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Abstract: We are devoted, in this paper, to the study of the pre-assigned-time drive-response synchro-
nization problem for a class of Takagi-Sugeno fuzzy logic-based stochastic bidirectional associative
memory neural networks, driven by Brownian motion, with continuous-time delay and (finitely and
infinitely) distributed time delay. To achieve the drive-response synchronization between the neural
network systems, concerned in this paper, and the corresponding response neural network systems
(identical to our concerned neural network systems), we bring forward, based on the structural
properties, a class of control strategies. By meticulously coining an elaborate Lyapunov-Krasovskii
functional, we prove a criterion guaranteeing the desired pre-assigned-time drive-response synchro-
nizability: For any given positive time instant, some of our designed controls make sure that our
concerned neural network systems and the corresponding response neural network systems achieve
synchronization, with the settling times not exceeding the pre-assigned positive time instant. In
addition, we equip our theoretical studies with a numerical example, to illustrate that the synchro-
nization controls designed in this paper are indeed effective. Our concerned neural network systems
incorporate several types of time delays simultaneously, in particular, they have a continuous-time
delay in their leakage terms, are based on Takagi-Sugeno fuzzy logic, and can be synchronized before
any pre-given finite-time instant by the suggested control; therefore, our theoretical results in this
paper have wide potential applications in the real world. The conservatism is reduced by introducing
parameters in our designed Lyapunov-Krasovskii functional and synchronization control.

Keywords: bidirectional associative memory neural networks; pre-assigned-time synchronization;
Takagi-Sugeno fuzzy logic; time delays; Lyapunov—Krasovskii functional

MSC: 93E15; 28E10; 34K20; 34K37; 34K50; 60H10

1. Introduction

In recent years, it was found that neural networks have been widely used in many
theoretical and/or application fields; see [1-3] and the vast references cited therein. For
example, experts and engineers have already utilized suitable neural networks in vast
fields such as optimization theory and the related field applications, associative memories,
signal processing, and machine learning. As a result, it is extremely interesting and
important to invent neural networks having new structural properties to satisfy specific
needs and desires. For instance, in the 1980s, Kosko came up with a class of neural networks,
nowadays known as bidirectional associative memory neural networks (BAMNN:Ss), to
generalize a single-layer auto-associative Hebbian correlator to two-layer pattern-matched
hetero-associative circuits; see References [3-6]. On the other hand, it seems that people are
even more interested in quantitatively studying the structural properties of neural networks
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and in designing the control, based on the obtained structural properties, to improve the
properties of neural networks; the related meaningful results can be seen in [1,2,5,7-16], to
name just a few of the vast references.

As a typical phenomenon, chaos occurs frequently in complicated nonlinear dynamical
systems; see References [3,6,17]. For example, in Reference [17], a nonlinear financial
dynamical system was shown, via a numerical approach, to be chaotic. Chaos in the
systems could lead to the high sensitivity of trajectories in their initial states. This brings
enormous difficulty in applying systems. Therefore, control strategies (synchronization
control, for example) should be designed to reduce or even remove the chaos in the systems.
For instance, various synchronization problems associated with neural networks have been
studied extensively and intensively in recent years; see References [6,7,9,18].

In this paper, we are interested in the synchronization problem for BAMNNSs. As
with other neural networks, BAMNN:S are of wide applicability, for example, they have
been frequently exploited in classification, associative memory, signal processing, image
processing, parallel computation, combinatorial optimization, and pattern recognition;
see References [1,2,4,19]. BAMNNSs have their neurons grouped into two layers (the U-
layer and the V-layer, as shall be marked in this paper). The neurons of a BAMNN in
one layer are fully interconnected to the neurons in the other layer, while there is no
interconnection between any two pair of neurons in the same layer; in BAMNNS, the
information flows propagate forward and backward between the two layers. Thanks to
such a special structure, experts and engineers can realize in BAMNNSs a bidirectional
associative search for stored bipolar vector pairs; see References [3,4] and some references
cited therein for a more detailed explanation on the importance of BAMNNE.

In real-world applications, the switching speed of amplifiers in the electronic imple-
mentation of analog neural networks is finite. This leads to the occurrence of a time delay
in the communication and response of neurons. And therefore it seems to be more real-
istic to study the neural networks with time delays. Zhu and Cao [1], Wang and Zhu [2],
and Samidurai, Senthilraj et al. [7] studied BAMNNSs with various time delays and ob-
tained a criterion guaranteeing the stability of the equilibrium of their concerned BAMNNS.
Yuan, Luo et al. [18] investigated a class of time-delayed memristor-based BAMNNSs and
applied their obtained theoretical results into the field of image hiding. Time delays would
cause difficulties in treating problems related to BAMNNS. In recent years, experts have
developed many methods to overcome these difficulties; see [9,18,20-24] and the vast
references cited therein. For example, Lin and Zhang [20] established several asymptotic
synchronization criteria for a class of BAM neural networks with time delays via integrating
inequality techniques, Yang, Chen et al. [21] proved their claimed synchronization results
concerning BAMNN via convex analysis, and Yang and Zhang [22] applied the quadratic
analysis approach to treat a class of delayed BAMNNS.

The realistic neural networks contain unavoidable uncertainty, due to the transmission
of information through neurons. It is well-known that fuzzy logic could play an important
role in dealing with uncertainty; see References [5,6,25,26]. Wang, Zhao et al. [6] designed,
for a class of fuzzy BAMNNS, some intermittent quantized control, and they provided an in-
teresting criterion ensuring that the controlled BAMNNS achieve finite-time drive-response
synchronization. Zhou, Zhang et al. [26] considered the finite-time synchronization prob-
lem for fuzzy delayed neutral-type inertial BAM neural networks and obtained some novel
criteria by applying integral inequality techniques and the figure analysis approach.

Actually, stochastic BAMNNS have also been widely used in many areas and therefore
have aroused a large number of experts” interest in studying their dynamics from both
mathematical and engineering viewpoints. The synaptic transmission in nervous systems
can be considered as a noisy process brought on by random fluctuations from the release of
neurotransmitters or other probabilistic factors; this would cause some uncertainty which
can not be modeled by fuzzy logic but can be modeled by a special stochastic process, such
as general martingales, Lévy processes, Markovian chains (time homogeneous or time inho-
mogeneous), Brownian motions (Wiener processes), and so on; see References [6,27,28] and
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the vast references cited therein. For example, the BAMNN concerned in Reference [6] is
subject to a Markovian chain. As with fuzzy uncertainty, random (or stochastic) uncertainty
causes difficulties in deriving synchronization criteria for BAMNNS.

After reviewing References [1-11,17-24,26-33], we are tempted to further investigate
BAMNN s for their synchronizability. In the literature, quite a few interesting results were
obtained recently in this direction. For example, the finite-time synchronization problems
for BAMNNSs were treated systematically in References [34,35], the fixed-time synchroniza-
tion problems associated with BAMNNSs were investigated extensively in [36,37] and the
references therein, the pre-assigned-time synchronization problems for BAMNNSs were also
considered in References [38—44], and some interesting results related to the synchroniz-
ability of BAMNNSs were presented in References [45-49]. Chen and Zhang [34] as well as
Yang and Zhang [35] obtained some finite-time synchronization results for time-delayed
BAMNN s via different approaches. As with finite-time synchronizability, fixed-time syn-
chronizability (the synchronization can be realized within a fixed-time instant) seems to
have relatively wide applicability but brings on more challenges. Wang, Zhang et al. [36]
considered the fixed-time synchronization problem for complex-valued BAMNNSs with
time-varying delays via (adaptive) pinning control. Duan and Li [37] studied a class of
fuzzy neutral-type memristor-based inertial BAMNNS with proportional delays for their
fixed-time synchronizability. As mentioned several times above, we consider BAMNN5s
for their pre-assigned-time synchronizability (the synchronization can be realized within
any specified time instant in advance) in this paper. Let us mention here several related
results in the literature. Chen, Xiong et al. [44] and Liu, Zhao et al. [43] obtained pre-
assigned synchronization results for complex-valued BAMNN:S via different approaches.
Liu, Zhao et al. [42] applied the pre-assigned synchronization results of complex-valued
BAMNN s to image protection. Wang, Zhao et al. [38], Mahemuti and Abdurahman [39], Ab-
durahman, Abudusaimaiti et al. [40], as well as You, Abdurahman et al. [41] came up with
various methods to treat stochastic BAMNN:S for their pre-assigned-time synchronizability.

By reviewing the aforementioned references, we conclude that it is interesting to
design a pre-assigned-time synchronization control strategy for Takagi-Sugeno logic-based
stochastic BAMNNSs with continuous-time delay in leakage terms and with continuous-
time delay and (finitely/infinitely) distributed-time delay in transmission terms, and
it is interesting to provide a criterion ensuring that our concerned BAMNNSs (viewed
as the drive network systems) and the response BAMNNS, with our proposed control
implemented, achieve synchronization within the pre-defined time.

Notational Conventions. We write R for the totality of real numbers, and R, R_ for the
closed interval [0, 4+00), the closed interval (—oo,0], respectively. D7 f denotes the right
upper Dini derivative of the given function f with respect to the independent variable .
(R,.Z,dt) denotes the usual Lebesgue measure space. We designate by (), .#,F,P) (or
(Q), #,F,dP) ) a complete filtered probability space, in which the filtration F = {F}; t € Ry}
is assumed to satisfy the usual conditions; in other words, the o-algebra F\ contains all
P-null sets in the o-algebra .#, and F is right-continuous in the sense that

(\Fs=F. teR,.

s>t
“IP almost surely” is abbreviated as P-a.s.; EX denotes the mathematical expectation of X,
where X is an arbitrarily given random variable on Q0; () X R, £ ® .Z, dPP x dt) denotes the
product measure space of (R, ., dt) and (Q, .#,dP); and {W(t); t € R}, an F-adapted
stochastic process, denotes a one-dimensional standard Brownian motion (Wiener process)
defined on the probability space (Q,.#,F,P). A* denotes the cardinality of a set A.

The remainder of this paper is organized as follows. In Section 2, we formulate
our concerned synchronization problem for BAMNNSs and present some preliminaries
necessary for our later description. In Section 3, we state our main result in this paper
and provide in detail the proof. In Section 4, we validate, numerically and visually, our
theoretical results via coming up with specific example BAMNNSs which display the chaos
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phenomenon and verifying that the example BAMNNSs and the corresponding response
BAMNNSs with our proposed control implemented achieve synchronization within the
pre-assigned time. In Section 5, we provide several concluding remarks.

2. Problem Formulation and Preliminaries

In this section, our principal aim is to state our problem and the main mathematical
tools to be used to treat our problem. We shall explicitly present our model BAMNNS,
explain in some detail the structure of our concerned model BAMNNS, formulate clearly
our problem considered in this paper, and prepare some key ingredients to be used in our
later treatment of the main problem in this paper.

Let p and r be given positive integers and M;; a fuzzy set, more precisely, M;; a
function mapping R into [0,1],i =1,2,...,7, j = 1,2,..., p. In this paper, we assume that our
concerned BAMNNS obey the Takagi-Sugeno IF-THEN rule. By the “BAMNNSs obey the
Takagi-Sugeno IF-THEN rule”, we mean IF the premise variable ¢ ]-( ) is Mlj, i=12,..,p,
THEN the dynamics of our concerned BAMNN s are governed by the following Coupled
system of forward stochastic differential equations

duy(t) =

a’l‘u}’( )+mevgv vb( ))

+ Z bZ]ALgL oy (t — va( )

vel

F L [ sl

vel w

F Xt [ o) os)ds + U (1) |ar

vel

+ | L 50 (0u(1) + ) 15,8000 (= 05 (1))
veld veld
t
7 7
F L [ S

t
L [ e s)sho (o)

+UL(H)|dW(H), tEeRy, Pas, ped i=12,..,r,
M
doy (8) = | =70 (t = w(t)) + Z%ﬂgwfﬁ(uu(t))
He
+ L ahfi (it = (1)
uel
+;gazv;«/ g fu(u}l(s))
F b [l s ) + V)|t
el
+ Z:“?Wfi(”y(t)) + Z a f (1 (= 60, (1))
+ iv, g
L ,,/ NATOIE
((s))d:
+#€Z:‘ 11,],1/ f)l u} )) S
+V2(H)[dW(), teRy, Pas,vel i=12,...r
supplemented by the initial condition
uy(t) = ujo(t), dP xdt-ae.inQxR_, u €3,
u(t) = tiuo(0) . i=1,2,...,1 2)
vy(t) = vo(t), dPxdt-ae.inQxR_,ve],
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in which the stochastic processes {UW( )Her, {Uizy(t)}teR+, {Vl(t)}ier,, and
{V2(t)}ter. , required to be F-adapted, are given in detail by

l}l Z blgyv ~11m + Z bzyv zpv Qgsu/(t))

t
zyv / t;w dS + 2 btm / 11051 )27;1]41/( )ds
VE] vel
+0k(H), teRy, Pas, pel i=12...,1 k=12
3)
Z alb}l npl + Z an;t ny giy(t))
+ Z ”wy / ﬁwy dS + Z ul]/]l / <p1/}l 11/;4( )d
pea () ned

+VE(), teRy Pas,vel i=12,...,r k=12,

where I is the filtration, required to satisfy the usual conditions (see the paragraph
of notational conventions in Section 1 for the detailed explanation), of a complete filtered
probability space (Q2,.#,F,P). The stochastic process {W(t)};cr, denotes, throughout
this paper, a one-dimensional standard Brownian motion (Wiener process) defined on the
probability space (Q),.%,F,P). Let us spare here some more lines to explain our model
BAMNN s (1)-(2)-(3). 3 and ] are two given sets containing finitely many elements (let
us remind that 3* and J* denote the cardinality of J and J, respectively). The constants
i, and 17, are the amplification coefficients of the neurons themselves; f{f(v) and gl'(u)

are activation functions; the real constants a and b{ Jw are connection coefficients; the
functions 7, (t) and 1,(t) represent (continuous )time delays in leakage (also known as
forgetting) terms; the functions gll,y (t) and Q}W(t), g;o’,y(t) and Q:;’W(t), as well as g?,ﬂ (t) and
Q";’W(t) represent (continuous-)time delays in transmission terms; the functions Q%M(t) and
wa(t), g‘iﬂ (t) and wa(t), as well as g?,y(t) and wa(t) represent distributed time delays in
transmission terms; the functions @fy (t) and ‘f’;fv (t) are kernels of the infinitely distributed
time delays in transmission terms; the stochastic processes u,(t) and vy (t), required to be
F-adapted, are the state trajectories of our concerned BAMNN:s (1)-(2)-(3); the stochastic
processes U, (¢ u (1), Ulzy( ), VA (1), and V2 (t) represent the overall exogenous disturbance;
the F—adapted stochastic processes u}vy( ) and vlw
disturbance; the [F-adapted stochastic processes i, V( ) and o w( ) represent the exogenous

(t) represent the instant exogenous

disturbance subject to the continuous-time delay effect; the F-adapted stochastic processes

ﬁiBVH( ) and 53 , (t) represent the exogenous disturbance subject to the finitely distributed

time delay effect the F-adapted stochastic processes ufvy( ) and 7; iﬂ/( ) represent the
exogenous disturbance subject to the infinitely distributed time delay effect; the F-adapted
stochastic processes Cllky (t) and V (t) represent the other exogenous disturbance which can
not be described as the aforementioned types of exogenous disturbance; and the initial data
(stochastic processes) u;;0(t) and v;,0(t), functions mapping Q) x R_ into R, are # @ .-
measurable (see Section 1 for the definition of 7 © ). In addition, u;,o(t) and vwo(t) are
Fo-measurable for all t € R_, and have their path essentially bounded in R_, P-a.s., where
i=12...,r,pucel,velh=12..8;=12...,12,(=1,23,4

As usual, to proceed further, we need to defuzzify the Takagi-Sugeno fuzzy
BAMNN s (1)-(2)-(3). Let us denote by M;;(&;(t)) the grade of membership of the element
gj(t) (viewed as premise variable) and now introduce the following weight functions

@) = W) R, i1, “
Y wi(E(1))
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P
in which () = (&1(t),...,&p(t)) " and w;(E(t)) = I Mi(g(t),i=1,2,...,r. Aided by
=1

9;(&(t)) (see (4)), we can defuzzify the Takagi-Sugeno BAMNNSs (1)-(2)-(3) into

duy, (t) = | =0uup(t — T (t) + Y bwgv oy (¢
vel
+ Z byvgv UV Q;tv(t)))
vel
+Y' B 3(vy(s))ds
Lo e SO
t
+ Y B, / (= 5)g4 (0 (s))ds + T (1) | dt
vel v
Y- Bhgo(0u() + Y Bt (ou(t = gnu (1))
veld vel
+ Y5 g0 (vy(s))ds
1;] / 2w (1)
t
+ LB [ R 9)gh 0 (s)ds
vel -
+ Uﬁ(t) dW(t), teRy, P-as, pel,
doy(t) = | —fvor(t — w(t)) + Z ”_lvyf;}(”y(f)) (5)
uel

+ Z ﬁ%yfﬁ(”ﬂ(t - g%y(t)))

/ fy(”y
ye! &l
/ —8) fA(uy (s))ds + V(1) | e
;46:1
Z ﬁgyfft(”ﬂ 2 avyf;t uy(t 913/;4(t)))
ye

/ fy uy(s))ds

1}1

+ Z aﬁy /_too dblz,y(t—s)fﬁ(uﬂ(s))ds

+V2(t)[dW(t), teRy, Pas, vel,

up(t) =dyuo(t), dPxdt-ae. inQxR_, pel,
oy(t) = 0y0(t), dPxdt-ae.inQxR_,ve]l,

where the initial data stochastic processes ii,,(t) and 3,0(t) are given, respectively, by

r

and

the coefficients 7y, 77, @ VH' and b’;”,, k=1,2,...,8, are given by
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o = gﬂ;(é(t))% B, - ; 8,(2()0h,.
B, - i:ilﬂ,u;(t))biw B, - i:ilﬂf@(mb?,m
B, — Zl B, By = gﬂ (),
5%:;0(5’-( N by = Zﬂ L
B, = Y 0(E0)E, ilz i

i=1 i=1

r
1. }l Z 19 lV}l/

v = Zﬁl(g(t)) vy 2‘9 ’VW
i=1
r
= LA, = 0G0,
i=1
r
ul/]/l ﬂf(g(t))azl/yr a1/‘u 219 ’W" He Jvel,

the exogenous disturbances U’;j (t) and Vk(t) are given, respectively, by

i=1
and
ﬁwmm%m

:; 01(6“)) ]gbzg;w ~11;,11/ + 2 ﬂl(g(t)) %b};}v le‘uv( - wa(t))
+i:2119i(§(t = ZHV/t Q zyv

r t
+ Z (8 Z bzyv / lFs )5?;11/ (s)ds
i=1 vel

+§&@@WM&

teRy, P-as, ped k=12,

r

,
Z Z alvy zvy Z Z azvy zvy g%y(t))
i=1 i=1
+ Z (g Z azvy / o ﬁz'va (s)ds

i=1 ped u()

~4
S) uivy

(s)ds

r t
+Zl9i Zawu/ t

—1—219 Vk ), teR4, Pas,vel k=12

(6)

@)
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Now, we are in a position to introduce the response BAMNNSs

iy (t) = | =0uly (t— T () + Y b8 (B0
vel
+ Z b &3 (0u (t — 0y (1))
B[ s
+ / v (0v(s))ds
2 g f
FX B [ B g @) + T + %4(0) |4
vel
Z byvgv + Z bpwgv t_ va( )))
t
+ 1_77V/ 7(0y(s))ds
,,;; " gty (0
FEB [ 98 0,(5))ds
vel
+ U5 (1) |dW(t), teRy, P-as, pel,
doy(t) = | —fuou(t — w(t)) + Z ﬁvyf;(ﬁﬂ (1) 8)
el
+ Z dvyfpzt(ﬁﬂ (t - giy(t»)
el
t
+ i / 3(0,(s))ds
H;: - )
t —
+Y aﬁ;,/_ O (£ — ) FA(i0(s))ds + V(1) + %4 (t) | dt
el o
+ Z a_vyfs(ﬁ}l(t)) + Z ﬁvyfﬁ(ﬁﬂ(t - g%y(ﬂ))
uel uel
t
+ a / 7(11,(s))ds
;L;:l K t*Q%}t(t) ‘u( V( ))
s 1 42 8(n
+ Z ﬁvy /_ (va(t _S)fy(u]/l(s))ds
el o
+ V2(t)[dW(t), teR,, Pas,vel
0y (t) = yo(t), dP xdt-ae.inQxR_, p e,
Oy(t) = 0yo(t), dPxdt-ae.inQxR_, ve],

i
=
=)
-
N—
Il
e
—
%
—~
—~
=
=
=
<)
—~
=
QU
ac|
X
QU
~~
)
()
—
=]
@)
X
7
~
m
LJ

©)

and
duo(t) = Y 0:(Z(t))0io(t), dPxdt-ae.inQxR_, vel, (10)
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with the given initial data stochastic processes ﬁiyo(t) and 9;,0(t) being .# ® £-measurable
and being #j-measurable for all t € R_, the exogenous disturbances Uﬁ( ) and V£(t)
are given as in (6) and (7), respectively, and the F-adapted stochastic processes %, (t) and
¥, (t) are the control inputs. To study the claimed identical synchronization problem in the
pre-assigned time, we need to introduce the error BAMNNSs

dxy (t) = | —0uxu(t )+ Z D& (o (t
+ Zbivgg yV va( )))
vel
+ b
t
+ Y5, / L (= 5) @ (yo (s))ds + %(t)] dt
vel -
bewgvg yV +Zb21/g16/ Yv t_Qw/( )))
vel vel
+Y' 1 v
oA o R ACIL
t
+ Z B / ‘Fz s)grg(yv(s))ds} dW(t), teRy, P-as., pel,
vel -
dyy(t) = | —7vyu(t — (1)) + gﬁﬁyf;(xy(t))
pe

T Zﬁ w et = 61 (1))

yej / Shu(t) fy )

+Y a, [m Dy, (t— ) fu (xp(s))ds + %(t)] dt

(11)

Z:lﬁvyfv;? (xﬂ(t)) + Z:ﬁgyfs(xﬂ(t - g%y(t)))
pe ue

Y d, [ F(s)ds

+) L_l18/y /t qagy(t - s)fﬁ(xy(s))ds] dW(t), teRy, P-as,veld,

=) 0;:(8(t)) (Aipo(t) — uipo(t)), dP x dt-ae.inQ xR, p €3,
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where the stochastic processes, as in (8), @/ﬂ(t) and ¥ (t), are the control inputs, the state
trajectories x,(t) and y, (t) of the error BAMNN: s (11) are given, respectively, by

xu(t) = () —uy(t), teR, Pas, pc, (12)

and
y(t) =0,(t) —vy(t), teR, Pas, ve], (13)

and the functions f;, (xu(t)) and ¢! (yy (t)) are given, respectively, by

FuCeu(£)) =f (0 (8)) = f(xu(8)
:f;(u;,(t) +xp(t)) —f;(uy(t)), teR, Pas,pel i=12,...8

and

& (yu (1)) =gb (0u(1)) — &1 (vu (£))
=gl (v, () + v (1)) — & (vu(t), tER, Pas,vel i=12,...,8.

Throughout this paper, we assume that the activation functions f;, and g!, are Lipschitz
continuous and have positive constants as the lower bounds of their difference quotients,
that the functions 7, (t), g’f,y (t), w(t), and Q;‘W(t) satisfy some regularity and growth con-

ditions, and that the kernels @fy(t) and 1Fﬁv(t) are Lebesgue integrable, p € J, v € ],
i=12,...,8k=12,...,6{=1,2,3; see Assumptions 1-3 for the details.

Assumption 1. There exist positive constants L fir 3 fir L., and Eg{/, satisfying the inequality
conditiont,; <L, andt_; <L ;, such that
fy f;z 8v 8v

_ filw — £i(0)

i\ig_i; s R ] 7 /':rr-"//
Ly Py Ly, woe withu #v, pe3,i=1,2 8
and ] )
i P _
Lg5<W<Lg{/, u,0 € Rwithu #v,vel i=12,...,8.

Assumption 2. The continuous functions 7, (t), g’éﬂ (), t(t), and Qlfw(t)/ mapping Ry into itself,
satisfy T, (t) > 0, gﬂ‘,y(t) >0, 4,(t) > 0, and Ql;w(t) > 0forallt € (0,400), k=1,2,...,6,
u € 3, v € 1 The functions T,(t), gi,y(t), ty(t), and Q]W(t) are differentiable in R and are
Lipschitz continuous in R, so it holds that 17'], <1, g_]wl <1,i, <1, and é;w < 1, where the
constants T, (f]W, iy, and é]W are given, respectively, by

T, = esssup 1, (t), é{/y = esssup d/y(t),

t€R+ t€R+
iy = esssupiy(t), and é{w = esssup Q']W(t), 1j=13 uel vel, (14)
teRy teRy

and in addition, it holds that gﬁy € (0, 40c0), as well as wa € (0, 400), in which the constants g‘f*,y
and Qﬁv are given, respectively, by

g‘ﬁﬂ = sup gfiy(t), and @fw = sup wa(t), (=24 pel vel (15)
teR4 teR L
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Assumption 3. The kernels befﬂ(t) and ‘f’lljv(t) are continuous functions mapping Ry into itself,
and they are Lebesgue integrable in every compact subinterval of Ry, k = 1,2,3, y € 3, v € 1.
Moreover, the kernels @{/},(t) and ‘P{W(t) satisfy

+
[ 1@l = / @, (H)dt < +oo,
0
+
/0 W, (1)|dt = / £)dt < oo,

For the sake of convenience, we introduce here the constants L. £ and L o by

=12, ue3l, vel

Li—sup M, yeﬂ,izl,Z,...,S, 16
T u,0€R, u—uv ( )
;l;ﬁ(]
and ‘
i i
b, = sup [ =8O i, s, 17
v uweR u—ov (17)
u#v

Remark 1. By Assumption 1, the constants L fi and L i given, respectively, by (16) and (17), are
well-defined and are indeed positive constants, y € J,v € 3,i=1,2,...,8.

Suppose that the stochastlc processes uwy(t) ~11W(t), ﬁizw(t) ~12W(t)’ ﬁ?vy(t) ~13P“/(t)

ﬁfw(t), lﬂv( ), Uf‘y( ), VE(t), %(t), and 7 (t) are all F-adapted, i = 1,2,...,r, p € J,
v € J. Under Assumptlons 1-3, for any initial data stochastic processes u;,o(t) and vy (t),
as well as 11,,0(t) and 9;,0(t), functions mapping Q) x R_ into R, being .7 ® .#-measurable,

being .#p-measurable for all t € R_, being P almost surely bounded in R_, and satisfying

esssup E|ujo(t)| < +oo, esssupE|v;o(t)] < +o0,
teR_ teR_

esssup E[dj,o(t)| < +oo, and esssupE|d;,o(t)| < +oo,
teR_ teR_

i=1,2,...,r,u € J,v €] theBAMNNS (1)-(2)-(3), BAMNN:S (5)-(6)-(7), BAMNNS (8)-(6)-(7),
and error BAMNNSs (11) admit a unique state trajectory, respectively.

Definition 1 ([11]). The drive BAMNNS (5)-(6)-(7) and the response BAMNNS (8)-(6)-(7) are
said to achieve synchronization in a pre-assigned settling time, or to achieve pre-assigned-time syn-
chronization, provz'ded that for any given positive time instant T, there exists a collection of control
inputs %,(t), %u(t), p € 3, v € 1, such that for any state trajectory {uy (t)},ea, {vv(t) }uea of
BAMNNS (5)-(6)~(7) (the drive network systems), and any state trajectory {1, (t) } yea, {0v(t) }ea
of BAMNNS s (8)-(6)-(7) (the response network systems), with our designed control implemented, it
holds always that

lim Elu,(t) — ,(t)]?

t—T—
= lim E 2=, €3,

Jim Bl (£)] Z

u,(t) =10,(t), t € |T,4), P-a.s.,

(0 = (0, 1 € [T, ) s

lim Elv,(t) — 0y (t)]

t—T—
= lim E|y, (t)]> = veld

t—T—

vy(t) = 0y(t), t € [T, +00), P-as.,
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T(k,a,B,6,0) =

where {x,,(t) } e, together with {yy(t) } .2, given by (12), together with (13), denotes the state
trajectory of the error BAMNNS (11).

To put it concisely, observing that the functions E|x,(#)|> and E|y, (t)|* are continuous
intime t, u € 3, v € J, we conclude, by Definition 1, that proving BAMNN:Ss (5)-(6)-(7) and
BAMNN:s (8)-(6)-(7) achieve drive-response synchronization within the pre-assigned time
T boils down to proving E|x,(t)|? = Ely,(t)|> = 0forall t € [T, +o0), y € J,v € 1.

INluminated by References [11,44], we define an important auxiliary function:

ﬁ(sie)(g)%csc(n:l;}g)/ k<0, a>0,>0,6>1,0<0<1,
1-6 6-1

T s )%b(wgfkfferm)

a(6—0) " p—k B(5=5, 5=5)
v B b f% k g;é é;g) v
120 "Aa+B—k’ 6—07 o— ;

+ - , 0<k<min(a,B), d>1,0<0<1,

Fe-B kB ) o

E—l—arc’cani), 0<k<2y/aB, 6+60=2,a>0,0<60<1,

V4B — k2
in which B(p, q) is the celebrated Euler’s Beta function, which is explicitly given by
1
B(p,q) = / #=1(1— 1)771dt, p,q € Cwith Rep >0, Req > 0,
0

and b(0, p, q) is the so-called incomplete Beta function, which is defined by
b(6,p,9) / tP=1(1 — 1)1 1dt,

Lemma 1 ([11]). Let ag € R, ap € (0,+c0) (k = 1,2), 71 € (1,400), 7 € [0,1), and
T, € (0, 4+00) be given. For any decreasing function V (t) (mapping of R, into itself) satisfying

6 €[0,1], p,q € Cwith Rep >0, Req > 0.

T(”O/ ai,a2,v1, 72)
Ty

DYV(t) < (aOV(t)—al(V(t))%—az(V(t))%), ge teR,, (20)

it holds that V (t) = 0 for all t > Ty, where T (ag, a1, a2,v1,v2) is given as in (19).

3. Main Results and Their Proofs

In this section, our main aim is to state our main results in this paper and to provide
detailed proofs of our claimed theoretical results. We shall first come up with a class of syn-
chronization control inputs for the response BAMNN:S (8)-(6)-(7), construct secondly a suit-
able Lyapunov—Krasovskii functional along the state trajectories of the error BAMNNS (11),
and finally establish, with our cleverly developed Lyapunov-Krasovskii functional as the
key ingredient, a criterion ensuring that BAMNNSs (5)-(6)-(7) and BAMNN:Ss (8)-(6)-(7), with
our designed control implemented, achieve pre-assigned-time synchronization.

To obtain our desired pre-assigned-time synchronization, we put forward, after some
basic analysis, the following synchronization control

B
S RO
B
- r%z E;)) |2(EH13(t))”’2, teR,, Pas., ucl, 1)
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and
n} Oy — Oy n2 Oy — Oy
%(t) == € ‘:(év((?) _ZV((?))zl_[Zl (t) - e ';:(év((?) _Z;V (i)|2 (HZZ(t))'h
5 (0u (t) — vy (1)) )
R CE G
_ nyy (1) - Sy (t) 1
G A Ol A
10 (EI5(t)), teR,, P-as, vel (22)
ety (DB I

in which the positive constant ¢ is fixed arbitrarily small, the positive constants m]y and n/,
are yet to be determined, j = 1, 2, 3, and the stochastic process ITj(t) is given by

Iy (t) :ﬁhk(ﬁy(t> - ”y(t)/ﬁV(t) —y(t))
=Y |y (8) = w ()P 4 Y v |00 (1) — 0y ()2

el vel
t
+ m max o; / 0,(s) — u,(s)|?ds
V;: hk2u 1<icr in f—T;L(t)| ]/l( ) ]/l( )|

t
£ 30 Lo max ey L [ Jiu(s) - uy(s) s
uelvel t=cup(t)

t
+ Z Z mhk‘h/]l rnaX |a1uy| (Lf”) / 3 |uA]/l (S) - ul/l (S) |2d5
uedvel t=guu(t)

t
+ ) oy max 7z, 9y(s) — vy(s)|ds

ved 1<i<r t—1y (t)

t
+ 2 Z nhk3yv max |bzyu|}-‘gv/ Ql ; |ﬁ1/(s) - UV(S)|2dS

vel yE:l ]41/( )

t
+ Z Z nhk4w max |bW| (ng)z/t a0 |0, (s) — vy (s)|*ds
—Ouv

velued

t t
+ 1 Y i max iy [ [ 10000 — (@) Pgds

ueldvel

t t
+ 8 X e ax e, P’k [ [ 10(@) — (@) Pdgs
e,

ueldvel

t t 2
+Q:anwmwwwﬁLLZtAMMO—w@H%%

veluel
—+ Z Z nhkéw max |bzw| QMV / / 19, () — v,(0)2d¢ds
velued t—0jv (t)
+zzwmmwmw/ ol /WA%ww%%
pedvel t

400 r00 t
£ 3w max [ 2(g)? [ @8, (5)ds [T @8(s) [ 18,(0) — wu(0) Pcds

uedvel

+ Z Z nhk7yv max |b1;41/|L 4/ ;ll/ / |UV( ) - UV(§)|2d§ds

veluel

+oo t
+ X X mug max Pl [ ¥R [ 96) [ 000 - o @R, @)

veluel

in which the constants my1;,, Muk2y, Mpk3vp, MWakdvy Wiksvpe Wikeypr Wik7vir Mhksvur Wikls
k2w, Wik3pys Whkdpyr MhikSuvs Whkepys Whk7ue, @0d Nygg,, are to be determined suitably, where
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h=1,2k=1,223u <3, v el Following the basic idea to obtain a pre-assigned-time
synchronization criterion, we introduce the auxiliary functional

V(t) =EV(), teR,, (24)

where V(t) is the Lyapunov—Krasovskii functional candidate that is given by
4
V(t) = Z Vi(t), teRy, P-as., (25)
k=1

in which Vi (t), Va(t), V3(t) and Vy(t) are defined, respectively, by

Vi(t) = Zi_lpy‘ﬁy(t) - “y(t)|2 =+ Z qu|0v(t) — UV(t>|2
e

vel
= Z py|x;4(t)|2 + Z qv|yv(t)|2, t € R4, P-as., (26)
el vel
V) = L g [ () — u(s)
2(t) y% 1-7, tim(t)hly(S) uy(s)|"ds

qv max |a?, |Ep

1<i<r et N
+ Yy s /t | (s) — 1y (s) 2ds

et S S —l (1)

au max [af, (L, )2

1<i<r WH t .
=3 [ ls) — u(s)Pds
pedvel 1—¢vyu t—g3, ()
Qu max iy, .,
1<i<r R
P [0 (s P
vel Vil

pu max |b? L2

+ Z Z 1<igr s

velpel 1- é;lw t—oh, (1)
Ay Y

L o) —ou(s) s

/tt 16,(s) — vy () [2ds

=3
veluel 1—6u =05, (1)
_ oy s B (o) s
1-1 ()
uel H [
2

qu max |a

19
1<i< wu i t
Ly Yy s 2 /t I, () 2ds

pedvel 1- 55;1 —Ghu(t)

v max [af, [2(E)?

1<ir VH t
+42* sisr / I, (s) Pds
E:v;: 1-&) =g () "
qV m,ax 171'1/ t
1<i<r 2
+v§ 1—1y /H.m [y (s)lds

pu max [b?, L

1<igr M8t 2
L LT [ nls)Pas

velued 1- Q;lw t—04 (1)

6 |2 2
" Pu {gzagxr |b1'y1/‘ (ng) ¢ )
+417Y ") = lyv(s)|“ds, teRy, P-as,
veluel 1—6u t=0 (1)
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qy max |alW|Lfy

_ 1<i<r b B )
=L Zlgyy/t—gw(t)/s 1,(2) — uu(Z)|"dlds

uedvel
t t ~ 2
Sy o 10000 = ()P

max\ 11/‘14| (Lfﬁ)zg_?/y

+4:#ZZ 1<<

uedvel 1- gvy
py max |b3 |L 5
1<i<r MY
CL L e [ 100 - e Pagas
veluel QHV t Qp:v

“I/l max |b1],n/| ( gZ) é[ﬂ/

ot t
PR Y e [ [ 0 - P

vel pea —Quv(t

qy max |a3 L

1<isr
_y Zl—/t e / |, (Q) Pgds

uedvel ng/l
V max ‘an/],{| (Lf7) gV‘H
/ / %, () 0)|?dgds
t €v;4(t

+4:# Z Z 1<i<r

uelvel 1- gvu
1< < ’P“’ gv
oy e [ Rz
velued va b= (1)

pﬂ max |b1‘u1/| ( gz) @]xﬂ/

LA P

veluel - Qw/

/ lyy (0)|?dgds, te Ry, P-as.,

I

Qw
and

t
Vi) = X o max lab s [ @ls) [ 1u(€) -y (0) Pt

uelvel Isisr

+oo t
+42" Y Y av max |af,, (L) / @ (s)ds [ @3(s) [ 1u(2) = () Pdgas

uelvel Sisr

o0 t
+ L Lowemax bhlig [ YA [ 10,0 —0u(0) Pdgds

velpuel Isisr

. .
HAT Y b ma 68, P [ R0 [ [ 10,(6) — 0 (0)Pdgds

veluel Isisr

=Y Ya max |awy|Lf4 / CDVH /t ) |x,(Q)|*dZds

ueldvel I<isr

o0 ot
+42* Y Y q max [af, [ (Lgy) / Gu(s)ds [ @R (s) [ Ixul0)dzds

ue3vel Isisr

+o0 1 t )
F Y Lpemax bl [ L) [ Iy()Pagds

veluel Isisr

~+o0 t
+41' Y Y by max |88, 2(E / 2 (s)ds /0 ¥2,(s) /t yo(0)2dds, t € R, P-as.

veluel Isisr

To ITy(t) (see (23)) and V (t) (see (25)), we associate the following constants
X p3J

by = max(max —  max —) —2m1n(911 mmp#m %1 min qvn}/),
uel py vel Qy He Vel

(27)

(28)

(29)
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b= 2min<(912)71 minpymi, (222)" min qwl%), (30)
uel vel
by = 2min (o13) min pm, (53)7 minqun} ), (31)
uel vel
max oy,
l<z<r

¢ =py |0, [ + 2(|b oEg + (B2, [Ep

+ ‘Eiv|hg§é;21v + |E;LH/‘L 4 / T;}v(sﬁls)}

b 3 L2
PO Ul
v - <
ved o 1= Gy 1-¢3,
+max la iy [ @lya6)
2(=4 \2
! uax ey [ (bgg)® o b [ (E)* (@)
420 Y o (13, 2k )2 + 5 G
vel — & &,

1<i<r

+ max |awy Lf;, / <D )ds)z), ped,

max
1<i<r

v
1 )
XD =qu [’71/ + o3, + Z (|avy|Lfl} + Z |“v;4|Lf§
uel uel

-3 2 4 e 1
+ Z |a1/y|£f;gvy + Z ‘avy|Lf;}/0 ¢vy(s)ds):|
uel

=2
max [t lg - max 'bw‘%ﬁ@w
+ X b (Bl by + =5 -

uel Qw Qyu

+ max |b1W|L /

1<igr

2 2024 \2
max |b1}w| (ng) max |bz],u/| ( g;) (Q],ll/)
+4J# Z |l_?5 ‘Z(L )2 + 1<i<r 1<i<r
P\ 1O ]™(£g3 — &
uel Q,‘uv v
+ max |blw (L s/ ) vel
and
- =1
(. Mgy on My (1=T) s (1= Gyy)
k= mm(mm £ min 22 min pl ) , min v 4y
ME:‘ py ved '} }46: py vel, qu
el
=3 - =1
Mpgayy (1 — oy (1 =1 . Wi (1 —
vy( _ va), min o ( V)’ min yv( va),
vel, 49,3 vel v ped, Pu
uel vel
“hk4;u/(l - é;%v) . mhkSvy(l - 612/;4) . mhkévy(l - é%y)
mi m y m , Min # 7
ued, 4]3;[3 veld, JQu ved, 4qV3
vel nel nel
22 4
nhk5;u/(1 - va) . nhk6;u/(1 - va) . Mpk7vu
n , min m , min ,
ued, Pu ued, 4p,] vel, Gy
vel vel uel
. Mpks . Mk7 . ks
min "M min ke , min W) h=1,2,k=1,2,3. (32)

ved, 4:q1/3#l Hed, p‘u HE:[ 4py]#
uel vel vel
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dVy (t

el

Theorem 1. Suppose that Assumptions 1-3 hold true. Let T, € (0,+o0) be given. If there
exist some positive constants m},, mi, mi’l, Mkt Wik Mhk3vp Wikdvpr WakSuur Mhkevp: Whk7vp
MykSvus n11/r n12/r ng/ Whk1v, Whk2v, Whk3pvs Whkdpvs WhkSuv, Wik6pvs Whk7pvs Whk8uv/ Pu, Qv (,” S 3/ vV E j/
h=1,2,3k=1,2,3), and the constants y; € (1,40), v2 € [0,1), and T, € (0, +0c0) such that
the function V (t) given by (24) satisfies the differential inequality (20) in Lemma 1 and it holds
that Ty = T (ag, a1, a2, y1, v2) where T is defined as in (19) and the constant ay. is given by

b T,
g ==L, k=012, (33)
T
with the constants by, by, and by given, in turn, by (29), (30), and (31), respectively, then the
drive BAMNNS (5)-(6)-(7) and the response BAMNNSs (8)-(6)-(7), with the control (21)—(22)
implemented, achieve synchronization within the pre-assigned time Ty.

Proof. From the analysis conducted in Section 2, we realize that to prove Theorem 1, it
boils down to proving a stability criterion for the error BAMNNS (11). To establish the
desired stability criterion, we have to analyze in some detail the Lyapunov-Krasovskii
functional V(t), defined as in (25), and its mathematical expectation V (), given by (24).
Apply 1t0’s differentiation rule to V; () given by (26) to obtain

=2 Z pﬂxl‘ [ OuXp t*TI/l + Zb;n/gvll/ yv(t + Zbyvgv Yv t*Q;u/( )))

- t
+ wa//t Q (t yV dS—l— Zbyv/ lPl 5)§§(yv(5))d5+%y(t)] dt
nv -

vel
+2 ijﬂxﬂ [bewéﬁ }/v bewgs yV t_ va( )))
ne
+ L0 / y o S+ DB /t w2t s)gfg(yv(s))ds] AW (t)
+ Zpﬂ [Zbyvgu ]/V +Zbyvgv Yv t_va( )))
el vel vel
2
%b / )gv (yv(s ds+%b /t Vo (t s)gfg(yv(s))ds] dt
+ 2% ayu(t) l_ﬁvyvu — () + V;j‘juyf;lz(xy(t)) + gﬁ%yfﬁ(xy(t - gll/]/l(t)))
/ fy xH ))dS+ Z / 1/;1 f‘u(x}l( ))ds+%<t)]dt
VE:[ uel -

vel
ye:l

+qu

vel

ue]

+22quv(t>[z Vﬂf}l xP‘ Z avyfy xil Q?/y(t»)

nel

/ fy xu(s))ds + ¥ 2 /

Gupl pea /-

[Z oy fy (e (8)) + Z;ﬁﬁyf;?(xy(f*f;i’y(t)))
ne

]JG

=) fi (xu(s ))dS] dw(t)

2
/ fﬂ xu(s))ds+ Y ab L ot =) fa (xu(s ))ds] dt, teRy, P-as. (34)

uel
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By some routine calculations, we have

2 Z p#xﬂ(t |: O-Hxﬂ t_ T}l + Z b%”,gﬂl/ .1/1/ + Z b%wglz/ ]/V Q%n/(t)))
uel vel vel

_ t t
F L0 [ B+ T [l sl (e)ds
ved t Q}H/(t)
<2 Y ()% () + Z Puly \xu )+ [xp(t = ()[?)
uel uel
+ ¥ rulBlultg (162 + [ (DP) + X T bulBo g (1 () + Iy (£ — @l ()/P)
uelvel ueldvel
F N EnlBultg [ (@ + ) P)ds
pelvel )
t
+ 1 Xl / Fu(t =) (5O + () ) ds
pelvel
=2 Z pﬂxﬂ + Z Z plllbyv|L |]/V( )l
uel veluel

d

+ Z p;, H <|xu(t)|2—a |xu(5)|2d5)

t—1y(t)

Py| wlEe , d ot )
+ 5 X g () —dt/t_dw(t) () 2s)

#
el VGJ Q}‘

pV| yv‘ et ¢ )
) A (0)Pdgd
H;JV% — &t )( G (Dl dt/ )/S [y (2) 2dcds)
d too | t )
+H;:V;pr|bma4 / (s)dslys (D1 = 7 | w,w(s)/tis 1) Pgas)

+ 1 (et L pulBlultg + T pulBltg
uel Vel

+ Y pulBlu a0+ X pulBlult o [ o
vel vel
1n<1.a1<x Tin
- IT —
<2 ) b % () + 3 (pV‘TH + Zpﬂb kg + Y pulbhy L
uel uel vel
+ X B [Eedu (1) + 1wl g / s)ds ) | (1)
vel vel
py mMax o; py max |b? \L
d ;l<z<r " /t 2 71 1<i<r Y
-y —— Ixu(s))Pds + Y () pulb |L1+Z—
dt = 1=t Jig() ve_'l(ye:l e = — G
Py max Ibl [E 307 (t)
1252y Vi HgCh
+ Z + Z pﬂ max |b1yv|L 4/ s)ds ’]/V( )‘
el QHV el 1<
Py 1H<11a<xr |b1;41/|}“ t 5
SLY [ () Pas
VG:I }46:1 Q,‘I/H/ t Q}ll/(
py max |b1;w| x
I IR [ ) @ Pagas
VE_'I]AGJ QVV t Qw/
2
Z Z Py 11252( |b1;41/|L / S /t—s |y1/ (C)‘ déds, te RJr, P-a.s. (35)

ve.‘l uel
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By applying mainly
(a1 + a2 + a3 + as)* < 4(|a1[* + |a2|* + |ag|* + |aa]?), ar €R, k=1,2,3,4

as well as Leibniz’s integral rule, we have

. v Z 8 0) + L Bt ¢~ (0)

el ved
- t 2
DAY (AR oAy ML ARSI
vel Qjiv
<4 Z:F'z» Z;( B (o (D) P + (B0 (o (t — € (D)2
ue ve

t t
b x7 Y d 2 ES Y/Z x8 Y d 2)
1B [, D+ B [ = g s)as
3" T 1 (1850 g Pl (0 15 ()1~ 5 ()

ueld  wvel
_ t
- bZ‘v|2/t ‘\/ Q;w (yv F/t o yV(C dC’ ds
- ;W
7 |24 2 2 ! 2 x8 2
0 / () P + 15| / S)ds [ ¥, (0= 9)|gh v (s)) Pas

t
92, (= 9)dsg s [ 0o

2
AN )
wl™ [ T
\/f (t—s)d

_ _ t
<4T Y p, z(w S <t>|2+|b2v|2<agg>2|yv<t—eiw<t>>|2+|b,iv|2<ag;>2eiv<t> [ o) Pas

ueld vel *Qw/(t)
t
+ 155, / ds/ lff;,,(t—s)|yv(s))|2ds>
i B0 P (£ gg)? i
<4’y e}, [|biv|2<tgg>2yv<t>2 g (P =g [ I()s)
ueld  vel 1_Q}W t
|E;711/|2(Lg5)2é;1n/ 4 ,  d 2
+_Qw(ew<t>|yv<t>| = / s dgds)
d +o0 2 t 5
FB P [ ([ s Or - 5 [T [ o))
6 2 7 2=4 4
=47 Y Y w183, P 1<1<r|bwv (bgs)® oo [bh, I*(Eiz ) ()
_ n i
veluel AT 1_Q]u/ _Q%u/
+max 85,2 [ FR ) (0
by max |b 2(Eg)?
d 1<i< iuv v t
_4]# Z Z i<r _ / ‘yv( )|2dS
ve]ye:l — Quv t—05 (t)
pH m.ax |b17]41/| ( gv) Q;w
Sty Y [, / [9(0) Pads
tve]ye:l va t—apy (t

d
—43# Z Y pu max |b1;4v| o / s)ds/o ‘Fﬁv(s) /tis lyv(Q)|?dgds, t€ R, P-as.

Vej }46: 1<l<7’

(36)

(37)
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Mimick steps to obtain (35), to arrive at

2 ZJCIVJ/V(t [ vy (t )+ Z ﬁvﬂ VH
ve
/ fy(xy( 5))ds + %(t)]
yej -
qvfgﬁé]ﬁv
<2 Z quyv(t ) + Z(%WV B + Z qV|aW|Lf1 + Z qV|avy|Lf2
veld veld v
b T @ g+ Dbyl [ @3y<s>ds) (D
el uel 0
qy max 7, qy max |a?, |E
d 1<i<r /t )2 1<i<r v i
— Y lyo(s)Pds + ) () avlay \L1+Z—
dt vel 1= b= ( yEJ(VEJ v 1- gVF‘
ql/ max |a11/ H:“ 3gl/ ( )
1<i<r B T fpeve
n 2 i r1 - + qu max \alW|L 4/ CDW ds) |xy(
vel Con Isisr
p qv max B i
I e e O
pedvel 91/14 t=chp(t)
qv max a3, [E.2
d 1252 iop /t /t 2
- S W X ()"l ds
dty;v% 1—gw t—c2u(t) Js K
t
2 Y o max o, [Es / @}, / %, (0)[2dgds, teR,, P-as. (38)
dt i hiey 1sisr t=s

Borrowing an idea from the derivation of (37), we have by some routine calculations

Y [2 B3 00(0) + L a5 6l (0)
ue

veld uel
2
/ f# xu(s))ds + ) ay / — ) f (xu(s ))ds}
Ve:l nel -
max [a8, | ( f6)2 max |a/ | (Lﬂ)z(?%ygﬁy(t)
<42y Y av(laPkgs)? +1<l<r YIS i
pedvel ( v _va 1—9314
2 2
+ max [af,, [ Lfy/ @2, (5)ds)?) ()|

_43# d Z Z 1<i<r

t
| (s)[*ds
yejvej 1= &y /t?z"#(t) g
_4:# d Z 2 1<i<r

>k 17 gvy
/ /|xy 0)Pdgds
dt =405 — Gy

d
— 40 T Z Z qQv max |awy| f# / CDW )ds/o @sy(s) /tis ]xy(g)\zdgds, te Ry, P-as. (39)

ueldvel Isisr

qy max |a’, 7)

ivu
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Apply Itd’s differentiation rule to V(t) given by (25), to find that there exist two F-adapted
stochastic processes U(t) and II(t) such that

dV(t) = O(t)dt + LI(t)dW(t),
or equivalently
t+At t+At
V(t+ At) —V(t) :/ s+/ W(s), t, At € Ry, P-as, (40)
where the stochastic process I1(t) is given by
2 5 6| S Bl 0) + K Ffons - G0
uel J vel
ot
+Ebiw/ &yn(5))ds
vel tfg;w()
.t
5 [t e
vel -
+2) vyt [Z oy f Ceu (D) + 3 a0, i (ru(t = 63, (1))
vel uel uel
+ Y / 1 (xu(s))ds
uel u(t)
#, / qj fy(xy( ))ds], t € Ry, P-as.
]/tEZl
Combine (35) and (37)—(39) to obtain
O(t) <2 ij#xﬂ )%yt +2Z,;quyv +Zi_lzu|xy )‘2+Z;[23|VV(t)|2
He ve HE ve
|xy(t)|2 2|xy( )|2 3| y(t)|2
-2 . I (t (1)1 + — ElTi5(t))"
V;jp (£+| ()|2 ()+ +|x’4(t)|2( 12( )) P |x,4(t)|2( 13( )) )
ny [y (1) 2 nglyy (1) 2 nylyy (1) 2
-2 v| — =511 (¢ N+ L (Rl Ips(t) )72
Lo (0 + S ) + e Ertn())
+ 2 Tl + ijﬂyv( &
pel ve
a1 my [xu (1) 2 m ()2 iy (1) 2
< p t 2 — V(¢ —_— )N + —4—— V()"
V;: y|xﬂ() y;jp]/l( £+|x (i’ |2 V()+€+‘xy(t)|2(912v( )) +£+| H(t)|2(913 ()) )
B? 3y (1) 2 |y ()2
Y Sy (O -2 Y g (2L OF )y | om V()T + o3 V(1)
B B0 =2 o (T Gy YO+ o U2 YOI+ O V)
pumy | (1) quiylyv (1)
=Y Xix 5 ARV W T2 A I I (
= L mkP =200 & e o B p) VO
+ L Sl ()P —2(Go)" 1 P O | Gy il (O WIS ()™
vel ! uel e+ |xl‘(t)|2 vel e+ |y” t |
pymi|xy(t) iy |y (1) [
-2 — 12 — 2L (V(E)"?,  te Ry, Pas, 41
((913) P et 5, (O] + (223) L s+|yv(t)|2>( (1)) €R,, P-as (41)

in which the second “<” follows directly from the next inequality
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Iy (t)

:ﬁhk({xu(t)}yel’ {yu(t) }ve)
= Y il (O + Y oy ()2

uel vel

t
+) My Max Um/ |x,,(s) |*ds
]JG:[ 1<i< Tl,,(t)

t
+ Z thkf}vy max |azvy|Lf}l / |XV(S)|2dS
uedvel Guu(t)

t
0 ke max [af [F(E )2 [ () s
uedvel _Qvu(t)

t
+ L o max i [ l(s) s

vel

t
£ 1 X v max Wl [ lyus) s
velped 0 (1)

t
2
£ 1 X g max [0 () /M o )P

vel }163 ]u/

+) th,@,y max |aW|LfF/ / |%4(2) 7)|2dzds

uedvel Isisr

+ 2 thk&/y max |aw| (Lf7) gvy/ / |2, (2) (0)|*dzds

uedvel Isisr

=+ Z Z Nhk5puv rr<1a<x |bzyv|}-‘gl / / |]/1/ |2d§ds

veluel

+ Z Z nhk6;¢v max |bzyv| Q}H// () / |yV |2d€d5
;u

veluel

+ 8 X m max lab iy [ @h(6) [ (@) Pgas

ueldvel

“+00 t
8 X mes max o, Pl [ 0B (00 [ ) [ (@) Pacas

ueldvel

+00 t
+X Y i max [ g [ () /t_s 192(0)/Pdzds

veluel

+ X e max 8,20 [0 [T [ (@) Pagas

veluel
= Ik V( ), te Ry, P-as,, (42)
where the stochastic processes ITy (t) and ITy(x,, (), yy (1)) satisfy

Iy (1) :ﬁhk(ﬁy(t) - ”y(t)/ﬁv(t) —oy(t))
=TT (xu(t), yu (1)), t€Ry, P-as.

with ﬁhk(x}, (t),yy(t)) defined as in (23), the constant s is given as in (32), and the stochas-
tic process V(f) is given as in (25). Thanks to (32) (as well as (23) and (42)), the collection
of constants Wikt pr Whk2pr Wik3vpr Whkdvpr Whk5vir Whkévyr Wohk7vys Whk8vir Whklvs Whk2v, Wik3uv,
Wikdgws Wikspvs Whképvs Whk7uvs Wik and the collection of constants py, qu influence each
other, and both collections, together with the collection of constants, constant s, depend
on £4(0), &, (1), Gir s ¥y Vs Tu(B), 10(8), €y (1), 0l (1), DLy (1), and W1, (1), b = 1,2,
k=1,23,i=12,...,r,ue3lvel;=12,...,81=1234/(=1,2
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Recalling It6’s integral identity (40) and the inequality (41), we have
V(t+ Af) = V()
=EV(t+ At) —EV(t)

—E /;W B(s)ds + ]E/ttw II(s)dW(s)

AL
=E / O(s)ds
t

<E /ttw (EJZZ(S)WS)F +V;l23(s)|yv(s)|2)ds

o, gl (o) il (5)P
_ZE/ , LA A NN ol TSI iR DYVRYA
o O LT Rer T L er)

tHAt Py | X, (s)]? 3|y (s)[?
_ T piH T iy [Yv T
ZE/t ((912) V§€3 R + (52) Lot o) P )(V(s)) ds
A pum |x,(s)|? 3 |yy (s)?
—ZE/ o3) 12 Y o (o)™ Y L ) (V(s))2ds,  t, At € Ry, Pas. (43)
Ji (( 13) = €+|x’4(s)|2 ( 3) U€j€+|yv(s)|2)( ( )) +

To facilitate our later presentation, we would like to treat our problems from two
different perspectives. We consider first the following situation:

ml|x

- M o ¥ OF
uel €+ ‘xﬂ vel €+ ‘]/V<t ‘

Pymy|xy(t)|2 qun2|yy ()2
a12) ™M —— + (3 =0, or
Cal™ L e T2 L e

m3 |x, (£)]2 2

(13)”? Y W + (303)™ qumy |y ()| —0, Pas.

pea EF |2 (t) v €T |%/(t)|2
In this case, the state of the error BAMNNS (11) arrives at the null state or, equivalently,
our concerned drive BAMNNS (5)-(6)-(7) and response BAMNNs (8)-(6)-(7) are already
synchronized. Now, we are in a position to consider the following situation:

Pymy|x}t( qung |y ()2
= e+ |xu(t)] Z S+V| (t)|2 70
uea Z vel Yu(
)2
912 ’Yl Z p'umﬂ‘xﬂ | +( ) Clv“%\]/l/(t)‘z 75 0, and
pea €1 |xu(t) e+ [xu(H)2 ety (t)?

By, 1) s ()
3172 — T 4 (3 2 RLLERCA AL S I 7& 0
R Y EAO L S

The analysis in the above paragraph, together with (41), implies

1 2
_ pumy [ (2)] quig |y (H)?
B(t) = lim B(t) < 1 Zh(t —21 - L V(¢
() = Jim 00) < lim ¥ SOlsu(®F =2 fim (o0 T S0 o B ) VO

m2|x, () w2 2
+ hm sz )y (£) ]2 —2€l_i>1’(1)1+ ((912>’71 Z M + (o)™ M) (V(t))Mm

L et (0P et ()2

—2 lim ((913)’72 2 M 5)72 Z qvnv‘yv )[? )(V(t))”

e=0" uel e+ ‘xl‘ (t)|2 va €T ‘yv
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< — 2min(911 minpymgl, %»1 min qvn},)V(t)
uel vel
- 2min((912)71 minpymi, (322)" min q,/n%) (V())m
el vel
- 2min((913)72 mmpym (323)" mm qum, ) (V(t))r
pe

+Z‘ﬁzu ) x(t) yz+220 )y (1) 2, t € Ry, P-as. (44)
He

By Lebesgue’s dominated convergence theorem, we derive from (43) and (44) that

V(t+At) = V() = lim (V(t+ At) — V(1))

e—=0"
AL u ) o
<
<B [ i (X Zie)nio) + S0
t+AL my |x ! 2
~28 [ tim (o M+ o 1 SRy
t e—0t j e+ |x]4( )l veg €1 [y (s)]
t+Af pym |xy( )|2 quny ‘]/v(s)|2
—2€ [ )" Y s ()™ (V(s))mds
: ( 2 et x(s)P = e+\yu(s>|2>
t+At pym | (s )|2 qun ‘yV(S)|2
_ZE/ lim 913 72 + (923)72 L ( ( ))'nds
t e%O+( y;Zl e+ |x;, vag €1 ‘yV(S)P )
A t+At
gE/ ) X (s)]xu(s) (s)|°ds —2/ mm(;n mmp,,m E mi?qvn},)V(s)ds
¢ ne ve

uel

t+At At
+ E/ Y Z0(s)yw(s) )[2ds — 2/ mm((au)w1 mmpym (o2)M mm quh; )]E(V(s))%ds
t ne

vel
At
— 2/ rnin<(913)72 min pymi, (223)72 min qvnﬁ) (V(s))72ds
¢ }163 vel

t+At
g (V) ~ V)" (V)™ )as
_ T (20,21, 82,71, 72) / HAt(a()V(s)—al(V(s))”—az(V(s))”)ds, t, At € Ry, P-as., (45)
T, '

where the constant gy, is defined as in (33), and the function 7T (ag, a1, a2, v1, 72) is defined
by (19). To obtain the “<” next to the last line of (45), we used the assumption that y; > 1
and the following inequality (can be deduced by Jensen’s inequality):

EQV()" = EV(H))™ = (V)™ teRy.
Recalling (45) and passing to the limit, we have immediately

V(t+ At) =V (t)
At

DTV(t) =limsup
At—0F

t+At
<7d(aO/a1/ az, Y1, ,)/2) limSUP i/ (a()V(S) — al(V(S))’Yl - aZ(V(S))’yz)ds
T, Ao+ Dt

T (ag, a1, a2, 71, N
Tt D) i 2 [ a0V (9) (V6 —aa(V(5)) s

T (ag, a1, a2,71,72)

=t (a0V () ~a (V)" —ax(V()7), tERy.
:

By Lemma 1, this implies that the proof of Theorem 1 is complete. []
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4. Numerical Validation of Our Theoretical Results

In this section, we are devoted to the numerical simulations of the validity of our
aforementioned synchronization criterion (see Theorem 1). We assume that the defuzzified
network system of our concerned multiplied time-delayed BAM based on the Takagi-
Sugeno IF-THEN logic is of the form (5), in which we assume basically throughout this
section that 3 = {1},3 = {1,2}, p = 1 and r = 2. We assume in this example that

w1(¢(t)) = M1 (&(t))

et

= Tro [ERe

and ,
w2((1) = Ma(§(0) = 57 tERy,

and, as a consequence, we have

B w1 (&(t))
81(8(t)) C w1 (E(t) + wa(E(1))
:ﬂ - %, te Ry,
ot
and
B2 () = wy(E(t)) S Ry.

—wi(@(1) +wa(E(t) 3

We assume that the time delays 7 (), 11 (t), and 15(#) in the leakage terms of our concerned
example BAM are given, respectively, by

et 1+et 2et

Tl(t) = W, ll(t) = W, and lz(t) = m, t e RJ,_

In the meantime, we assume that the time delays 9%1 (1), g%l(t), 9%1 (1), g%l(t), g%l(t), 9%1 (1),

c11(t), 631 (1), e11(1), 01 (), @31(1), 0% (), €1 (1), @1 (1), 011 (t), and gt () in the transmis-
sion terms of our concerned example BAM are given, respectively, by

et 1 2¢! ) 3e! 4e!

1 = —_—— = —_—— = —_—— 2 = —_——
c11(t) = 1140t 621 (t) 15 aet c11(t) 1140t 621 (1) T a0
t t t ¢
3 e 3 2e 4 3e 4 de
)= 1o ol =g )= al) =g
5ef et 2¢t 3ef
1 1 2 2
t) = am— t) = —_—, t) = —_—, t) = —_—,
oult) = 1550 ) = ) =g @)=
4et 5et 6et 7et

3 3 4 4
Qll(t) 1+6et’ Q]Z(t) 1+6€t’ Qll(t) 1+6et’ and QlZ(t) 1_'_661}’ te +

Suppose also in our concerned example BAM that 011 = 1,091 = 2, 1111 = 2, 12 = 3,
21 = 4, and 7722 = 1. We assume throughout this section that the kernels @1, (), ®3,(t),
D2, (t), D3, (1), iy (1), ¥ (t), ¥2 (t), and ¥3 () are defined, respectively, by

Uiy (1) = Uy (1) = Ugy (1) = U3y (t)
=V (t) = Viy(t) = Vi (t) = Vi(t)
=VZ(t) = VA(t) = VA(t) = V(1) =0, t€ Ry, P-as.
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We assume that the transmission connection weight coefficients satisfy

W= (3 5 @o=(5 %) @o=(3 ) wo-(5 3).
@=( 2) wo=(2 7). @ '

W= (3 D @=(% 5) o= )@= L)
=y 3) =5 7). =3 3) @ -

We assume that the activation functions f](u), f2(u), f;(u),

5
u T(u),
f(u), 8(0), 81(0), 81 (v), 81(0), 83(0), 83 (v), 8] (v), 81 (), 83(0), 83(v), 83(v), 85 (),
¢5(v), g5(v), and g5(v) are given, respectively, by

1) =F ), fi)=FQ@u), f)=FEu), fil)=F),
f(u) = F(5u), f(u)=F(6u), fl(u)=F7u), f(u)=F(8u),
§i(0) =F(v), i) =F(20), gi(v)=F(30), gi(v)=F(4v),
§1(v) = F(50), 8i(v) =F(6v), gi(v)=F(70), gi(v)=F(8v),
@) =F@), &) =F2), &) =F@G), @) =F (%),
§(v) = F(5v), 88(v) =F(6v), g3(v)=F(7v), andgi(v) =F(8v), wveER,
in which the functions £ (x), F (x), and F (x) are, respectively, defined by

2

X e
Fx:/———%LxER
(x) 0 1+et

F(x)=x— arctang, x €R,

and
F(x)=2x—sinx, x€R.

The chaos phenomenon occurs frequently in many complicated nonlinear differential
dynamical systems. Chaos could prevent some pairs of different state trajectories of the
concerned dynamical system from approaching each other as time escapes to infinity. That
is, chaotic dynamical systems do not achieve identical synchronization automatically. And,
therefore, experts have been attracted to designing suitable controls to synchronize chaotic
dynamical systems; see [6,17] and the vast references mentioned therein.

To “demonstrate” that our proposed synchronization control essentially improves the
structural property of the example BAMNN concerned in this section, we first show via
MATLAB software that our concerned example BAMNN could be “chaotic”. To this end,
we solve first numerically the solution, denoted by (u1(t),v1(t),v2(t)) " throughout this
section, to our concerned example BAMNN, of which the initial data are composed of data
in two modes, namely, (u119(t), v110(t), v120(t)) " and (up19(t), v210(t), v220(t)) T, where

u110(t) =3sinx —3, dP xdt-a.e.in(Q xR_,

v110(t) = 6 —3sin2x, dP x df-ae. inQ xR_,

v10(t) =3 —6sin3x, dP xdt-ae.inQxR_,
and

up0(t) =3 —6sinx, dP x dt-a.e. inQ x R_,

vp10(f) = 6sin2x — 6, dP xdt-ae. in QO xR_,

Up0(t) =12sin3x — 3, dP x dt-a.e. in Q) x R_.
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See Figure 1 (including subfigures (a), (b), (c), and (d)) for the detailed description of
the graph of the state trajectory (uq(t),v1(t),v2(t))", t € [0,100]. And, similarly, we
solve numerically the solution, denoted by (1 (), 91(t),92(t)) ", to the response BAMNN
associated with our concerned drive BAMNN, of which the initial data are composed
of data in two modes, namely, (ﬁllO(t)/ UAllo(ﬂ,ﬁuo(t))T and (12210(1’), 5210(1'), 5220(t)>T,
where

f110(t) =3cosx —3, dP xdt-ae.inQxR_,

0110(t) = 6 —3cos2x, dP xdt-ae. inQxR_,

0190(t) =9 — 6cos3x, dP xdt-ae. inQxR_,

and
lp10(t) = 6 — 6cos x, dP x dt-a.e. in QO x R_,
"(3210(15) =6cos2x —3, dPxdt-ae.inQxR_,
Ooo(t) =12cos3x —9, dP x dt-ae. inQ x R_.
6 . . . i 5
u (t) v (t)
S s ——01(t)
3 3
E E
| i
e g3
g g
= 5 b
el o
=] g
5] ®©
g g

0 20 40 60 80 100

Time ¢
(b)

v9 and uncontrolled 9,

|
N

1
N

40
Time t 1 -2

(0) (d)

Our ()

Figure 1. Numerical and graphical illustration of the occurrence of chaos phenomenon in the example
BAMNN concerned in this section. (u1(t),v1(t),v2(t))", t € [0,100], is the state trajectory triple
of our concerned example BAMNN with u;(t) = —1 = 3(3sinx — 3) + (3 — 6sinx), v1(t) =
2 = 2(6 —3sin2x) + $(6sin2x — 6), and vy(t) = 1 = 2(3 — 6sin3x) + $(6cos2x +6),t € R_,
P-a.s.; see (a—c) for the graph ( the solid curves) of the functions uq(t), v1(t), v2(t) in the interval
[0,100]. The graph of the parametric curve (uy(t),v1(t),v2(t)) " is visualized in the phase space
(state space); see (d). (#1(t),91(t),2(t))", t € [0,100], is the state trajectory triple of the response
BAMNN with no controls implemented, associated with our concerned example BAMNN, with
i1(t) =0 = 3(8cosx —3) + (6 — 6cosx), 91(t) =5 = 5(6 —3cos2x) + 3(6cos2x — 3), and
() =3 = %(9 —6c0s3x) + %(12 cos3x —9),t € R_, P-a.s.; see also (a—c) for the graph (the curves
composed of “+”) of the functions i (t), 91 (t), 92 (¢) in [0,100].
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The detailed description of the graph of the state trajectory (#1(t),91(t),92(t))",
t € [0,100], can also be seen in Figure 1 (including subfigures (a), (b), and (c)). To summa-
rize, we “demonstrate”, by Figure 1, in a visual way, that our concerned example BAMNN
is “chaotic”, in particular, some of the trajectories are sensitive to their initial states. We next
show numerically that our proposed control law (21)-(22) could effectively synchronize
our concerned example BAMNN in any pre-assigned time: For any given positive time
instant T, our example BAMNN and the corresponding controlled response system achieve
synchronization before min(T, Ty) with Ty = 13.7825; see Figures 2 and 3 for the details.

3 T
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. —— 1y (t)| |
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[
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Figure 2. Numerical and graphical validation of our theoretical synchronization results; see
Theorem 1 for the details. As in Figure 1, (u1(t),v1(t),v2(t)) ", [0,20] (see the solid curves in (a—c)),
is the state trajectory triple of our concerned example BAMNN with u;(t) = —1, v1(t) = 2, and
vy(t) =1,t € R, P-as. (1 (t),01(t), 02(t)) T, [0,20] (see the curves composed of “+” in (a—c)), is the
state trajectory triple of the controlled response BAMNN associated with our concerned example
BAMNN with 1 (t) =0, 91(f) = 5, and 05(¢) = 3, t € R_, P-a.s. The dashed straight vertical line
segments are the graphs of t = 13.7825.



Mathematics 2023, 11, 3697 29 of 32

1.5+

The controlled error i; — u;
o
F
)
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1
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Time t
(a)

The controlled error 9; — vy

Time t

(b)

The controlled error 9, — v,

| |
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Time t

()
Figure 3. Numerical and graphical validation of our theoretical synchronization results; see

Theorem 1 for the details. As in Figures 1 and 2, (11 (t) — uq(t), 91(t) — vy (t), 02(t) —v2(t)) T, [0,20],
is the state trajectory triple of the error system, in which (u1(t),v1(t),v2(t)) ", [0,20], is the state

1
—

trajectory triple of our concerned example BAMNN with uq(t) = —1, v1(t) = 2, and vy (¢) = 1,
t € R, P-as. (41(t),01(t),02(t))7, [0,20], is the state trajectory triple of the controlled response
BAMNN associated with our concerned example BAMNN with i1 (t) =0, 91(t) =5, and 6,(¢) = 3,
t € R_, P-a.s. The dashed straight vertical line segments are the graphs of t = 13.7825. The graphs of
the tracking error 71 () — uq1(t), 91(f) — v1(¢) and 9,(t) — v (¢) can be seen in (a—c).

5. Concluding Remarks

In this paper, we studied a class of time-delayed stochastic BAMNNS, namely,
BAMNN:s (1)-(2)-(3), based on the Takagi-Sugeno IF-THEN logic and driven by a one-
dimensional standard Brownian motion (also termed the Wiener process). Our concerned
BAMNNE include a continuous-time delay in leakage terms and a continuous-time de-
lay and (finitely as well as infinitely) a time-distributed delay in transmission terms.
Our study;, in this paper, is inspired considerably by References [1-7,11,36-38,40,43,44],



Mathematics 2023, 11, 3697

30 of 32

but we are confronted with quite a few new challenges. For example, different from
References [1,3,5,7,11,36,38,43,44], we have to apply a technique to overcome the difficulty
brought on by the infinitely time-distributed delay in transmission terms of our concerned
BAMNNss, or as opposed to References [5,6], we have to find a new clue to cope with the
difficulty caused by the Takagi-Sugeno fuzzy logic in the concerned BAMNNSs.

In this paper, we designed a class of control for our concerned BAMNNSs and provided
a criterion to ensure that our concerned BAMNNSs and their response BAMNNS, with
our designed control implemented, achieve synchronization within the pre-assigned time.
In more detail: (i) We followed the common idea utilized to deal with Takagi-Sugeno
fuzzy dynamical systems, to defuzzify the Takagi-Sugeno fuzzy BAMNNS (1)-(2)-(3) into
BAMNNS (5)-(6)-(7); (ii) we designed, based on the structure of the response
BAMNN:s (8)-(6)-(7) of BAMNN s (5)-(6)-(7), the synchronization control (21)—(22); (iii) for
any pre-specified time instant (T, say), we established a criterion, meticulously constructed
the Lyapunov—Krasovskii functional V(t) (see (25)), and proved that the BAMNNS (5)-(6)-(7)
and the response BAMNN:Ss (8)-(6)-(7), with the control (21)—(22) implemented, achieve syn-
chronization within the pre-assigned time T (see Theorem 1 for the details); and (iv) based
on the careful and complicated mathematical derivations in Section 3, we came up with an
example which validates our main theoretical results in this paper.

One of the merits of our designed control (21)—(22) is that we only render the
control (21)—(22) to be implemented in the drift terms of the response BAMNNSs (8)-(6)-(7).
Another merit of our designed control (21)—(22) is that a collection of parameters are in-
cluded so as to reduce the conservatism of the synchronization criterion (see Theorem 1).
On the other hand, our designed control (21)—(22) has a disadvantage: The aftereffect in our
designed control seems to be strong; see (21)—(22) for the details. To remove or attenuate
the aftereffect in synchronization control for BAMNNS (1)-(2)-(3) is one of our primary
research directions in the near future. And inspired by the research experience of this paper
and the references cited in this paper, we shall work in the direction of improving, in a
certain sense, synchronization control for BAMNNS (1)-(2)-(3). For example, we shall try to
come up with impulsive control, intermittent control, quantized control, adaptive control,
pinning control, sliding mode control, event-triggered control, and so forth, to synchronize
BAMNN:s (1)-(2)-(3) asymptotically, in finite time, in fixed time, or in pre-assigned time.

As mentioned above, and by observing BAMNNS (1)-(2)-(3) (or, equivalently,
BAMNN:s (5)-(6)-(7), BAMNN:Ss (8)-(6)-(7), and the BAMNN (11)), it is not difficult to con-
firm that our concerned model BAMNNS include merely a one-dimensional Brownian
motion (Wiener process). By reviewing mathematical derivations throughout this paper,
we find that our methods can be adapted to treat the multi-dimensional Brownian motion
(Wiener process) case. From both the theoretical and applied viewpoint, it is interest-
ing to consider stochastic Takagi-Sugeno fuzzy BAMNNS, including Markovian jumps,
reaction—diffusion terms, and/or proportional time delay. Aided by the experience of this
paper, we shall study the synchronization problem for BAMNNSs with their dynamics influ-
enced by fuzzy logic, randomness described by Brownian motions, randomness described
by Markovian jumps, reaction—diffusion terms, and/or proportional time delay in the
near future.
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