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Abstract: The invariance method, known as Lie analysis, consists of finding a group of transforma-
tions that leave a difference equation invariant. This powerful tool permits one to lower the order,
linearize and more importantly, obtain analytical solutions of difference and differential equations. In
this study, we obtain the solutions and periodic solutions for some family of difference equations.
We achieve this by performing an invariance analysis of this family. Eventually, symmetries are
derived and used to construct canonical coordinates required for the derivation of the solutions.
Moreover, periodic aspects of these solutions and the stability character of the equilibrium points
are investigated.
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1. Introduction

In certain cases, difference equations are used to model the evolution of natural
phenomena occurring over time. The analysis of difference equations has attracted the
attention of many researchers and interesting results have been obtained. The type of
difference equations where initial conditions and parameters appearing in the equations
are fuzzy numbers, known as fuzzy difference equations, have also been studied and
progress has been made [1,2]. In numerous articles that dealt with solutions of difference
equations, we noticed the use of proof by induction to show that the presented formulas
for the solutions are valid. To the best of our knowledge, the use of Lie analysis to obtain
analytic solutions to difference equations is to some extent new. This method, originally
applied to differential equations, has recently been applied to difference equations. It traces
back to the twentieth century when Maeda [3] proved that, as long as a difference equation
admits symmetries, its order can be reduced. Recently, it has been shown, for differential
equations, that when symmetries and conservation laws are associated, one may proceed to
double reduction [4]. It is now known that this approach works for difference equations [5].
With regard to differential equations, computer packages that generate Lie symmetries
have been developed. Regrettably, this is not the case for difference equations. Symmetries
of difference equations are mostly computed by hand and frequently involve cumbersome
computations.

In this study, unlike in many articles where the change of variables is made by guess
work, we employ symmetries to reduce the order of the difference equation

xn+6k =
xnxn+kxn+2k

xn+4kxn+5k(An + Bnxnxn+kxn+2kxn+3k)
, (1)

via canonical coordinates. We clearly state the link between the symmetries (characteristics)
and the new variable (invariant). Note that in (1), An and Bn are real sequences and xi,
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i = 0, 1, . . . , 6k− 1 are the initial conditions. As a matter of choice, some authors prefer the
equivalent form

xn =
xn−6kxn−5kxn−4k

xn−2kxn−k(an + bnxn−6kxn−5kxn−4kxn−3k)
(2)

of (1). Studies of special cases of (2) can be found in the literature [6] where the authors
consider the equation

xn =
xn−6xn−5xn−4

xn−2xn−1(a + bxn−6xn−5xn−4xn−3)
(3)

and presented the formula for solutions as well as their asymptotic behavior. For similar
studies on difference equations of this form, the reader can refer to [5–12].

The paper is organized as follows. In Section 2, we provide some basic theory needed
for finding symmetries of difference equations and the reduction of order. We also discuss
some well-known theory on the stability of equilibrium points. In Section 3, we obtain
symmetries and solutions of (1). A more detailed study is conducted for some special cases.
Section 4 is mainly dedicated to the stability of the equilibrium points and the periodicity
aspects of the solutions of (1). Finally, in Section 5, we show that some existing results in
the literature are special cases of our findings.

2. Preliminaries

The algorithm for finding symmetries of difference equations is explained at large
in [13]. Consider an equation involving some continuous variables x = (x1, . . . , xq) and a
local diffeomorphism (point transformation): T : x→ x̄(x).

Definition 1. A parameterized set of transformations

Tε(x) ≡ x̂(x; ε) (4)

is a one-parameter local Lie group of transformations if the following conditions are satisfied:

1. T0 is the identity map, so that x̂ = x when ε = 0.
2. TγTε = Tγ+ε for every γ, ε sufficiently close to 0.
3. Every x̂α can be represented as a Taylor series in ε, that is,

x̂α(x; ε) = xα + εηα(x) + O(ε2), α = 0, 1, . . . , q.

Definition 2. The infinitesimal generator of the one-parameter Lie group of point transforma-
tions (4) is the operator

X = X(x) = η(x) · ∆ =
q

∑
α=1

ηα(x)
∂

∂xα
, (5)

and ∆ is the gradient operator.

Theorem 1 ([13]). F(x) is invariant under the group of transformations (4) if and only if
XF(x) = 0.

Suppose a difference equation has the form

xn+6k = A(n, xn, xn+k, xn+2k, xn+3k, xn+4k, xn+5k), (6)



Mathematics 2023, 11, 3693 3 of 16

where A is a known function that satisfies ∂A/∂xn 6= 0. As said before, we explore a
one-parameter Lie group of point transformations

x̂n = xn + εη(n, xn) (7)

where ε represents the group parameter. The function η = η(n, xn) is referred to as the
characteristic of the Lie group. The infinitesimal generator takes the form

X =η(n, xn)
∂

∂xn
. (8)

Although the transformation depends on n and xn only, one needs to investigate how
the symmetries affect the other variables appearing in the right hand side of (6), hence the
introduction of the prolonged infinitesimal generator X of X :

X =η(n, xn)
∂

∂xn
+ η(n + k, xn+k)

∂

∂xn+k
+ η(n + 2k, xn+2k)

∂

∂xn+2k
+ η(n + 3k, xn+3k)

∂

∂xn+3k

+ η(n + 4k, xn+4k)
∂

∂xn+4k
+ η(n + 5k, xn+5k)

∂

∂xn+5k

admitted by the group of transformations (7). Accordingly, the infinitesimal condition for
invariance is given by η(n + 6k, xn+6)− X(A) = 0, that is,

η(n + 6k, xn+6)−
∂A

∂xn+5k
η(n + 5k, xn+5k)−

∂A
∂xn+4k

η(n + 4k, xn+4k)−
∂A

∂xn+3k
η(n + 3k, xn+3k)

− ∂A
∂xn+2k

η(n + 2k, xn+2k)−
∂A

∂xn+k
η(n + k, xn+k)−

∂A
∂xn

η(n, xn) = 0 (9)

on condition that (6) is satisfied. The functional Equation (9) can be solved for Q after a set
of lengthy computations.

The analysis of stability of the equilibrium points will be carried out using the follow-
ing definitions and theorems. They can be found in [14].

Definition 3. The equilibrium point x̄ of (6) is stable (locally) if for all ε > 0, ∃ δ > 0 such that
6k−1
∑

i=0
|xi − x̄| < δ =⇒ |xn − x̄| < ε for all solution {xn}∞

n=0 of (6).

Definition 4. The equilibrium point x̄ of (6) is a global attractor if xn → x̄, as n→ ∞, for any
solution {xn}∞

n=0 of (6).

Definition 5. The equilibrium point x̄ of (6) is globally asymptotically stable if x̄ is locally stable
and is a global attractor of (6).

We introduce the characteristic equation of (6) of the fixed point x̄:

λ6k − p5kλ5k − p4kλ4k − p3kλ3k − p2kλ2k − pkλk − p0 = 0 (10)

where pi =
∂A

∂xn+i
(x̄, . . . , x̄), i = 0, k, 2k, 3k, 4k, 5k.

Theorem 2 ([14]). Suppose A is a smooth function defined on some neighborhood of x̄. Then,

(i) If all the roots, λi, of (10) are such that |λi| < 1, then x̄ is locally asymptotically stable.
(ii) If at least one root of (10) has absolute value greater than one, then x̄ is unstable.

Definition 6. The equilibrium point x̄ of (6) is called non-hyperbolic if there exists a root of (10)
with absolute value equal to one.
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Theorem 3 ([14]). Assume p0, pk, p2k, p4k and p5k are real numbers such that

|p0|+ |pk|+ |p2k|+ |p3k|+ |p4k|+ |p5k| < 1.

Then, the roots of (10) lie inside the open unit disk |λ| < 1.

3. Symmetries and Solutions

To find symmetries for (1), we apply the condition (9) to (1) as follows:

η(n + 6k,A) + xnxn+kxn+2kxn+4kη(n + 5k, xn+5k) + xnxn+kxn+2kxn+5kη(n + 4k, xn+4k)

x2
n+4kx2

n+5k(An + Bnxnxn+kxn+2kxn+3k)

+
Bnxn

2xn+k
2xn+2k

2η(n + 3k, xn+3k)

xn+4kxn+5k(An + Bnxnxn+kxn+2kxn+3k)
2 −

Anxnxn+kη(n + 2k, xn+2k)

xn+4kxn+5k(An + Bnxnxn+kxn+2kxn+3k)
2− (11)

Anxnxn+kη(n + k, xn+k)

xn+4kxn+5k(An + Bnxnxn+kxn+2kxn+3k)
2 −

Anxn+kxn+2kη(n, xn)

xn+4kxn+5k(An + Bnxnxn+kxn+2kxn+3k)
2 = 0.

We differentiate (11) with respect to xn viewing xn+4k as a function of xn, xn+k,
xn+2k, xn+3k, xn+5k and A. To put it in another way, we apply the differential operator
∂
∂xn
− (A,xn /A,xn+4k )

∂
∂xn+4k

to (11) to obtain (after clearing fractions except for the reciprocal
of xn):

xn+4k(An + Bnxnxn+kxn+2kxn+3k)η
′(n + 4k, xn+4k)− (An + Bnxnxn+kxn+2kxn+3k)η(n + 4k,

xn+4k) + Bnxnxn+kxn+2kxn+4kη(n + 3k, xn+3k) + Bnxnxn+kxn+3kxn+4kη(n + 2k, xn+2k) (12)

+ Bnxnxn+2kxn+3kxn+4kη(n + k, xn+k)− xn+4k(An + Bnxnxn+kxn+2kxn+3k)η
′(n, xn)

+ xn+4k

(
An

xn
+ 2Bnxn+kxn+2kxn+3k

)
η(n, xk) = 0.

Observe that A,x denotes the derivative of A with respect to x and ′ represents the
derivative with regard to the continuous variable. Next, we differentiate (12) with respect
to xn and we utilize the method of separation to obtain the following system:{

xnxn+kxn+2kxn+3kxn+4k : η′′′ = 0
xn+4k : η′′′ − 1

xn
η′′ + 2

x2
n

η′ − 2
x3

n
η = 0.

(13)

It is easy to verity that the general solution of the above system is given by

η(n, un) = λnun
2 + θnun (14)

for some arbitrary functions λn and θn depending on n. We replace (14) and the correspond-
ing shifts in (11) (xn+6k must also be replaced by its expression in (1)). Clearing fractions
and separating with respect to products of xn+i, the resulting system of equations reduces
to the constraints:

λn = 0, (15)

θn + θn+k + θn+2k + θn+3k = 0. (16)

The constraint in (16) is a homogeneous linear difference equation with characteristic

equation r3k + r2k + rk + 1 = 0 whose solutions are ei
(

π+4pπ
2k

)
, ei
(

2π+4pπ
2k

)
and ei

(
3π+4pπ

2k

)
for

p = 0, . . . , k− 1. Solutions of (16) take the form rn and using (8), we have 3k symmetries
given by

X1p =ein
(

π+4pπ
2k

)
xn∂xn , X2p = ein

(
2π+4pπ

2k

)
xn∂xn , X3p = ein

(
3π+4pπ

2k

)
xn∂xn , (17)
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p = 0, 1, . . . , k− 1. We construct the canonical coordinate as

Sn =
∫ dxn

θnxn
=

1
θn

ln |xn| (18)

and we set

|Vn| = exp{−(Snθn + Sn+kθn+k + Sn+2kθn+2k + Sn+3kθn+3k)}. (19)

The variable Vn can take the form

Vn =
1

xnxn+kxn+2kxn+3k
(20)

and, as a matter of fact, is an invariant because

X(Vn) =

(
θnxn

∂

∂xn
+ θn+kxn+k

∂

∂xn+k
+ θn+2kxn+2k

∂

∂xn+2k
+ θn+3kxn+3k

∂

∂xn+3k
+

θn+4kxn+4k
∂

∂xn+4k
+ θn+5kxn+5k

∂

∂xn+5k

)
Vn

=
−1

xnxn+kxn+2kxn+3k
(θn + θn+k + θn+2k + θn+3k)

=0. (21)

Using (1) and (20), we derive the following relations:

Vn+3k = AnVn + Bn (22)

and
xn+4k =

Vn

Vn+k
xn (23)

from which are obtained

V3kn+j =Vj

(
n−1

∏
k1=0

A3kk1+j

)
+

n−1

∑
m=0

(
B3km+j

n−1

∏
k2=m+1

A3kk2+j

)
, j = 0, 1, · · · , 3k− 1, (24)

and

x4kn+j =xj

(
n−1

∏
s=0

V4ks+j

V4ks+k+j

)
, j = 0, 1, · · · , 4k− 1 (25)

using simple iterations. Since we do not have an expression for V4ks+i, we make use of (25)
to obtain the following:

x12kn+j =xj

(
3n−1

∏
s=0

V4ks+j

V4ks+k+j

)

=xj

n−1

∏
s=0

V12ks+j

V12ks+k+j

V12ks+4k+j

V12ks+4k+k+j

V12ks+8k+j

V12ks+8k+k+j
(26)

=xj

n−1

∏
s=0

2

∏
r=0

V12ks+4kr+j

V12ks+4kr+k+j

=xj

n−1

∏
s=0

2

∏
r=0

V
3k
(

4s+b 4kr+j
3k c

)
+τ(4kr+j)

V
3k
(

4s+b 4kr+k+j
3k c

)
+τ(4kr+k+j)

, j = 0, 1, . . . , 12k− 1.
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Observe that the symbol b·c represents the floor function and τ(q) is the remainder
after division of q by 3k. It follows that 0 ≤ τ(p) ≤ 3k − 1. Employing (24) in (26), we
find that

x12kn+j = xj

n−1

∏
s=0

2

∏
r=0

Vτ(4kr+j)


4s−1+
b 4kr+j

3k c
∏

k1=0
A3kk1+τ(4kr+j)

+

4s−1+
b 4kr+j

3k c
∑

m=0

 B3km+τ(4kr+j)

4s−1+
b 4kr+j

3k c
∏

k2=m+1
A3kk2+τ(4kr+j)



Vτ(4kr+k+j)


4s−1+
b 4kr+k+j

3k c
∏

k1=0
A3kk1+τ(4kr+k+j)

+

4s−1+
b 4kr+k+j

3k c
∑

m=0

B3km+τ(4kr+k+j)

4s−1+
b 4kr+k+j

3k c
∏

k2=m+1
A3kk2+τ(4kr+k+j)


(27)

where Vi = 1/(xixi+kxi+2kxi+k). Equation (27) gives the solution to the difference Equa-
tion (1). Naturally, the solution of (2) is deduced from that of (1) by backshifting it 6k times.
So, using (27), the solution of (2) reads

x12kn−6k+j = xj−6k

n−1

∏
s=0

2

∏
r=0

vτ(4kr+j)


4s−1+
b 4kr+j

3k c
∏

k1=0
a3kk1+τ(4kr+j)

+

4s−1+
b 4kr+j

3k c
∑

m=0

 b3km+τ(4kr+j)

4s−1+
b 4kr+j

3k c
∏

k2=m+1
a3kk2+τ(4kr+j)



vτ(4kr+k+j)


4s−1+
b 4kr+k+j

3k c
∏

k1=0
a3kk1+τ(4kr+k+j)

+

4s−1+
b 4kr+k+j

3k c
∑

m=0

 b3km+τ(4kr+k+j)

4s−1+
b 4kr+k+j

3k c
∏

k2=m+1
a3kk2+τ(4kr+k+j)


(28)

where vi = 1/(xi−6kxi−5kxi−4kxi−5k). For 1, k, 3k-periodic sequences An and Bn, the
solutions simplifies considerably. The following subsection is dedicated to the case where
An and Bn are 1-periodic.

3.1. The Case An and Bn Are 1-Periodic Sequences

Letting An = A and Bn = B in (27), we obtain

x12kn+j =xj

n−1

∏
s=0


Vτ(j)A4s+b j

3k c + B
4s−1+b j

3k c
∑

m=0
Am

Vτ(j+k)A4s+b j+k
3k c + B

4s−1+b j+k
3k c

∑
m=0

Am

Vτ(j+k)A4s+1+b j+k
3k c + B

4s+b j+k
3k c

∑
m=0

Am

Vτ(j+2k)A4s+1+b j+2k
3k c + B

4s+b j+2k
3k c

∑
m=0

Am

Vτ(j+2k)A4s+2+b j+2k
3k c + B

4s+1+b j+2k
3k c

∑
m=0

Am

Vτ(j)A4s+3+b j
3k c + B

4s+2+b j
3k c

∑
m=0

Am


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=xj

n−1

∏
s=0


A4s+b j

3k c + B
Vτ(j)

4s+b j
3k c−1

∑
m=0

Am

A4s+3+b j
3k c + B

Vτ(j)

4s+2+b j
3k c

∑
m=0

Am

A4s+1+b j+k
3k c + B

Vτ(j+k)

4s+b j+k
3k c

∑
m=0

Am

A4s+b j+k
3k c + B

Vτ(j+k)

4s+b j+k
3k c−1

∑
m=0

Am

×

A4s+2+b j+2k
3k c + B

Vτ(j+2k)

4s+1+b j+2k
3k c

∑
m=0

Am

A4s+1+b j+2k
3k c + B

Vτ(j+2k)

4s+b j+2k
3k c

∑
m=0

Am

, (29)

j = 0, 1, . . . , 12k− 1. However, j = 0, 1, . . . , 12k− 1 can take the form j = 3kr + pk + j1 with
r = 0, 1, 2, 3; p = 0, 1, 2; j1 = 0, 1, . . . , k− 1. Consequently,

x12kn+3kr+kp+j1 = x3kr+kp+j1

n−1

∏
s=0


A4s+r + B

Vpk+j1

4s+
r−1
∑

m=0
Am

A4s+3+r + B
Vpk+j1

4s+2
+r
∑

m=0
Am

A4s+1+r+b j1+(p+1)k
3k c + B

Vτ(j1+(p+1)k)

4s+r+
b j1+(p+1)k

3k c
∑

m=0
Am

A4s+r+b j1+(p+1)k
3k c + B

Vτ(j1+(p+1)k)

4s+r−1
b j1+(p+1)k

3k c
∑

m=0
Am

A4s+2+r+b j1+(p+2)k
3k c + B

Vτ(j1+(p+2)k)

4s+1+r+
b j+(p+2)k

3k c
∑

m=0
Am

A4s+1+r+b j1+(p+2)k
3k c + B

Vτ(j1+(p+2)k)

4s+r+
b j1+(p+2)k

3k c
∑

m=0
Am


. (30)

More explicitly,

x12kn+3kr+j1 =x3kr+j1

n−1

∏
s=0

A4s+r +B
Vj1

4s+
r−1
∑

m=0
Am

A4s+3+r + B
Vj1

4s+
2+r
∑

m=0
Am

A4s+1+r + B
Vj1+k

4s+r
∑

m=0
Am

A4s+r + B
Vj1+k

4s+
r−1
∑

m=0
Am

A4s+2+r + B
Vj1+2k

4s+
1+r
∑

m=0
Am

A4s+1+r + B
Vj1+2k

4s+r
∑

m=0
Am

,

x12kn+3kr+k+j1 =x3kr+k+j1

n−1

∏
s=0


A4s+r + B

Vj1+k

4s+
r−1
∑

m=0
Am

A4s+3+r + B
Vj1+k

4s+
2+r
∑

m=0
Am

A4s+1+r + B
Vj1+2k

4s+r
∑

m=0
Am

A4s+r+2 + B
Vj1+2k

4s+
r+1
∑

m=0
Am

A4s+3+r + B
Vj1

4s+
2+r
∑

m=0
Am

A4s+2+r + B
Vj1

4s+
r+1
∑

m=0
Am

,
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x12kn+3kr+2k+j1 =x3kr+2k+j1

n−1

∏
s=0

 A4s+r + B
Vj1+2k

4s+r−1
∑

m=0
Am

A4s+3+r + B
Vj1+2k

4s+2+r
∑

m=0
Am

A4s+2+r + B
Vj1

4s+r+1
∑

m=0
Am

A4s+r+1 + B
Vj1

4s+r
∑

m=0
Am

A4s+3+r + B
Vj1+k

4s+2+r
∑

m=0
Am

A4s+2+r + B
Vj1+k

4s+r+1
∑

m=0
Am

, (31)

for r = 0, 1, 2, 3; j1 = 0, 1, . . . , k− 1 with Vn = 1/(xnxn+kxn+2kxn+3). Equations in (31) are
given in terms of the first 12k terms including the initial conditions. Since one of the aims
of the paper is to present the solution in closed-form, we use (1) to provide the expressions
of xi, i = 6k + 1, · · · , 12k− 1, as follows:

x6k+j1 =
xj1 xj1+kxj1+2k

xj1+4kxj1+5k

(
A + B

Vj1

) , x7k+j1 =
x3k+j1 xj1+4k

(
A + B

Vj1

)
xj1

(
A + B

Vj1+k

) ,

x8k+j1 =
x4k+j1 xj1+5k

(
A + B

Vj1+k

)
xk+j1

(
A + B

Vj1+2k

) , x9k+j1 =
xj1 xj1+k

(
A + B

Vj1+2k

)
xj1+4k

(
A2 + (A + 1) B

Vj1

) , (32)

x10k+j1 =
xj1+kxj1+2k

(
A2 + (A + 1) B

Vj1

)
xj1+5k

(
A + B

Vj1

)(
A2 + (A + 1) B

Vj1+k

) ,

x11k+j1 =
xj1+3kxj1+4kxj1+5k

(
A + B

Vj1

)(
A2 + (A + 1) B

Vj1+k

)
xj1 xj1+k

(
A + B

Vj1+k

)(
A2 + (A + 1) B

Vj1+2k

) ,

for j1 = 0, 1, · · · , k− 1.

3.1.1. The Case When A 6= 1

If A 6= 1, (31) simplifies to

x12kn+3kr+j1 =x3kr+j1

n−1

∏
s=0

 A4s+r + B
Vj1

(
1−A4s+r

1−A

)
A4s+3+r + B

Vj1

(
1−A4s+r+3

1−A

) A4s+1+r + B
Vj1+k

(
1−A4s+r+1

1−A

)
A4s+r + B

Vj1+k

(
1−A4s+r

1−A

)
A4s+2+r + B

Vj1+2k

(
1−A4s+r+2

1−A

)
A4s+1+r + B

Vj1+2k

(
1−A4s+r+1

1−A

)
,

x12kn+3kr+k+j1 =x3kr+k+j1

n−1

∏
s=0

 A4s+r + B
Vj1+k

(
1−A4s+r

1−A

)
A4s+3+r + B

Vj1+k

(
1−A4s+r+3

1−A

) A4s+1+r + B
Vj1+2k

(
1−A4s+r+1

1−A

)
A4s+r+2 + B

Vj1+2k

(
1−A4s+r+2

1−A

)
A4s+3+r + B(1−A4s+r+3)

Vj1
(1−A)

A4s+2+r + B(1−A4s+r+2)
Vj1

(1−A)

,
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x12kn+3kr+2k+j1 =x3kr+2k+j1

n−1

∏
s=0

 A4s+r + B
Vj1+2k

(
1−A4s+r

1−A

)
A4s+3+r + B

Vj1+2k

(
1−A4s+r+3

1−A

) A4s+2+r + B
Vj1

(
1−A4s+r+2

1−A

)
A4s+r+1 + B

Vj1

(
1−A4s+r+1

1−A

)
A4s+3+r + B(1−A4s+r+3)

Vj1+k(1−A)

A4s+2+r + B(1−A4s+r+2)
Vj1+k(1−A)

 (33)

with x6k, · · · , x12k−1 given in (32).
The case A = −1: For this case, after simplification, we have that

x12kn+j1 =
xj1

(
−1 + B

Vj1+k

)n

(
−1 + B

Vj1

)n(
−1 + B

Vj1+2k

)n , x12kn+k+j1 =
xk+j1

(
−1 + B

Vj1+2k

)n(
−1 + B

Vj1

)n

(
−1 + B

Vj1+k

)n ,

x12kn+2k+j1 =
x2k+j1

(
−1 + B

Vj1+k

)n

(
−1 + B

Vj1

)n(
−1 + B

Vj1+2k

)n , x12kn+3k+j1 =
x3k+j1

(
−1 + B

Vj1+2k

)n(
−1 + B

Vj1

)n

(
−1 + B

Vj1+k

)n ,

x12kn+4k+j1 =
x4k+j1

(
−1 + B

Vj1+k

)n

(
−1 + B

Vj1

)n(
−1 + B

Vj1+2k

)n , x12kn+5k+j1 =
x5k+j1

(
−1 + B

Vj1+2k

)n(
−1 + B

Vj1

)n

(
−1 + B

Vj1+k

)n ,

x12kn+6k+j1 =
xj1 xj1+kxj1+2k

(
−1 + B

Vj1+k

)n

x4k+j1 xj1+5k

(
−1 + B

Vj1

)n+1(
−1 + B

Vj1+2k

)n ,

x12kn+7k+j1 =
xj1+3kxj1+4k

(
−1 + B

Vj1+2k

)n

xj1

(
−1 + B

Vj1+k

)n+1(
−1 + B

Vj1

)−(n+1)
, (34)

x12kn+8k+j1 =
xj1+4kxj1+5k

(
−1 + B

Vj1+k

)n+1

xj1+k

(
−1 + B

Vj1

)n(
−1 + B

Vj1+2k

)n+1 ,

x12kn+9k+j1 =
xj1 xj1+k

(
−1 + B

Vj1+k

)n

xj1+4k

(
−1 + B

Vj1

)n(
−1 + B

Vj1+2k

)n−1 ,

x12kn+10k+j1 =
xj1+kxj1+2k

(
−1 + B

Vj1+2k

)n

xj1+5k

(
−1 + B

Vj1+k

)n(
−1 + B

Vj1

)−(n−1)
,

x12kn+11k+j1 =
xj1+3kxj1+4kxj1+5k

(
−1 + B

Vj1+k

)n−1

xj1 xj1+k

(
−1 + B

Vj1

)n−1(
−1 + B

Vj1+2k

)n ,

for j1 = 0, 1, . . . , k− 1.
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3.1.2. The Case When A = 1

If A = 1, Equation (31) reduces to

x12kn+3kr+j1 =x3kr+j1

n−1

∏
s=0

1 + (4s+r)B
Vj1

1 + (4s+r+3)B
Vj1

1 + (4s+r+1)B
Vj1+k

1 + (4s+r)B
Vj1+k

1 + (4s+r+2)B
Vj1+2k

1 + (4s+r+1)B
Vj1+2k

x12kn+3kr+k+j1 =x3kr+k+j1

n−1

∏
s=0

1 + (4s+r)B
Vj1+k

1 + (4s+r+3)B
Vj1+k

1 + (4s+r+1)B
Vj1+2k

1 + (4s+r+2)B
Vj1+2k

1 + (4s+r+3)B
Vj1

1 + (4s+r+2)B
Vj1

x12kn+3kr+2k+j1 =x3kr+2k+j1

n−1

∏
s=0

1 + B(4s+r)
Vj1+2k

1 + B(4s+r+3)
Vj1+2k

1 + (4s+r+2)B
Vj1

1 + (4s+r+1)B
Vj1

1 + (4s+r+3)B
Vj1+k

1 + (4s+r+2)B
Vj1+k

(35)

with x6k, · · · , x12k−1 given in equations in (32). These equations in (35) can be unpacked
and presented in the following closed-form:

x12kn+j1 =xj1

n−1

∏
s=0

1 + (4s)B
Vj1

1 + (4s+3)B
Vj1

1 + (4s+1)B
Vj1+k

1 + (4s)B
Vj1+k

1 + (4s+2)B
Vj1+2k

1 + (4s+1)B
Vj1+2k

x12kn+k+j1 =xk+j1

n−1

∏
s=0

1 + (4s)B
Vj1+k

1 + (4s+3)B
Vj1+k

1 + (4s+1)B
Vj1+2k

1 + (4s+2)B
Vj1+2k

1 + (4s+3)B
Vj1

1 + (4s+2)B
Vj1

x12kn+2k+j1 =x2k+j1

n−1

∏
s=0

1 + (4s)B
Vj1+2k

1 + (4s+3)B
Vj1+2k

1 + (4s+2)B
Vj1

1 + (4s+1)B
Vj1

1 + (4s+3)B
Vj1+k

1 + (4s+2)B
Vj1+k

x12kn+3k+j1 =xj1+3k

n−1

∏
s=0

1 + (4s+1)B
Vj1

1 + (4s+4)B
Vj1

1 + (4s+2)B
Vj1+k

1 + (4s+1)B
Vj1+k

1 + (4s+3)B
Vj1+2k

1 + (4s+2)B
Vj1+2k

x12kn+4k+j1 =x4k+j1

n−1

∏
s=0

1 + (4s+1)B
Vj1+k

1 + (4s+4)B
Vj1+k

1 + (4s+2)B
Vj1+2k

1 + (4s+3)B
Vj1+2k

1 + (4s+4)B
Vj1

1 + (4s+3)B
Vj1

x12kn+5k+j1 =x5k+j1

n−1

∏
s=0

1 + (4s+1)B
Vj1+2k

1 + (4s+4)B
Vj1+2k

1 + (4s+3)B
Vj1

1 + (4s+2)B
Vj1

1 + (4s+4)B
Vj1+k

1 + (4s+3)B
Vj1+k

x12kn+6k+j1 =
xj1 xj1+kxj1+2k

xj1+4kxj1+5k(1 + B
Vj1

)

n−1

∏
s=0

1 + (4s+2)B
Vj1

1 + (4s+5)B
Vj1

1 + (4s+3)B
Vj1+k

1 + (4s+2)B
Vj1+k

1 + (4s+4)B
Vj1+2k

1 + (4s+3)B
Vj1+2k

x12kn+7k+j1 =
x3k+j1 xj1+4k(1 + B

Vj1
)

xj1(1 +
B

Vj1+k
)

n−1

∏
s=0

1 + (4s+2)B
Vj1+k

1 + (4s+5)B
Vj1+k

1 + (4s+3)B
Vj1+2k

1 + (4s+4)B
Vj1+2k

1 + (4s+5)B
Vj1

1 + (4s+4)B
Vj1

x12kn+8k+j1 =
x4k+j1 xj1+5k(1 + B

Vj1+k
)

xk+j1(1 +
B

Vj1+2k
)

n−1

∏
s=0

1 + (4s+2)B
Vj1+2k

1 + (4s+5)B
Vj1+2k

1 + (4s+4)B
Vj1

1 + (4s+3)B
Vj1

1 + (4s+5)B
Vj1+k

1 + (4s+4)B
Vj1+k
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x12kn+9k+j1 =
xj1 xj1+k(1 + B

Vj1+2k
)

xj1+4k(1 + 2B
Vj1

)

n−1

∏
s=0

1 + (4s+3)B
Vj1

1 + (4s+6)B
Vj1

1 + (4s+4)B
Vj1+k

1 + (4s+3)B
Vj1+k

1 + (4s+5)B
Vj1+2k

1 + (4s+4)B
Vj1+2k

x12kn+10k+j1 =
xj1+kxj1+2k(1 + 2B

Vj1
)

xj1+5k(1 + B
Vj1

)(1 + 2B
Vj1+k

)

n−1

∏
s=0

1 + (4s+3)B
Vj1+k

1 + (4s+6)B
Vj1+k

1 + (4s+4)B
Vj1+2k

1 + (4s+5)B
Vj1+2k

1 + (4s+6)B
Vj1

1 + (4s+5)B
Vj1

x12kn+11k+j1 =
xj1+3kxj1+4kxj1+5k(1 + B

Vj1
)(1 + 2B

Vj1+k
)

xj1 xj1+k(1 + B
Vj1+k

)(1 + 2B
Vj1+2k

)

n−1

∏
s=0

1 + (4s+3)B
Vj1+2k

1 + (4s+6)B
Vj1+2k

1 + (4s+5)B
Vj1

1 + (4s+4)B
Vj1

1 + (4s+6)B
Vj1+k

1 + (4s+5)B
Vj1+k

(36)

for j1 = 0, 1, . . . , k− 1 with Vi = 1/(xixi+kxi+2kxi+3k).

4. Periodicity and Behavior of the Solutions

Here, we study the periodicity of the solutions via the formula of the solutions obtained
in the previous section and we look at stability of the equilibrium points.

Theorem 4. The solution xn of

xn+6k =
xnxn+kxn+2k

xn+4kxn+5k(A + Bxnxn+kxn+2kxn+3k)
, (37)

where A 6= 1 and B 6= 0 are real constants, is 4k-periodic if and only if the initial conditions, xi,
satisfy the following conditions:

(i) xi = xi+4k.
(ii) xixi+kxi+2kxn+3k = (1− A)/B.
(iii) xi 6= xi+k or xi 6= xi+2k.

Proof. Suppose the initial conditions x0, . . . , x6k−1 satisfy xi = xi+4k with
xixi+kxi+2kxi+3k = (1− A)/B. The last condition eliminates k and 2k-periodicities. Now,
thanks to condition (i), (31) and (32), we have

x4k+i = xi, i = 0, . . . , 2k− 1; x6k+i = xi+2k, i = 0, . . . , 6k− 1; x12kn+i = xi, i = 0, . . . , 12k− 1.

This implies that xn = xn+4k for all n and the solution is periodic with period 4k.

Figure 1 shows the graph of (37) for k = 2 with the initial conditions satisfying the
three conditions in Theorem 4. As expected, the solution is 8-periodic.

Figure 2 shows the graph of (37) for k = 2 with the initial conditions not satisfying one
of the three conditions in Theorem 4, condition (ii) to be specific.

Theorem 5. The solution xn of (37) is 2k-periodic if and only if the initial conditions, xi, satisfy
the following conditions:

(i) xi = xi+2k
(ii) x2

i x2
i+k = (1− A)/B

(iii) xi 6= xi+k.

Proof. Suppose the initial conditions satisfy xi = xi+2k and x2
i x2

i+k = (1− A)/B. Condi-
tion (iii) eliminates k-periodicity. Invoking condition (i), (31) and (32), we have that

x2k+i = xi, i = 0, . . . , 4k− 1; x6k+i = xi, i = 0, . . . , 6k− 1; x12kn+i = xi, i = 0, . . . , 12k− 1.

Therefore, xn = xn+2k for all n and the solution is periodic with period 2k.
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Figure 3 shows the graph of (37) for k = 2 with the initial conditions satisfying the
three conditions in Theorem 5. As expected, the solution is 4-periodic.

Figure 1. xn+12 = xn xn+2xn+4
xn+8xn+10(2+0.5xn xn+2xn+4xn+6)

with x0 = x8 = 1, x1 = x9 = 1/2, x2 = x10 = −1/4,
x3 = x11 = −1/2, x4 = 4, x5 = 4, x6 = 2, x7 = 2, x9 = 1/2, x11 = −1/2.

Figure 2. xn+12 = xn xn+2xn+4
xn+8xn+10(2+5xn xn+2xn+4xn+6)

with x0 = 1, x1 = 1/2, x2 = −1/4, x3 = −1/2, x4 = 4,
x5 = 4, x6 = 2, x7 = 2, x8 = 1, x9 = 1/2, x10 = −1/4, x11 = −1/2.
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Figure 4 shows the graph of (37) for k = 2 with the initial conditions not satisfying
condition (ii) in Theorem 5.

Figure 3. xn+12 = xn xn+2xn+2
xn+8xn+10(2−16xn xn+2xn+4xn+6)

with x0 = x8 = 1, x1 = x9 = 1/2, x2 = x10 = −1/4,
x3 = x11 = −1/2, x4 = 1, x5 = 1/2, x6 = −1/4, x7 = −1/2.

Figure 4. xn+6k = xn xn+k xn+2k
xn+4k xn+5k(2−6xn xn+k xn+2k xn+3k)

with x0 = x8 = 1, x1 = x9 = 1/2, x2 = x10 = −1/4,
x3 = x11 = −1/2, x4 = 1, x5 = 1/2, x6 = −1/4, x7 = −1/2.
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Note that the solution xn of (37) is not k-periodic when the initial conditions satisfy
xi = xi+k and x4

i = (1− A)/B. In this case, we have a constant sequence. Nevertheless,
all the initial conditions being the same does not guarantee the existence of 1-periodic
(constant) sequences. We illustrate this in Figures 5 and 6.

Figure 5. xn+6k = xn xn+k xn+2k
xn+4k xn+5k(2−16xn xn+k xn+2k xn+3k)

with x0 = x1 = x2 = x3 = x4 = x5 = x6 = x7 =

x8 = x9 = x10 = x11 = 1 not satisfying x4
i = (1− A)/B.

Figure 6. xn+6k = xn xn+k xn+2k
xn+4k xn+5k(2−1xn xn+k xn+2k xn+3k)

with x0 = x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 =

x9 = x10 = x11 = 1 satisfying x4
i = (1− A)/B.
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5. Concluding Remarks

Although Equations (1) and (2) are the same, the solution of the later equation is
obtained by backshifting the solution of the first equation 6k times. For example, when
k = 1 and for constant coefficients, (2) becomes

xn =
xn−6xn−5xn−4

xn−2xn−1(A + Bxn−6xn−5xn−4xn−3)

and its solution, using (33) and (35), is given by (after backshifting 6 times and remembering
that, in this case, 1/Vi = xixi+1xi+2xi+3)

x12kn+3r−6 =x3r−6

n−1

∏
s=0

[
A4s+r(1− A− B

V−6
) + B

V−6

A4s+3+r(1− A− B
V−6

) + B
V−6

A4s+1+r(1− A− B
V−5

) + B
V−5

A4s+r(1− A− B
V−5

) + B
V−5

A4s+2+r(1− A− B
V−4

) + B
V−4

A4s+1+r(1− A− B
V−4

) + B
V−4

]

x12kn+3r−5 =x3r−5

n−1

∏
s=0

[
A4s+r(1− A− B

V−5
) + B

V−5

A4s+3+r(1− A− B
V−5

) + B
V−5

A4s+1+r(1− A− B
V−4

) + B
V−4

A4s+r+2(1− A− B
V−4

) + B
V−4

A4s+3+r(1− A− B
V−6

) + B
V−6

A4s+2+r(1− A− B
V−6

) + B
V−6

]

x12n+3r−4 =x3r−4

n−1

∏
s=0

[
A4s+r(1− A− B

V−4
) + B

V−4

A4s+3+r(1− A− B
V−4

) + B
V−4

A4s+2+r(1− A− B
V−6

) + B
V−6

A4s+r+1(1− A− B
V−6

) + B
V−6

A4s+3+r(1− A− B
V−5

) + B
V−5

A4s+2+r(1− A− B
V−5

) + B
V−5

]

when a 6= 1; and

x12n+3r−6 =x3r−6

n−1

∏
s=0

1 + B
V−6

(4s + r)

1 + B
V−6

(4s + r + 3)

1 + B
V−5

(4s + r + 1)

1 + B
V−5

(4s + r)

1 + B
V−4

(4s + r + 2)

1 + B
V−4

(4s + r + 1)

x12n+3r−5 =x3r−5

n−1

∏
s=0

1 + B
V−5

(4s + r)

1 + B
V−5

(4s + r + 3)

1 + B
V−4

(4s + r + 1)

1 + B
V−4

(4s + r + 2)

1 + B
V−6

(4s + r + 3)

1 + B
V−6

(4s + r + 2)

x12n+3r−4 =x3r−4

n−1

∏
s=0

1 + B
V−4

(4s + r)

1 + B
V−4

(4s + r + 3)

1 + B
V−6

(4s + r + 2)

1 + B
V−6

(4s + r + 1)

1 + B
V−5

(4s + r + 3)

1 + B
V−5

(4s + r + 2)

when a = 1. This special case was studied in [6]. In fact, setting n := n + 1 and r + 2 := j
yields Theorem 2.1 and Corollaries 2.2 and 2.3 in [6].
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