characteristics of cervical precancerous lesion images. In the third part, a multi-
scale detail enhancement algorithm is used to enhance the high-frequency information in
the image to highlight the details of the lesion area. The fourth part uses the pixel-based
dynamic weighted fusion strategy to fuse the detail-enhanced image with the original
image to reduce noise, improve the image distortion, and optimize the visual effect. The
results of subjective and objective evaluations show that the proposed algorithm has a
better enhancement effect on cervical precancerous lesion images.
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