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Abstract: This paper develops the ideal plastic flow theory for the stationary planar flow of pressure-
dependent materials. Two rigid plastic material models are considered. One of these models is
the double-shearing model, and the other is the double slip and rotation model. Both are based
on the Mohr–Coulomb yield criterion. It is shown that the general ideal plastic flow theory is only
possible for the double slip and rotation model if the intrinsic spin vanishes. The theory applies to
calculating the shape of optimal extrusion and drawing dies of minimum length. The latter condition
requires a singular characteristic field. The solution is facilitated using the extended R–S method,
commonly employed in the classical plasticity of pressure-independent materials. In particular,
Riemann’s method is used in a region where all characteristics are curved. It is advantageous since
determining the optimal shape does not require the characteristic field inside the region. The solution
is semi-analytical. A numerical procedure is only required to evaluate ordinary integrals. It is shown
that the optimal shape depends on the angle of internal friction involved in the yield criterion.

Keywords: ideal flow; double-shearing model; double slip and rotation model; ideal die shape;
extrusion; drawing
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1. Introduction

The ideal flow theory is a tool for metal forming design [1]. Considering bulk ideal
flows, almost all available results are restricted to rigid perfectly plastic solids obeying
Tresca’s yield criterion [2,3]. An important feature of this material model is that the
complete system of equations is hyperbolic. Therefore, the method of characteristics has
been widely adopted for calculating ideal flows. In particular, the pioneering ideal flow
solution was provided in [4]. That solution calculates the die profile for maximum strip
drawing and extrusion efficiency. The approach developed for constructing the solution
consists of matching the characteristic field from the solution for material flow through
an infinite wedge-shaped channel with no friction and two characteristic fields in which
the characteristics of one family are straight. A general plane strain ideal flow solution
for the flow having an axis of symmetry between two surfaces was outlined in [5]. The
axisymmetric die profile for maximum drawing and extrusion efficiency was calculated
in [6]. This paper introduces an additional criterion of optimality that the die must be of
minimum length. The characteristic field must be singular to satisfy this criterion.

The plane strain ideal flow theory was extended to the stationary flow of orthotropic
materials in [7], assuming that the evolution of the yield criterion obeys the law proposed
in [8]. The solution [4] was generalized for orthotropic materials in [9]. However, the
anisotropic properties do not affect the die’s shape. This feature is valid for all solutions
based on the theory [7]. Therefore, the available plane strain solutions for isotropic materials
immediately apply to anisotropic materials. The difference is revealed in calculating stress
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fields. It was shown in [10] that stationary axisymmetric ideal flows of anisotropic materials
exist if the yield criterion proposed in [11] is adopted.

Many materials obey pressure-dependent yield criteria. Examples of such materials
are soils [12,13], metals [14–16], and granular materials [13,17]. Several plasticity models
are available for pressure-dependent materials [18,19]. The present paper focuses on the
double-shearing model proposed in [20] and the double slip and rotation model proposed
in [21]. It is assumed that both are based on the Mohr–Coulomb yield criterion. The method
developed in [4] was used in [22] to calculate an ideal flow die for such materials. The
general ideal flow theory was not required for that calculation. In particular, the solution
for the flow through an infinite wedge-shaped channel with no friction can be easily
found. Constructing two regions in which the characteristics of one family are straight
is then straightforward. The solution [22] shows that the optimal shapes of dies depend
on the angle of internal friction involved in the Mohr–Coulomb yield criterion. Therefore,
developing the general ideal flow theory for pressure-dependent materials is desirable.

The present paper develops the ideal flow theory for the stationary planar flow of
pressure-dependent materials obeying the models proposed in [20,21]. The constitutive
equations of each model reduce to classical metal plasticity at specific values of input
parameters. However, it is shown that the general ideal flow theory is possible only in a
special case of the double slip and rotation model. Notably, the double slip and rotation
model also retains all features inherent to classical plasticity under quite different conditions,
resulting in singular velocity fields near certain surfaces, whereas the double-shearing
model does not [23].

2. Constitutive Equations

The present paper considers two rigid plastic models of pressure-dependent materials
under plane strain deformation. One of these models is the double-shearing model [20],
and the other is a special case of the double slip and rotation model [21]. The present
section briefly describes these models, as necessary for the subsequent solution. Flow is
stationary, and body forces are neglected.

In planes of flow, the principal line coordinate system (ξ, η) is defined by the condition
that its coordinate curves coincide with principal stress trajectories. It is evident that this
coordinate system is orthogonal. The principal stresses are denoted as σξ and ση . It is
assumed without loss of generality that

σξ > ση . (1)

The stress equations of both models include the stress equilibrium equations and a
yield criterion. The models can be used in conjunction with any yield criterion. However,
the Mohr–Coulomb yield criterion is most widely used in the mechanics of granular
materials [13,17]. Moreover, only this criterion is compatible with the ideal flow conditions
described in the following section. The Mohr–Coulomb yield criterion can be represented as(

σξ + ση

)
sin φ + σξ − ση = 2k cos φ, (2)

where k is the cohesion and φ is the angle of internal friction. Both are constitutive parame-
ters. The system of stress equations is hyperbolic [20]. The characteristic coordinates are
denoted as (α, β). The characteristic directions are symmetric relative to the principal stress
directions. In particular,

Hξ

Hη

dξ

dη
= − tan

(π

4
− φ

2

)
and

Hξ

Hη

dξ

dη
= tan

(π

4
− φ

2

)
. (3)
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for the α- and β-lines, respectively. Here, Hξ and Hη are the scale factors of the ξ- and
η-coordinate curves, respectively. The characteristic relations are

cos φdp + 2(p sin φ + cos φ)dψ = 0 along an α-line,
cos φdp − 2(p sin φ + cos φ)dψ = 0 along a β-line.

(4)

Here, ψ is the anticlockwise angular rotation of the ξ-line from any fixed direction in
planes of flow. Moreover,

p = −
σξ + ση

2k
. (5)

Note that the characteristic relations provided in [20] involve the orientation of the
α-line instead of ψ. However, it is immaterial because the angle between the α- and
ξ-directions is constant, as following from (3).

The velocity equations of the double-shearing model were provided in [20]. If ∂/∂sα

and ∂/∂sβ denote differentiation along the α- and β-lines, respectively, the velocity relations
along the stress characteristics may be written as

cos φ
∂uα

∂sα
− uβ

(
∂ψ

∂sα
+ sin φ

∂ψ

∂sβ

)
= 0 and cos φ

∂uβ

∂sβ
+ uα

(
∂ψ

∂sβ
+ sin φ

∂ψ

∂sα

)
= 0. (6)

It has been taken into account here that the process is stationary. The velocity equations
of the double slip and rotation model were provided in [21]. These equations involve the
intrinsic spin. Several physical interpretations of this quantity are possible [24]. It is
reasonable in many cases to assume that the intrinsic spin vanishes [25,26]. The present
paper is concerned with this special case of the double slip and rotation model. Then, the
velocity relations along the stress characteristics may be written as

cos φ
∂uα

∂sα
+
(
uα sin φ − uβ

) ∂ψ

∂sα
= 0 and cos φ

∂uβ

∂sβ
+
(
uα − uβ sin φ

) ∂ψ

∂sβ
= 0. (7)

It is seen that, in contrast to (6), these equations are the velocity characteristic relations.

3. Ideal Flows

The ideal flow condition is that the velocity vector V is everywhere tangent to one of
the principal stress trajectories.

3.1. The Double Slip and Rotation Model
3.1.1. Characteristic Lines of Both Families Are Curved

Let the velocity vector be tangent to the ξ-lines. Figure 1 illustrates the ideal flow
condition and the characteristic coordinate system. In this figure, eξ, eα, and eβ are the
unit vectors directed along ξ-, α-, and β-lines, respectively. In the case under consideration,
Equations (4) and (7) can be rewritten as

cos φ
∂p
∂α + 2(p sin φ + cos φ)

∂ψ
∂α = 0, cos φ

∂p
∂β − 2(p sin φ + cos φ)

∂ψ
∂β = 0,

cos φ ∂uα
∂α +

(
uα sin φ − uβ

) ∂ψ
∂α = 0, cos φ

∂uβ

∂β +
(
uα − uβ sin φ

) ∂ψ
∂β = 0.

(8)

It was shown in [27] that the parametrization of the characteristic lines can be chosen
such that

ψ = (α + β) cos φ. (9)

Substituting (9) into (8) yields

∂p
∂α + 2(p sin φ + cos φ) = 0, ∂p

∂β − 2(p sin φ + cos φ) = 0,
∂uα
∂α + uα sin φ − uβ = 0,

∂uβ

∂β + uα − uβ sin φ = 0.
(10)
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It follows from the geometry of Figure 1 that

V = Veξ = uαeα + uβeβ. (11)

Since eξ · eα = cos(π/4 + φ/2), eξ · eβ = cos(π/4 + φ/2), and eβ · eα = − sin φ,
Equation (11) results in

uα = uβ = V
cos(π/4 + φ/2)

1 − sin φ
. (12)
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Figure 1. Characteristic lines; the velocity vector is directed along the ξ-lines.

Eliminating uα and uβ in the last two equations in (10) using (12), one gets

∂ ln V
∂α

= 1 − sin φ and
∂ ln V

∂β
= −(1 − sin φ). (13)

The first two equations in (10) can be integrated to give

ln
(

p sin φ + cos φ

p0 sin φ + cos φ

)
= 2(β − α) sin φ, (14)

where p0 is constant. The equations in (13) can also be integrated to give

ln
V
V0

= (1 − sin φ)(α − β), (15)

where V0 is constant. Equations (14) and (15) are compatible if

V
V0

=

(
p sin φ + cos φ

p0 sin φ + cos φ

)t
, (16)

where t = (sin φ − 1)/(2 sin φ). Note that

lim
φ→0

(
p sin φ + cos φ

p0 sin φ + cos φ

)t
= exp

(
p0 − p

2

)
. (17)

Equations (16) and (17) combine to yield

V
V0

= exp
(

p0 − p
2

)
. (18)

for pressure-independent materials. This equation coincides with the relation between V
and p derived in [4].
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Equation (16) ensures the existence of ideal flows. Calculating ideal flows reduces
to determining characteristic nets. In particular, Equation (14) provides the distribution
of p through a found characteristic net. Then, Equation (16) allows for the magnitude of
the velocity vector to be calculated. The direction of this vector is determined as shown in
Figure 1. The principal stresses are given by Equations (2) and (5).

Let the velocity vector be tangent to the η-lines (Figure 2). In this case,

V = Veη = uαeα + uβeβ. (19)
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Because eη · eα = − cos(π/4− φ/2), eη · eβ = cos(π/4− φ/2), and eβ · eα = − sin φ,
Equation (19) results in

uβ = −uα = V
cos(π/4 − φ/2)

1 + sin φ
. (20)

Similarly to (13), one can get from (10) and (20) that

∂ ln V
∂α

= −(1 + sin φ) and
∂ ln V

∂β
= 1 + sin φ. (21)

Integrating these equations yields

ln
V
V0

= (1 + sin φ)(β − α), (22)

where V0 is constant. Equations (14) and (22) combine to give

V
V0

=

(
p sin φ + cos φ

p0 sin φ + cos φ

)1−t
. (23)

This equation connects p and V in ideal flows. Note that

lim
φ→0

(
p sin φ + cos φ

p0 sin φ + cos φ

)1−t
= exp

(
p − p0

2

)
. (24)

Equations (23) and (24) are combined to yield

V
V0

= exp
(

p − p0

2

)
. (25)

As in the previous case, calculating ideal flows reduces to determining characteristic nets.
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3.1.2. Characteristic Lines of One of the Families Are Straight

Let α-lines be straight and the velocity vector be tangent to the ξ-lines. The angle
between any α-line and the x-axis is ψ − π/4 − φ/2 (Figures 1 and 2). This angle is
independent of α because the α-line is straight. Therefore, the angle ψ is also independent
of α. It follows from the first equation in (4) that p is also independent of α. The second
equation in (4) becomes

cos φ
dp
dβ

− 2(p sin φ + cos φ)
dψ

dβ
= 0. (26)

This equation can be immediately integrated to give

ln
(

p sin φ + cos φ

p0 sin φ + cos φ

)
= 2 tan φ(ψ − ψ0), (27)

where p0 and ψ0 are constant. Equation (9) can be transformed to

ψ = (α0 + β) cos φ, (28)

where α0 is constant. Equation (12) is valid. The first equation in (7) and (28) show that uα

is independent of α. Therefore, V and uβ are also independent of α.
Using (12) and (28), one can rewrite the second equation in (13) as

cos φ
dV
dβ

+ V(1 − sin φ)
dψ

dβ
= 0. (29)

This equation can be immediately integrated to give

ln
V
V0

= − (1 − sin φ)

cos φ
(ψ − ψ0). (30)

Equations (27) and (30) are compatible if (16) is satisfied.
Let α-lines be straight and the velocity vector be tangent to the η-lines. As in the

previous case, uα, uβ, and V are independent of α. Equations (20) and (28) are valid. Then,
the second equation in (21) can be rewritten as

cos φ
dV
dβ

− V(1 + sin φ)
dψ

dβ
= 0. (31)

Integrating this equation, one gets

ln
V
V0

=
(1 + sin φ)

cos φ
(ψ − ψ0). (32)

Equations (27) and (32) are compatible if (23) is satisfied.
Let β-lines be straight and the velocity vector be tangent to the ξ-lines. Then, the angle

ψ is independent of β. It follows from the second equation in (4) that p is also independent
of β. The first equation in (4) becomes

cos φ
dp
dα

+ 2(p sin φ + cos φ)
dψ

dα
= 0. (33)

Integrating this equation, one gets

ln
(

p sin φ + cos φ

p0 sin φ + cos φ

)
= −2 tan φ(ψ − ψ0). (34)
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Equation (9) can be transformed to

ψ = (α + β0) cos φ, (35)

where β0 is constant. Equation (12) is valid. The second equation in (7) and (35) show that
uβ is independent of β. Therefore, uα and V are also independent of β. Using (12) and (35),
one can rewrite the first equation in (13) as

cos φ
dV
dα

− V(1 − sin φ)
dψ

dα
= 0. (36)

This equation can be immediately integrated to give

ln
V
V0

=
(1 − sin φ)

cos φ
(ψ − ψ0). (37)

Comparing (34) and (37), one can conclude that p and V satisfy (16).
Let β-lines be straight and the velocity vector be tangent to the η-lines. As in the

previous case, uα, uβ, and V are independent of β. Equations (20) and (35) are valid. Then,
the first equation in (21) can be rewritten as

cos φ
dV
dα

+ V(1 + sin φ)
dψ

dα
= 0. (38)

Integrating this equation, one gets

ln
V
V0

= −1 + sin φ

cos φ
(ψ − ψ0). (39)

Equations (34) and (39) are compatible if (23) is satisfied.

3.1.3. Characteristic Lines of Both Families Are Straight

Assume that both families of characteristics are straight in a region. Then, ψ is constant
in this region. Equations (4), (7), (12), and (20) show that p, uα, uβ, and V are constant
independently of the direction of the velocity vector. Therefore, the motion of the region is
a rigid body translation.

3.2. The Double-Shearing Model

Assume that the characteristic lines of both families are curved. Let the velocity vector
be tangent to the ξ-lines (Figure 1). Using (9), one can rewrite the equations in (6) as

∂uα

∂α
− uβ

(
1 − sin φ

R
S

)
= 0,

∂uβ

∂β
+ uα

(
1 − sin φ

S
R

)
= 0. (40)

Here, R is the radius of curvature of the α-lines and S is the radius of curvature of the
β-lines. These quantities have been defined in [27] as

1
R

=
∂ψ

∂sα
and

1
S
= − ∂ψ

∂sβ
. (41)

It has been also shown in [27] that the quantities R0 and S0 defined as

R0 = R exp[(β − α) sin φ] and S0 = S exp[(β − α) sin φ]. (42)

satisfy the equations:
∂R0

∂β
= S0 and

∂S0

∂α
= −R0. (43)
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Using these equations, one can transform the equations in (40) to

∂uα

∂α
− uβ

(
1 − sin φ

R0

S0

)
= 0,

∂uβ

∂β
+ uα

(
1 − sin φ

S0

R0

)
= 0. (44)

Equation (12) is valid. Eliminating uα and uβ in (44) using (12), one gets

∂ ln V
∂α

− 1 + sin φ
R0

S0
= 0,

∂ ln V
∂β

+ 1 − sin φ
S0

R0
= 0. (45)

These equations are compatible if

∂2 ln V
∂α∂β

=
∂2 ln V
∂β∂α

. (46)

It follows from (45) and (46) that ideal flows exist if

∂(R0/S0)

∂β
= −∂(S0/R0)

∂α
. (47)

In general, this condition is not satisfied. However, it is in particular cases, for example,
if the ratio R0/S0 is constant. The latter condition is satisfied in the flow of plastic material
through a wedge-shaped channel with no friction. Using (43), one can represent (47) as

∂2 ln R0

∂α∂β
=

∂2 ln S0

∂α∂β
. (48)

Let the velocity vector be tangent to the η-lines (Figure 2). Using (44) and (20), one gets

∂ ln V
∂α

+ 1 − sin φ
R0

S0
= 0,

∂ ln V
∂β

− 1 + sin φ
S0

R0
= 0. (49)

These equations are compatible if (46) is valid.

4. Dies of Minimum Length

Dies of minimum length are obtained if singular characteristic fields appear near the
die’s exit. A schematic diagram of such a die and the general structure of a characteristic
net are shown in Figure 3. Singular points are D and D′. The α-lines in ADF are straight
lines through point D. Similarly, the β-lines in AD′F′ are straight lines through point D′.
The die’s geometry is classified by the sheet’s thicknesses at the exit and entry. These
parameters are denoted as 2h and 2h0, respectively. The angle γ should be found from the
solution. The velocity of the rigid region at the entry is V0, and the velocity of the rigid
region at the exit is V1. Introducing a polar coordinate system (r, θ) with its origin at D is
convenient for further calculations (Figure 4).

Since the α-lines coincide with the radial direction in ADF, the angle between the
principal σ1 stress σ1 and the radial direction equals (Figure 4)

ψ − θ =
π

4
+

φ

2
. (50)

The angle between the α-and β-lines equals π/2 + φ. Therefore, the equation for
determining curve AF is

dr
rdθ

= − tan φ. (51)

It follows from the geometry of Figure 3 that

θ = −π

4
− φ

2
and r =

h
cos
(

π
4 − φ

2
) (52)
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at A. The solution of Equation (51) satisfying the condition (52) is

r =
h

cos
(

π
4 − φ

2
) exp

[
− tan φ

(
θ +

π

4
+

φ

2

)]
. (53)
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Using this solution, one can find the radius of curvature of line AF as

|S| =

(
r2 + r′2

)3/2∣∣∣r2 + 2r′2 − rr′′
∣∣∣ , (54)

where r′ ≡ dr/dθ and r′′ ≡ d2r/dθ2. It follows from (41), (53), and (54) that

S = − h
cos φ cos

(
π
4 − φ

2
) exp

[
− tan φ

(
θ +

π

4
+

φ

2

)]
. (55)

The origin of the characteristic coordinates can be chosen at A. Then, α = 0 along AC
and β = 0 along AC′. Using (9) and (50), one can transform (55) to

S = − h
cos φ cos

(
π
4 − φ

2
) exp(−β sin φ). (56)

Comparing the second equation in (42) and (56) yields

S0 = − h
cos φ cos

(
π
4 − φ

2
) . (57)

on AF.
Using the line of reasoning above, it is possible to show that

R = − h
cos φ cos

(
π
4 − φ

2
) exp(α sin φ) and R0 = − h

cos φ cos
(

π
4 − φ

2
) . (58)

on AF′.
Both families of the characteristics are straight in DFC and D′F′C′. Therefore, DC and

D′C′ are straight lines. Let γ be the inclination of DC to the x-axis (Figure 3). The angle
between CD and FD equals π/4 + φ/2. Therefore,

θ = γ − π

4
− φ

2
. (59)

on DF. It follows from (50) and (59) that ψ = γ on DF. Then, the β-coordinate of point F is
determined from (9) as

βF =
γ

cos φ
. (60)

The r-coordinate of point F is determined from (53) and (59) as

rF =
h

cos
(

π
4 − φ

2
) exp(−γ tan φ). (61)

Then, employing (59), one can find the x- and y-coordinates of point F as

xF =
h cos

(
γ − π

4 − φ
2
)

cos
(

π
4 − φ

2
) exp(−γ tan φ) and yF =

h sin
(
γ − π

4 − φ
2
)

cos
(

π
4 − φ

2
) exp(−γ tan φ) + h. (62)

Assuming that dsβ = dβ on FC, and taking into account that DF and CF are of the
same length, one can find the β-coordinate at point C as βC = βF + rF. Employing (60) and
(61), one can rewrite this equation as

βC =
γ

cos φ
+

h
cos
(

π
4 − φ

2
) exp(−γ tan φ). (63)
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It follows from the geometry of Figure 3 that the length of CD is

CD = 2rF cos
(π

4
+

φ

2

)
=

2h cos
(

π
4 + φ

2
)

cos
(

π
4 − φ

2
) exp(−γ tan φ). (64)

Then, the x- and y-coordinates of point C are

xC =
2h cos

(
π
4 + φ

2
)

cos
(

π
4 − φ

2
) exp(−γ tan φ) cos γ, yC = h +

2h cos
(

π
4 + φ

2
)

cos
(

π
4 − φ

2
) exp(−γ tan φ) sin γ. (65)

These formulae complete construction of the characteristic field on the left to AFC. The
characteristic field on the left to A′F′C′ can be constructed by symmetry.

Considering region AFBF′A, both families of characteristics are curved in this region.
Equation (43) has resulted from the stress equations. Therefore, it is independent of
the velocity equations. The equations in (43) are equivalent to the following telegraphy
equations:

∂2R0

∂α∂β
+ R0 = 0 and

∂2S0

∂α∂β
+ S0 = 0. (66)

The boundary conditions are given in (57) and (58). Each equation in (66) can be
integrated by the method of Riemann [28]. Applying this method to closed curve APαPPβ

(Figure 5), one arrives at
‰

APαPPβ

[(
G

∂ f
∂α

− f
∂G
∂α

)
dα +

(
f

∂G
∂β

− G
∂ f
∂β

)
dβ

]
= 0. (67)
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Here, f should be replaced with R0 or S0 and G is the Green’s function. In the case
under consideration,

G(a, b, α, β) = J0

[
2
√
(a − α)(b − β)

]
, (68)

where J0

[
2
√
(a − α)(b − β)

]
is the Bessel function of zero order. Equation (67) allows for

the value of R0 (or S0) at point P to be calculated. In the case of the boundary value problem
above, this calculation was performed in [28]. As a result,

R0 = − h
cos φ cos( π

4 −
φ
2 )

[
I0

(
2
√
|αβ|

)
+

√∣∣∣ β
α

∣∣∣I1

(
2
√
|αβ|

)]
,

S0 = − h
cos φ cos( π

4 −
φ
2 )

[
I0

(
2
√
|αβ|

)
+

√∣∣∣ α
β

∣∣∣I1

(
2
√
|αβ|

)]
.

(69)
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Here, I0(z) and I1(z) are the modified Bessel functions of the first kind and the zero
and first orders, respectively. Substituting (69) into (42) yields

R = − h
cos φ cos( π

4 −
φ
2 )

[
I0

(
2
√
|αβ|

)
+

√∣∣∣ β
α

∣∣∣I1

(
2
√
|αβ|

)]
exp[(α − β) sin φ],

S = − h
cos φ cos( π

4 −
φ
2 )

[
I0

(
2
√
|αβ|

)
+

√∣∣∣ α
β

∣∣∣I1

(
2
√
|αβ|

)]
exp[(α − β) sin φ].

(70)

Equations (9) and (41) result in

dsα = R cos φdα and dsβ = −S cos φdβ. (71)

It follows from this equation and the geometry of Figure 1 that

∂x
∂α = R cos φ cos

(
ψ − π

4 − φ
2
)
, ∂x

∂β = S cos φ sin
(
ψ − π

4 + φ
2
)
,

∂y
∂α = R cos φ sin

(
ψ − π

4 − φ
2
)
, ∂y

∂β = −S cos φ cos
(
ψ − π

4 + φ
2
)
.

(72)

Using (9) and (70), one can express the right-hand sides of these equations as functions
of α and β. Then, x and y can be found as functions of α and β by integration. For
determining the die’s shape, it is sufficient to find curves FB and F′B.

Considering curve FB, here, β = βF on this curve and α = 0 at F. Point B is on the axis
of symmetry. Therefore, ψ = 0 and, as follows from (9), α = −β at B. Using (60), one can find

α = αB = −γ/cos φ (73)

at B. Curve FB is now determined from (72) as

x = cos φ

αˆ

0

R cos
(

ψ − π

4
− φ

2

)
dω + xF, y = cos φ

αˆ

0

R sin
(

ψ − π

4
− φ

2

)
dω + yF, (74)

where β = γ/cos φ and −γ/cos φ ≤ α ≤ 0. Moreover, xF and yF are provided in
Equation (63). The x-coordinate of point B is determined from (74) as

xB = cos φ

−γ/cos φˆ

0

R cos
(

ψ − π

4
− φ

2

)
dα + xF. (75)

Curve F′B is calculated similarly.
It remains to calculate the shape of CE. The β-lines are straight in region FCEBF.

Therefore, ψ is independent of β. Its value is determined from (9) and (60) as

ψ = α cos φ + γ. (76)

The equations in (72) should be replaced with

∂x
∂α = R cos φ cos

(
ψ − π

4 − φ
2
)
, ∂x

∂β = −T(α) sin
(
ψ − π

4 + φ
2
)
,

∂y
∂α = R cos φ sin

(
ψ − π

4 − φ
2
)
, ∂y

∂β = T(α) cos
(
ψ − π

4 + φ
2
)
.

(77)

Here, T(α) is an arbitrary function of α. The compatibility equations are

∂2x
∂α∂β

=
∂2x

∂β∂α
and

∂2y
∂α∂β

=
∂2y

∂β∂α
. (78)
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Substituting (77) into (78) and taking into account (76), one gets

∂R
∂β cos φ cos

(
ψ − π

4 − φ
2
)
= − dT

dα sin
(
ψ − π

4 + φ
2
)
− T cos

(
ψ − π

4 + φ
2
)

cos φ,
∂R
∂β cos φ sin

(
ψ − π

4 − φ
2
)
= dT

dα cos
(
ψ − π

4 + φ
2
)
− T sin

(
ψ − π

4 + φ
2
)

cos φ.
(79)

Multiplying the first equation by sin(ψ−π/4− φ/2), the second by−cos(ψ−π/4− φ/2), and
summing them gives

dT
dα

= T sin φ. (80)

The solution of this equation is

T = T0eα sin φ, (81)

where T0 is constant. The boundary condition on CF demands that T = 1 for α = 0. Therefore,
T0 = 1 and (81) becomes

T = eα sin φ. (82)

Substituting (82) into the first equation in (79) yields cos φ∂R/∂β = − exp(α sin φ).
Integrating this equation gives

R = − 1
cos φ

(β − βF) + Y(α), (83)

where Y(α) is an arbitrary function of α. The dependence of R on α at β = βF is known
from (70). Therefore,

Y = − h
cos φ cos

(
π
4 − φ

2
) [I0

(
2
√
|αβF|

)
+

√∣∣∣∣ βF
α

∣∣∣∣I1

(
2
√
|αβF|

)]
exp[(α − βF) sin φ]. (84)

Equations (60), (83), and (84) supply the distribution of R in CFBEC.
The tangent to curve CE is equally inclined to the α- and β-lines. Therefore, the equation of this

curve is
dsα = dsβ (85)

It follows from (77) that dsα = R cos φdα and dsβ = Tdβ. Substituting these equations into (85)
and employing (82) and (83), one gets

dβ

dα
= −(β − βF)e−α sin φ + Y(α)e−α sin φ cos φ. (86)

The boundary condition to this equation is

β = βC (87)

for α = 0. The solution for (86) satisfying (87) is

β − βF = cos φ exp
(

λsin φ−1
sin φ

) λ́

1
Y(− ln ω)ωsin φ−1 exp

(
1−ωsin φ

sin φ

)
dω+

+(βC − βF) exp
(

λsin φ−1
sin φ

)
,

(88)

where λ = e−α. Note that

lim
φ→0

exp
(

λsin φ − 1
sin φ

)
= λ and lim

φ→0
exp

(
1 − ωsin φ

sin φ

)
=

1
ω

. (89)

Equation (88) determines the shape of CE in the characteristic coordinates. This shape in the
Cartesian coordinates can be found by integrating the following equations:

dx =

(
∂x
∂α

+
∂x
∂β

dβ

dα

)
dα and dy =

(
∂y
∂α

+
∂y
∂β

dβ

dα

)
dα. (90)
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The partial derivatives are determined from (77), (82), and (83) as

∂x
∂α = (−β + βF + Y(α) cos φ) cos

(
ψ − π

4 − φ
2
)
, ∂x

∂β = −eα sin φ sin
(
ψ − π

4 +
φ
2
)
,

∂y
∂α = (−β + βF + Y(α) cos φ) sin

(
ψ − π

4 − φ
2
)
, ∂y

∂β = eα sin φ cos
(
ψ − π

4 +
φ
2
)
.

(91)

Substituting (86) and (91) into (90) gives

dx
dα =

√
2(βF − β + Y(α) cos φ) cos ψ

[
cos
( φ

2
)
− sin

( φ
2
)]

,
dy
dα =

√
2(βF − β + Y(α) cos φ) sin ψ

[
cos
( φ

2
)
− sin

( φ
2
)]

.
(92)

It is understood here that βF − β is replaced with the right-hand side of (88) and ψ with the
right-hand side of (76). Thus, the right-hand sides of the equations in (92) are known functions of α.
These equations should be integrated numerically using the conditions x = xC and y = yC for α = 0.
The values of xC and yC are given in (65). The Cartesian coordinates of point E are determined from
the solution of the equations in (92) at α = αB. This value is provided in (73).

5. Effect of the Internal Friction Angle on the Optimal Die Shape
The optimal die shape has been calculated using the previous section’s general solution. The

dimensional analysis shows that the solution should depend on the reduction ratio h0/h rather than
separately on h and h0.

Since h0 = yE (Figure 3), then

h0 = yE = yC +

αBˆ

0

dy
dα

dα (93)

where dy/dα is replaced with the right-hand side of the second equation in (92) and yC with the
right-hand side of the second equation in (65). Therefore, the right-hand side of (91) involves γ,
and its solution supplies the dependence of this angle on the process and material parameters. This
equation has been solved numerically. Figure 5 illustrates the dependence of γ on the reduction ratio
and the angle of internal friction.

The die’s length is determined as l = xE (Figure 3). Having found the value of γ, one can
calculate xE by integrating the first equation in (92) numerically. Figure 6 illustrates the dependence
of the dimensionless die’s length l/h0 on the reduction ratio and the angle of internal friction.
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It is seen from Figure 6 that the inclination angle γ increases as the reduction ratio increases
for a given material; the inclination angle γ increases as the angle of internal friction increases for a
given reduction ratio. Figure 7 shows that the minimum die length decreases as the angle of internal
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friction increases. The minimum die length may be a decreasing or non-monotonic function of the
reduction ratio, depending on the angle of internal friction.
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The die’s profile has been calculated for several values of the reduction ratio and the angle of
internal friction. These profiles are depicted in Figure 8a for h0/h = 2, Figure 8b for h0/h = 1.5, and
Figure 8c for h0/h = 1.2. In all cases, the angle of internal friction is in the range 0 ≤ φ ≤ 300.
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The stress field is important for some applications. In contrast to the die profiles above, this field
depends on the process (extrusion or drawing). In particular, σξ = 0 on EBE′ in the case of drawing
and on DAD′ in the case of extrusion. The numerical results presented below are for the extrusion
process. The results for the drawing process can be obtained similarly.

The distribution of pressure, |σn|, over the die affects its wear (see, for example, [29]). Several
distributions are shown in Figure 9a for h0/h = 2, Figure 9b for h0/h = 1.5, and Figure 9c for h0/h = 1.2.
In all cases, the angle of internal friction is in the range 0 ≤ φ ≤ 300. The pressure attains its
maximum value at the entry point (point E in Figure 3), then it decreases to point C monotonically.
The pressure is constant over the straight section of the die (CD in Figure 3).
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(b) h0/h = 1.5; (c) h0/h = 1.2.

The distribution of p affects ductile fracture (see, for example, [30]). A typical example is central
bursting, which can appear at the symmetry axis in extrusion and drawing processes [31]. The effect
of the reduction ratio and the angle of internal friction on the distribution of p along the axis of
symmetry of ideal flow dies is illustrated in Figure 10 (h0/h = 2 in Figure 10a, h0/h = 1.5 in Figure 10b,
and h0/h = 1.2 in Figure 10c). In all cases, the angle of internal friction is in the range 0 ≤ φ ≤ 300.
The value of p decreases with the distance from the entry to the die independently of the process and
material parameters.
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6. Conclusions
The present paper has extended the stationary bulk planar ideal plastic flow theory to the double

slip and rotation model, assuming that the intrinsic spin vanishes. The new theory has been applied
for calculating optimal extrusion and drawing minimum-length die profiles. It has been shown
that the optimal profile depends on the angle of internal friction involved in the Mohr–Coulomb
yield criterion. The double slip and rotation model reduces to the classical metal plasticity model if
the angle of internal friction vanishes. The solution for the latter model has been determined as a
particular case of the general solution.

The solution for the optimal dies consists of three regions. One family of characteristics is
straight in the regions at the entry to and exit from the die. Moreover, the characteristic field is
singular at the exit. This solution feature results from requiring the die to be of minimum length. Both
families of characteristics are curvilinear in the third region. The solution for the radii of curvature of
the characteristic lines in this region is written in terms of Bessel’s functions. A numerical integration
is required for calculating the die’s profile.

Ideal flow solutions are design solutions, and they are not unique. The requirement of minimum
die length allows for uniqueness to be achieved. However, other criteria can also be used. The present
paper has calculated the normal pressure distribution over the die’s surface. This distribution can be
used in conjunction with an empirical equation for predicting the wear of the die. The distribution
of the arithmetic mean of the principal stresses has been determined along the symmetry axis. This
quantity is important for predicting ductile fracture. The wear of the die and ductile fracture can be
used as additional design criteria.
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