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Abstract: The study of analytical solutions for the bearing capacity of reinforced soil foundations is a
very important topic in engineering mathematics. Existing evaluations of the foundation-bearing
capacity on reinforced soils are based on dry conditions, while many foundations are located on
unsaturated soils in real engineering. In this paper, a new formula for the bearing capacity of
reinforced strip footings on unsaturated soils is presented. Two sliding failure mechanisms are
constructed based on the position of the reinforcement layer relative to the sliding surface. The
distribution of apparent cohesion in the depth direction is calculated by considering the effect of
matrix suction. By additionally considering the work conducted by the reinforcement and the
contribution of the apparent cohesion, the bearing capacity formula is obtained using the upper
bound theorem of limit analysis. The bearing capacity solution is obtained by adopting the sequential
quadratic programming (SQP) algorithm. Comparing the results under two failure mechanisms,
the optimal bearing capacity and the optimal embedment depth of reinforcement are obtained.
The results of this paper are consistent with those of the existing literature. Finally, the effects of
reinforcement embedment depth, effective internal friction angle, uniform load, and unsaturated
soil parameters on the optimal bearing capacity are investigated through parametric analysis. This
paper provides useful recommendations for the engineering application of reinforced strip footings
on unsaturated soils.
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1. Introduction

The bearing capacity of the foundation is one of the most critical indicators for as-
sessing its performance. As reinforcement techniques have been widely used to enhance
the bearing capacity of foundations on soft soils, the derivation of the bearing capacity
solution for reinforced soil foundations has become a popular research topic in engineering
mathematics. Existing studies on the above topic are based on dry soils or rocks [1–5]. How-
ever, many foundations are constructed on unsaturated soils in actual engineering [6,7].
Therefore, it is necessary to calculate the bearing capacity of reinforced foundations on
unsaturated soils in order to provide recommendations for foundation design.

Research on the evaluation of the bearing capacity of foundations on reinforced soils
is scarce, and most studies are based on traditional laboratory or field tests. Through
experimental studies, Binquet and Lee [8] first demonstrated the significant enhancement
in the bearing capacity of reinforced sand footings. Huang and Tatsuoka [9] predicted the
variation of the bearing capacity of reinforced sand footings and analyzed the influence
of material parameters and reinforcement arrangement. Subsequently, Das et al. [10] pro-
vided the optimal reinforcement parameters for saturated clays. Compared to the planar
reinforced models, Raja and Shukla [11] pointed out that the wraparound reinforced model
can lead to less foundation settlement and better stability. Some scholars have conducted
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further experimental studies on the properties of reinforced soil foundations [12,13]. For
reinforced soil foundations, the working modes of the reinforcement can be broadly catego-
rized into the following three types: (a) Confinement effect: The frictional internal forces
generated when the reinforcement and soil undergo relative sliding restrict the deforma-
tion of the soil, thereby increasing the bearing capacity of the foundation. Based on the
kinematic approach of limit analysis and multi-block failure mechanisms, Michalowski [1]
provided the variation of the bearing capacity of reinforced soil footings with the depth of
reinforcement embedment. Manna et al. [2] considered a rigid pavement as an equivalent
strip footing and assessed the effect of inclined ground on the bearing capacity of reinforced
rigid pavements. Soufi et al. [3] constructed a new failure mechanism for reinforced soil
foundations under seismic action and assessed the seismic bearing capacity of reinforced
soil footings by adopting a pseudo-static approach. (b) Rigid boundary effect: The rein-
forcement is considered a rigid boundary for soil damage, suppressing the development of
failure mechanisms in the deeper soil and thus enhancing the bearing capacity. Binquet
and Lee [14] observed this phenomenon in experiments. Some researchers have also used
this failure mode when evaluating the bearing capacity of footings on reinforced soils [1,2],
considering both the above-mentioned failure modes and obtaining the optimal bearing
capacity and corresponding optimal reinforcement burial by comparison. (c) Membrane
effect: When the foundation is subjected to loading, the soil moves downward, causing de-
formation of the reinforcement. The deformed reinforcement generates a supportive force,
thereby providing reinforcement. Kumar and Saran [15] proposed an empirical method for
evaluating the bearing capacity of reinforced soil rectangular foundations according to this
failure mode.

With the rapid development of numerical simulation techniques, some scholars have
conducted finite element analyses on reinforced soil foundations [16–18]. Wang et al. [19]
investigated the settlement of reinforced soil foundations using the discrete element method
and visualized the load transfer as well as the spreading behavior of reinforced soil struc-
tures. Based on the three-dimensional discrete element method, Chen et al. [20] further
investigated the intrinsic mechanisms, such as the deformation behavior and response of
geogrids, and studied the influence of reinforcement parameters on foundation settlement.
In addition, Nazeeh and Babu [21] used kriging surrogates to perform a reliability analysis
of geogrid-reinforced soil foundations. In addition, some scholars have investigated the
application of geotechnical seismic isolation (GSI) to different foundations, some of them
using experimental studies [22] and others using finite element analyses [23,24].

However, it has been found that the existing studies on reinforced soil foundations are
based on dry or saturated soils and have certain limitations. Shallow foundations in actual
engineering are generally located on unsaturated soils, and the performance of footings
largely depends on the shear strength of unsaturated soils. Therefore, it is crucial to consider
the effects of unsaturated soil properties in the design of reinforced soil foundations. Such
research can be applied in a variety of directions. For example, Bak et al. [25] studied the
enhancement of foundation bearing capacity by using the Taguchi method, which can be
extended to applications based on unsaturated soils using the ideas in this paper. It can
also be used for foundations near slopes, for foundations on reinforced soil wall structures,
and even for bridge abutment foundations. In addition, the seismic bearing capacity of
reinforced foundations on unsaturated soils can be predicted by considering the seismic
effect. This research topic is especially important for areas with frequent rainfall, so as to
provide some theoretical reference for engineering practice.

Previous literature has shown that matric suction can significantly enhance the shear
strength of unsaturated soils [26]. Compared to foundations on dry or saturated soils, foun-
dations on unsaturated soils have greater bearing capacity because of the matric suction.
When calculating the bearing capacity of footings on unsaturated soils, the modified Terza-
ghi’s formula with the inclusion of matric suction is commonly used. Fredlund et al. [27]
used two independent stress variables to linearly describe the relationship between the
shear strength of unsaturated soils and matric suction. Oloo et al. [28] introduced the above
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equation into Terzaghi’s formula to assess the effect of matric suction on the pavement
structure’s performance. However, experimental studies have shown that there is a sig-
nificant nonlinear connection between matric suction and bearing capacity that does not
follow the assumed linear relationship [29–31]. Therefore, Lu and Likos [32] defined the
suction stress, which consists of matric suction and some other physical and chemical forces,
provided the distribution of suction stress with depth, and analyzed its change with factors
such as different steady-state flows and temperature. Lu et al. [33] gave a new closed-form
equation for the effective stress of unsaturated soils. Subsequently, many scholars have
applied it to the analysis of foundation bearing capacity on unsaturated soils [34–36].

The description of effective stress using two independent variables (net stress and
matric suction) has limitations, including difficulties in describing the changes in strength
and suction and in smoothing the transition between saturated and unsaturated states. Lu
et al. [33] used a single variable to represent effective stress, which also has some drawbacks,
particularly in explaining the wetting process of unsaturated soils. However, Lu et al.’s
equation has a wide range of applications, as it can be used for deformation analysis and
shear strength analysis and can be combined with the limit analysis theorem.

In this paper, a new formula for calculating the bearing capacity solution of reinforced
strip footings on unsaturated soils is proposed. Based on the different working modes of
reinforcement, two multi-block failure mechanisms are constructed. The shear strength of
soils at different depths was calculated using the effective stress equation proposed by Lu
et al. Considering the effect of reinforcement and matric suction, the formulas for bearing
capacity under the two multi-block failure mechanisms are derived using the upper bound
theorem of limit analysis. The upper bound solution of the bearing capacity is obtained
using a sequential quadratic programming (SQP) algorithm. Then, the results of the two
failure mechanisms are compared for different depths of reinforcement embedment to
obtain the optimal embedment depth of reinforcement and the corresponding optimal
bearing capacity. Furthermore, the influences of different parameters on the optimal bearing
capacity of reinforced foundations on unsaturated soils are analyzed.

2. Theoretical Framework
2.1. Upper Bound Theorem of Limit Analysis

The upper bound method can be used in a range of engineering problems [37–41],
including tunnel stability, bearing capacity of foundations, slope stability, et al. The main
idea of the theorem is summarized as follows: for a given kinematically admissible velocity
field, the upper bound solution for the ultimate load can be obtained from the equality of
the work performed by the internal force and the work performed by the external force, as
shown in Equation (1). In this paper, the work conducted by the reinforcement is considered
the work performed by the internal forces.∫

S
TividS +

∫
V

FividV =
∫

V
σijεijdV (1)

where Ti is the surface force, vi is the velocity of the failure mechanism, Fi is the body
force, S and V are the area and volume, respectively, σij means the stress, and εij means the
corresponding plastic strain rate.

2.2. Slide Failure Mode
2.2.1. Symmetric Multi-Block Failure Mechanism

According to previous research [1], it is feasible to research the failure mode of rein-
forced soil footings by using the mechanism properties of unreinforced soil. When the
traditional Prandtl failure mechanism is used, the integral calculation of the work per-
formed by the reinforcement will be very complicated and inefficient, so the symmetric
multi-block failure mechanism is used. Depending on the relative positions of the rein-
forcement and the slide surface, two multi-block failure mechanisms are constructed, as
demonstrated in Figures 1 and 2. The velocity field of the failure mechanism is shown in
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Figure 3. In Figure 1, the right half of the failure mechanism is divided into n pieces of
rigid bodies, except for the ABC rigid body. Therefore, the geometry of the mechanism
is determined by 2n + 1 variables (θ, αi, βi). Eccentricity and inclination of loads are not
considered in this paper, and it is assumed that only vertically concentric loads act on
the foundation.
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The width of the foundation is B0 and the other geometrical dimensions of the mecha-
nism, as well as the magnitude of the velocity vector, can be derived as follows:

Bi =
B0

2 cos θ

i−1

∏
j=1

sin β j

sin
(
αj + β j

) (2)

di =
B0

2 cos θ

sin αi
sin(αi + βi)

i−1

∏
j=1

sin β j

sin
(
αj + β j

) (3)
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v1 = v0
sin
(

π
2 − θ + ϕ′

)
sin(β1 − 2ϕ′)

(4)

vi+1 = vi
sin(π − αi − βi + 2ϕ′)

sin(βi+1 − 2ϕ′)
(5)

vi,i+1 = vi
sin(αi + βi − βi+1)

sin(βi+1 − 2ϕ′)
(6)

where v0 is the velocity of the ABC rigid body, Bi is the length of the velocity discontinuity
line, di is the length of the slide surface of each rigid body, vi is the velocity of the ith block,
and vi,i+1 is the velocity on the velocity discontinuity line.

A key factor in the study of the bearing capacity of footings on reinforced soils is
the identification of the critical failure mechanism. The foundation bearing capacity grad-
ually increases as the embedment depth of reinforcement increases; however, previous
experimental studies [14] have shown that when the reinforcement embedment depth in-
creases in a certain level, the whole mechanism develops above the reinforcement (Figure 2).
Therefore, two multi-block failure mechanisms, M1 and M2, are used in this paper. The
optimal depth of the reinforcement as well as the optimal bearing capacity are obtained by
comparing the results of the bearing capacity under the above two mechanisms.

2.2.2. Work Dissipation Rate of the Reinforcement

The rate of dissipation of internal work per unit width of reinforcement when the
reinforcement slides relative to soils is expressed as follows:

D = 2le(µσn + cint)vh (7)

µ = fb tan ϕ (8)

cint = fcc (9)

where vh means the relative velocity of reinforcement and soil, µ means the friction coeffi-
cient of the reinforcement-soil contact interface, σn means the normal stress on reinforce-
ment, le means the effective length of reinforcement, cint means the interface shear strength,
and both fb and fc mean bond coefficients. According to a previous study [1], both fb and
fc are taken as 0.6.

The key factor in calculating the work dissipation rate of the reinforcement is the
determination of σn. Since the true magnitude of σn is undetectable, a piece-wise linear
distribution of σn is used in this paper as suggested in previous literature [1], as shown in
Figure 4. The stresses on reinforcement below the foundation are calculated by means of an
overall force balance in the vertical direction. The angle δ is indeterminate and takes values
from 0 to π

4 + ϕ
2 . The distribution of σn is influenced by the magnitude of δ. According

to Huang and Tatsuoka [9], a “deep footing effect” occurs when d/B0 = 1, in which case
δ = 0. As the reinforcement gets longer, the angle δ increases. Since the real distribution of
σn is unknown, the analysis in this paper adopts the conservative assumption that δ = 0.
The stress distribution is shown in Figure 5.

The σn on reinforcement is divided into three segments, HK segment: σn = γd + qce,
FG segment: σn = γd + q0, and the normal stress value in the middle part is taken as a
linear interpolation with the following expression:

σn,i = γd + qce

1−
i−1
∑
1

le,i+
i

∑
1

le,i

2d cot(θ)

+ q0

 i−1
∑
1

le,i+
i

∑
1

le,i

2d cot(θ)

 1 ≤ i ≤ k− 1 (10)
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σn,i = γd + qce


(

d cot(θ)−
k−1
∑
1

le,i

)2

2d cot(θ)le,k

+ q0

1−

(
d cot(θ)−

k−1
∑
1

le,i

)2

2d cot(θ)le,k

 i = k (11)

where d is the reinforcement embedment depth, i is the number of the block, k is the
number of the block through which the vertical line through point A (B) passes, and le,i is
the effective length of reinforcement through the ith block. The detailed formulas for le,i are
shown in the Appendix A.
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2.3. Properties of Unsaturated Soils

The assessment of effective stress is crucial to the research of unsaturated soil prop-
erties. Based on previous research [27], Lu and Likos [32] proposed a unified method to
characterize the effective stress, which is described as Equation (12).

σ′ = σ− ua − σs (12)

where σ means the total stress, σs means the suction stress, σ′ means the effective stress,
and ua means the pore air pressure. A positive value of σ′ represents compressive stress. To
characterize the magnitude of the σs, Lu et al. [33] give an equation for its closed solution,
which can be described as follows:

σs = −(ua − uw) (ua − uw) ≤ 0 (13)

σs = − (ua−uw)

{1+[α(ua−uw)]
ψ}(ψ−1)/ψ (ua − uw) > 0 (14)

where ua − uw means the matric suction, uw means the pore water pressure, and α and ψ
are the fitting coefficients of soils. In unsaturated soils, the pore air pressure is not equal
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to the pore water pressure; the shrinkage film (water-air interface) is subjected to an air
pressure that is greater than the water pressure, and this pressure difference is known as
matrix suction. When (ua − uw) ≤ 0, it means that the soil is saturated; on the contrary, the
soil is unsaturated. In addition, there is a range of values for α and ψ. α is taken from 0 to
0.5 and ψ takes values between 1.1 and 8.5.

In this paper, a model of Gardner [42] and Darcy’s law is adopted to characterize the
matrix suction, assuming that (ua − uw) = 0 at z = 0, the formulas for matric suction are
as follows:

k = kseα(ua−uw) (15)

ua − uw = − 1
α

ln
[(

1 +
q
ks

)
e−γwαz − q

ks

]
(16)

where ks and k mean the hydraulic conductivity of saturated and unsaturated soils, respec-
tively, γw means unit weight of water (10 kN/m3), q means the flow rate, and z means
height above the water table. q > 0 indicates infiltration, q < 0 indicates evaporation, and
q = 0 indicates no-flow. Bringing Equation (16) into Equation (14) yields an expression for
the suction stress σs as follows:

σs =
1
α

ln
[(

1 + q
ks

)
e−γwαz − q

ks

]
(

1 +
{
− ln

[(
1 + q

ks

)
e−γwαz − q

ks

]}ψ
)(ψ−1)/ψ

(17)

The cohesion contributed by the suction stress is known as the apparent cohesion,
which is expressed as follows:

capp = −σs tan ϕ′ (18)

Bringing Equation (17) into Equation (18) yields the final expression for capp. The total
cohesion c of the soil can be viewed as consisting of c′ and capp as follows:

c = c′ + capp (19)

3. Materials and Methods
3.1. Selection of Materials

In order to obtain generally applicable conclusions, with reference to Du et al. [35] and
Xu and Zhou [36], four representative unsaturated soils were selected in this paper, and the
values of relevant parameters were taken as shown in Table 1. Besides three values of q were
assigned, q = −3.14× 10−8 means evaporation, q= 0 means no-flow, and q= 1.15× 10−8

means infiltration.
For the reinforcement material, this paper assumes that the reinforcement is strong

enough and that the power due to reinforcement extension is neglected. The reinforcement
is arranged horizontally and symmetrically based on the center of the foundation. Based
on previous experience [1], the total length of the reinforcement is taken as 4B0. In addition,
the default values for the other parameters are used unless noted otherwise, i.e., B0 = 1 m,
ϕ′ = 30◦, q0 = 0 kPa, q = 0 m/s, and Hw = 4B0.

Table 1. Material parameters for four soil types.

Soil Types α (kPa−1) ψ ks (m/s) c
′
(kPa) γ (kN/m3)

Clay 0.005 2 5× 10−8 10 18
Silt 0.01 2 5× 10−7 10 18

Loess 0.025 4 5× 10−6 0 18
Sand 0.1 4 5× 10−5 0 18
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3.2. The Upper Bound Method
3.2.1. Calculation of Internal Power

The internal power of the entire failure mechanism is composed of three parts: the
power D1 of the effective cohesive, the power D2 of the apparent cohesive, and the power
D3 of the reinforcement contributed by the effective cohesive. The total internal power is
expressed as follows:

Dint = 2(D1 + D2 + D3) (20)

The distribution of the effective stress c′ along the vertical direction is constant, so it
can be calculated in the traditional way of internal power calculation. Taking the right half
of the symmetric mechanism as an example, it consists of three components: the power
along the BC line, the power along the Bi, and the power along the sliding surface di. The
sum of the three is expressed as follows:

D1 = c′B0v0( f1 + f2 + f3) (21)

where f1, f2 and f3 are all described in detail in Appendix A, and v0 is the velocity of
block ABC. Since the distribution of apparent cohesion capp along the vertical direction is
nonlinear, the calculation of the power contributed by it requires integration, expressed
as follows:

D2 =
n

∑
i=1

∫ Bi sin
i−1
∑

j=1
(θ+αj)

0

cappvi−1,i cos ϕ′

sin
i−1
∑

j=1

(
θ + αj

) dy +
1
2

n

∑
i=1

(
σs

Ci−1
+ σs

Ci

)
divi sin ϕ′ (22)

where σs
Ci−1

and σs
Ci

mean the suction stress of points Ci−1 and Ci, respectively. The values
of the above two parameters can be calculated by Equation (17). Since the properties of the
reinforcement-soil interface are unknown, the internal power of the reinforcement that may
be contributed by the apparent cohesion is neglected in this paper.

D3 = 2
n

∑
i=1

fcle,ic′vi cos θi (23)

θi = βi − ϕ′ − θ −
i−1

∑
1

αi (24)

where θi means the angle between the velocity of the ith block and the horizontal line.

3.2.2. Calculation of External Power

The power of external forces consists of the power W1 of the foundation load, the
power of W2 the self-weight of the soil, the power W3 of the uniform load, and the power
W4 contributed by the reinforcement. The total external power is expressed as follows:

Wext = W1 + W2 + W3 + 2W4 (25)

The power of the foundation load is expressed as follows:

W1 = qceB0v0 (26)

The power of the self-weight of the soil is expressed as follows:

W2= 0.5γB0
2v0( f4 + f5) (27)

where γ means the unit weight of soils. The power of the uniform load is expressed
as follows:

W3 = q0B0v0 f6 (28)
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where f4, f5 and f6 are all described in detail in the Appendix A. According to Equation (7),
the external power contributed by the reinforcement is expressed as follows:

W4 = 2
n

∑
i=1

µle,iσn,ivi cos θi (29)

3.2.3. Formula of Bearing Capacity

Bringing the above internal and external powers into Equation (30) yields an expres-
sion for the bearing capacity qce. Since the effect of apparent cohesion is considered in this
paper, the bearing capacity formula cannot be written in a superposition form such as the
classical Terzaghi’s formula but can be expressed as a function containing 2n + 1 variables
as follows:

qce = f (αi, βi, θ) (i = 1, 2, 3 · · · n) (30)

Combined with the constraints given in Appendix A, the above function is optimized
using a sequential quadratic programming (SQP) algorithm to obtain an analytical solution
for the bearing capacity. In order to make the structure of this paper clearer, the flowchart
of this study is given in Figure 6.
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4. Validation of Results

Based on the upper bound theorem, an analytical solution formula is given for the
bearing capacity of geotechnical reinforced footings on unsaturated soils. The purpose of
this section is to verify the validity of the results obtained from the above formula.
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4.1. Comparison for Dry Soils without Reinforcement

The first step in optimizing the bearing capacity function is to choose the right number
n of rigid bodies for the failure mechanism. In general, the more the failure mechanism is
divided into blocks, the more accurate the calculations will be. However, considering the
error as well as the efficiency of the calculation, this paper takes n = 15. For the case where
reinforcement as well as seepage are not considered, it takes ϕ = 40◦ and Table 2 demonstrates
the change of the bearing capacity coefficient Nγ with n. As can be seen in Table 2, there
is only a 0.13% decrease in the results for n = 15 compared to the results for n = 14. As n
continues to increase, the change becomes even smaller and essentially negligible.

Table 2. Nγ varies with the number of blocks n for ϕ = 40◦.

n Nγ Reduction (%)

5 543.726
6 171.674 68.43
7 128.795 24.98
8 122.934 4.55
9 121.572 1.11
10 120.993 0.48
11 120.580 0.34
12 120.270 0.26
13 120.032 0.20
14 119.844 0.16
15 119.694 0.13

In addition, the bearing capacity coefficients were compared with those of Soubra [43],
as shown in Table 3. The results of this paper are very close to those of Soubra [43].
Therefore, it is confirmed that the value of n chosen in this paper is reliable.

Table 3. Comparisons of bearing capacity coefficients.

ϕ(◦)
Nγ Nq Nc

Soubra (1999) [42] This Paper Soubra (1999) [42] This Paper Soubra (1999) [42] This Paper

0 - 1.00 1.00 5.15 5.42
5 - 1.57 1.59 6.50 6.70
10 - 2.47 2.50 8.36 8.53
15 1.95 1.94 3.95 3.98 10.99 11.12
20 4.49 4.48 6.41 6.43 14.86 14.93
25 9.81 9.80 10.69 10.69 20.77 20.77
30 21.51 21.49 18.46 18.44 30.24 30.22
35 49.00 48.96 33.44 33.40 46.33 46.28
40 119.84 119.69 64.58 64.48 75.77 75.65
45 326.59 326.05 135.99 135.70 134.99 134.70
50 1042.48 1040.07 322.88 321.90 270.09 269.26

4.2. Comparison for Dry Soils Considering Reinforcement

To verify the validity of the calculations of reinforcement power in this paper, the
results of the bearing capacity of the foundation on dry soils are compared with those of
other literature [1,3,44], as shown in Figure 7. The results of this paper have a similar trend
to those of other literature, i.e., the bearing capacity ratio increases and then decreases with
the increase in the embedment depth of reinforcement. The reinforcement embedment
depth corresponding to the peak of the curve is the optimal embedment depth. Therefore,
the optimal embedment depth is obtained by finding the location where the bearing
capacity is the same under both failure mechanisms, and the optimal bearing capacity can
be obtained by corresponding to the optimal embedment depth. The rising part of the
curve corresponds to M1, and the falling part of the curve corresponds to M2.
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Figure 7. Comparisons of bearing capacity ratios for dry soils compared to the unreinforced case
(q0 = c = 0). (a) ϕ = 30◦, (b) ϕ = 40◦ [1,3,15].

From Figure 7, the curves do not match exactly, which is due to the use of different
analysis methods as well as optimization algorithms. However, the optimal reinforcement
embedment depth as well as the bearing capacity ratios are within a certain range. It con-
firms the accuracy of the reinforcement power calculations in this paper. In the subsequent
analysis, if not specified, the foundation bearing capacity provided in this paper is the
optimal bearing capacity at the optimal embedment depth of the reinforcement.

4.3. Comparison for Unsaturated Soils

Figure 8 illustrates a comparison of the bearing capacity values of the foundation on un-
saturated soils with other literature [34–36], and the values of the parameters are B0 = 1 m,
ϕ′ = 20◦, q0 = 0 kPa, q = 0 m/s, ψ = 1.8, ks = 5× 10−8 m/s, and α = 0.005 kPa−1. The
bearing capacities all show an increasing trend with increasing Hw/B0, and the results
of this paper are very similar to those of Xu and Zhou [36] and smaller than those of
two other studies. When Hw/B0 = 10, the results of this paper are about 43% smaller
than those of Vahedifard and Robinson [34] and about 15.5% smaller than those of Du
et al. [35]. Differences in the results are due to differences in the analytical methods and
in the selection of the failure mechanism. Thus, the comparisons in the above subsections
prove that the analytical method of this paper is reliable and the results are precise.
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5. Parametric Analysis and Discussion

To deeply investigate the influence of reinforcement embedment depth and unsatu-
rated soil properties on the bearing capacity of strip footings, the relevant parameters are
analyzed in this section.

5.1. Effect of d/B0

For the reinforced soil foundation, the most important factor is the embedment depth
of reinforcement, so how to find the corresponding embedment depth of reinforcement
when the bearing capacity is maximized is the focus of this study. As Figure 7 shows the
variation of the qce/qce0 of the foundation on dry soils with d/B0, the optimal embedment
depth is determined by comparing the bearing capacity under both failure mechanisms. In
addition, it can be found that the optimal embedment depth is different at ϕ = 30◦ and
ϕ = 40◦.

Figure 9 illustrates that for four different unsaturated soils, the change of the qce/qce0
of strip footings with d/B0 at different flow rates q. For four unsaturated soils, the optimal
d/B0 are all in the range of 0.49–0.56, which is essentially no difference. For the clay, the
optimal d/B0 increases as the flow rate q increases. However, for the other three types of
soil, q does not affect the value of the optimal d/B0. Although the optimal d/B0 is similar
for the four soils, the bearing capacity ratios qce/qce0 are different, i.e., the enhancing effect
of reinforcement on the qce is different. For the sand, the reinforcement effect is the most
obvious, with a bearing capacity ratio qce/qce0 close to 1.8 when the reinforcement is at the
optimal d/B0. The reason for the above result may be that the qce of foundations on sand
are inherently low.
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Figure 9. The bearing capacity ratio qce/qce0 varies with d/B0 at different q. (a) Clay, (b) Silt, (c) Loess,
(d) Sand.
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Figure 10 illustrates that for the clay, the change in the bearing capacity ratio qce/qce0 of
foundations with d/B0 at different effective internal friction angle ϕ′. In each case of ϕ′, the
trend of qce/qce0 with d/B0 is the same, i.e., it increases and then decreases. However, it can
be found that both qce/qce0 and d/B0 increase as ϕ′ increases. When ϕ′= 40◦, the optimal
reinforcement embedment depth is equal to 0.648B0 and the optimal bearing capacity is
equal to 1.467qce0. Combining the above analyses, the effective angle of internal friction has
an important effect on both the optimal embedment depth and the optimal bearing capacity
ratio, while the type of soil, or effective cohesion, has a greater influence on the optimal
bearing capacity ratio and a smaller effect on the optimal embedment depth. Therefore,
the most important factor for evaluating the bearing capacity of reinforced soil footings is
the selection of the effective angle of internal friction of the soil, while for the reinforced
foundation on unsaturated clay, the flow rate q also has a certain influence.
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By regression analysis of the obtained results, the formulas for the bearing capacity of
four typical unsaturated soils were obtained, as shown in Figure 11. It can be seen from
Figure 11 that these curves fit well with the obtained results and can predict the bearing ca-
pacity of foundations at different burial depths of the reinforcement. The above expressions
are simple in form and easy to apply, and they can provide some benefit to engineering
practice. However, for a detailed analysis, it is also necessary to use Equation (30).

Based on the actual optimization results, Figure 12 depicts the critical failure surfaces
for four soils under the reinforced and unreinforced cases, respectively, with default pa-
rameters. Compared to the unreinforced case, the failure mechanism of the foundation on
reinforced soils continues to develop downwardly, so the bearing capacity is improved.
For the unsaturated sand, the qce of the unreinforced foundation is 211.56 kPa, which is
the smallest compared to the other three unsaturated soils, so its bearing capacity ratio
after reinforcement is the largest, and it also shows that for the foundation on unsaturated
sand, the reinforcement effect is the most significant. In addition, the greater the extent of
the failure mechanism, the greater the bearing capacity. This is the essential reason why
reinforcement measures can increase the bearing capacity of foundations.
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Figure 11. Fitted curves of the bearing capacity for four unsaturated soils. (a) Clay, (b) Silt, (c) Loess,
(d) Sand.
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In order to facilitate the application to engineering practice, Figure 13 gives the range
of embedment depths corresponding to 50% of the maximum increase of qce for the four
types of soils at the default values of the parameters. In addition, the variation of d/B0
with ϕ′ is shown, again confirming the above discussion. The optimal embedment depth
curves are all closer to the upper boundary because the curve (Figure 9) of the change
in qce/qce0 with d/B0 decreases rapidly in the second half of the curve, and therefore the
reinforcement must not be embedded too deep, or the failure mechanism will develop
above the reinforcement.
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5.2. Effect of ϕ′ and q0

In this paper, the effect of effective internal friction angle on the optimal bearing
capacity of reinforced footings on unsaturated soils is investigated, as shown in Figure 14.
For the four unsaturated soils, the optimal bearing capacity qce follows the same trend,
increasing with ϕ′. After ϕ′ is greater than 30◦, the rate of increase of the qce becomes faster.
Therefore, the effective angle of internal friction ϕ′ is an important parameter, both for the
optimal embedment depth and for the optimal bearing capacity. At the same time, the
analysis of the previous section is confirmed.
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Figure 14. The optimal bearing capacity qce varies with ϕ′ for four types of soils.

Figure 15 depicts the variation of the qce with the uniform load q0 for four unsaturated
soils. The values of the other parameters are labeled in the figure. For all four unsaturated
soils, the same trend is demonstrated, with the optimal bearing capacity qce increasing
with q0. For the sand, the optimal bearing capacity qce at q0 = 30 kPa is 236% higher than
that at q0 = 0 kPa. Therefore, the uniform load q0 has an important influence on the qce of
reinforced strip footings on unsaturated soils, and the qce can be improved by increasing
the uniform load q0.
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5.3. Effect of Steady Flow

The purpose of this subsection is to discuss the influence of steady flow effects on the
optimal bearing capacity of reinforced foundations. There are a total of four parameters
that characterize the properties of unsaturated soils, including the flow rate q, the hydraulic
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conductivity ks, and the fitting parameters α and ψ. In addition to the above parameters,
the water table Hw is also an important index.

Figure 16 illustrates the change of the optimal bearing capacity qce with Hw/B0 for
four unsaturated soils at different q. In addition, the qce of the unreinforced case and the
reinforced case for different parameter values are compared. For both clay and silt, the
optimal bearing capacity qce increases with increasing Hw/B0, however, the former grows
linearly and the latter non-linearly. Due to the difference in apparent cohesion, the trend
of the qce of foundations on loess or sand is different from the above. For the loess, the
optimal bearing capacity qce increases and then decreases with increasing Hw/B0, reaching
a peak at Hw/B0 = 4. For the sand, the optimal bearing capacity qce decreases as Hw/B0
increases, and qce decreases more slowly when Hw/B0 is greater than four. Therefore, for
different unsaturated soils, pay close attention to the effects of the water table depth Hw.
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In order to better visualize the pattern of the obtained results, the percentage increase
in bearing capacity is given. For example, for clay, when Hw/B0 increases from 2 to 8, the
optimal bearing capacity increases by about 114% at q = 0. For silt, the optimal bearing
capacity increases by about 96%. For loess, the optimal bearing capacity at Hw/B0 = 4 is
about 45% higher than that at Hw/B0= 2. However, for sand, the optimal bearing capacity
decreases by about 23% when Hw/B0 goes from 2 to 8. The above data shows that for
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different types of unsaturated soils, the effect of Hw/B0 on bearing capacity is different;
therefore, targeted design is needed in actual engineering.

From Figure 16, the flow rate q also influences the optimal bearing capacity, especially
for strip footings on clay. For loess and sand, the influence of the flow rate q on the
optimal bearing capacity is weak. The overall order of magnitude of bearing capacity
is evaporative conditions > no-flow conditions > infiltration conditions. Compared to
the unreinforced condition, the qce of the reinforced strip footings on unsaturated soils is
significantly improved. The optimal bearing capacity curve for the reinforced case follows
the same trend as that for the unreinforced case. In addition, it can be found that when q = 0
and Hw/B0= 2, the optimal bearing capacity is increased by about 38% for all the first three
unsaturated soils compared to the unreinforced case (clay, silt, and loess), while for sand,
the bearing capacity is increased by about 67%. Therefore, the poorer the soil quality, the
greater the enhancement of the bearing capacity of foundations by reinforcement measures.

For the case of B0 = 1 m, ϕ′ = 30◦, c′ = 10 kPa, q0 = 0 kPa, ks = 5× 10−8 m/s,
and q = 0 m/s, Figure 17 gives the trend of the optimal bearing capacity qce with 1/α at
different ψ and Hw/B0. When ψ is constant, the optimal bearing capacity qce increases with
1/α. While for a definite value of 1/α, the optimal bearing capacity qce decreases with
increasing ψ. For different ψ, except for ψ = 1.1, the larger ψ is, the slower the optimal
bearing capacity curve rises. However, for ψ = 1.1, the trend of the optimal bearing capacity
qce is similar for different Hw/B0, which is slowly increasing.
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Figure 17. Variation of the optimal bearing capacity qce with 1/α at different ψ in case of
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When Hw/B0 = 4, as 1/α increases from 1 to 100, the optimal bearing capacity
increases by about 13%, 72%, 76%, 79%, and 80% for ψ = 1.1, ψ= 2.0, ψ= 2.5, ψ= 4.0 and
ψ= 8.5, respectively. It can be found that the percentage increase in the optimal bearing
capacity tends to a certain range as ψ increases. When 1/α = 1, the optimal bearing capacity
at ψ = 1.1 is significantly larger than the result when ψ takes any other value, where the
maximum difference occurs at Hw/B0 = 10. In addition, when 1/α = 1, the optimal
bearing capacity increases continuously as Hw/B0 increases in the case of ψ = 1.1, however,
for the other four cases (ψ= 2.0, 2.5, 4.0, 8.5), the optimal bearing capacity remains almost
constant. However, as 1/α increases, the above situation improves.

From Figure 17, all the curves converge to a certain range as 1/α increases, and the
convergence of the curve becomes slower as Hw/B0 increases. However, the location of the
inflection point of the optimal bearing capacity curve is gradually shifted to the right with
the increase of Hw/B0. In addition, it is to be noted that as Hw/B0 increases, the value of
the qce for the final convergence also increases. Therefore, deep water table Hw contribute
to the qce of reinforced footings on unsaturated soils. Through the above analysis, it can be
known that Hw/B0, 1/α, ψ all have significant influence on the optimal bearing capacity of
reinforced soil foundations, and the values of each parameter should be accurately selected
according to the actual situation during design.

6. Conclusions

In this paper, the analytical solution for the bearing capacity of reinforced strip footings
on unsaturated soils is obtained for the first time. Considering the effect of matrix suction,
the apparent cohesion at different depths is calculated using Lu et al.’s suction stress
formula, thus reflecting the properties of unsaturated soils. Depending on the relative
position of the reinforcement and the slide surface, two failure mechanisms are constructed.
Based on the upper bound theorem of limit analysis and considering the work conducted by
the reinforcement, the bearing capacity formulas under the above two failure mechanisms
are derived, respectively. Each formula includes 2n + 1 variables, which are optimized
by adopting the SQP algorithm to obtain an upper bound solution. Then, compare the
results of the two failure mechanisms to find the optimal bearing capacity of the reinforced
footing on unsaturated soils. The validity of the methodology of this paper is verified by
comparing the results with those of other literature.

To investigate the influence of one-dimensional steady flow on the bearing capacity
of reinforced soil foundations, four typical soils are selected for parametric analysis in
this paper. The research results enhance understanding of reinforced strip foundations on
unsaturated soils, and the work outcomes provided the following results:

(1) Considering both the effect of reinforcement as well as the effect of matrix suction,
analytical expressions for the bearing capacity of reinforced strip footings on unsatu-
rated soils are given in this paper, and results are obtained for four typical unsaturated
soils. In addition, the expressions apply to any unsaturated soil for which the relevant
parameters can be given.

(2) The bearing capacity increases and then decreases with d/B0. In this paper, for four
types of soils, the range of reinforcement embedment depth at 50% of the maximum
increase in bearing capacity is given, as shown in Figure 12, which can be used in
engineering practice.

(3) The optimal bearing capacity qce increases with a uniform load q0. For sand, the
optimal bearing capacity is increased by about 236% when q0 is increased from 0
to 30 kPa. For loess, the optimal bearing capacity is increased by about 93%. And
because the clay is similar to the silt, the optimal bearing capacity is increased by
about 57%.

(4) For all four types of soils, the optimal bearing capacity qce increases with the effective
internal friction angle ϕ′. In addition, the effective internal friction angle ϕ′ signif-
icantly affects the optimal embedment depth d of the reinforcement as well as the
optimal bearing capacity ratio qce/qce0.
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(5) Compared to the no-flow case (q = 0 m/s), the evaporation case (q > 0 m/s) increases
the optimal bearing capacity and the infiltration case (q < 0 m/s) decreases the
optimal bearing capacity. The order of degree of influence of flow rate q on the four
unsaturated soils is as follows: Clay > Silt > Loess > Sand. In addition, for the clay,
the optimal d/B0 increases as the flow rate q increases.

(6) For clay and silt, the optimal bearing capacity qce increases with an increasing water
table Hw. On the contrary, for the sand, the optimal qce decreases with increasing Hw.
However, for the loess, the optimal qce increases and then decreases, and the optimal
bearing capacity is maximized when Hw/B0 = 4.

(7) For different values of ψ, the qce increases with 1/α and eventually converges to a
certain range. In addition, the larger ψ is, the more slowly the optimal bearing capacity
curve rises. For example, when Hw/B0 = 4 and ψ = 8.5, the optimal bearing capacity
increases by about 80% when 1/α goes from 1 to 100.

This paper gives a theoretical basis for the calculation of the bearing capacity of
reinforced strip footings on unsaturated soils; however, there are some limitations. The
paper assumes that the strength of the reinforcement is adequate and mainly investigates
the sliding failure mode without considering the effect of reinforcement rupture. This
direction should be explored in future work. In future work, some mathematical modeling
and optimization methods should also be used to deal with the data [45,46], which will
lead to a deeper understanding of the intrinsic connection between variables and results.
In addition, the work can be further extended by, for example, considering seismic effects,
layered soils, nonlinear failure criteria of soils, and transient flow.
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Appendix A

f1 =
cos ϕ′ cos(β1 − θ − ϕ′)

2 cos θ sin(β1 − 2ϕ′)
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f6 =
cos(θ − ϕ′)

cos θ sin(β1 − 2ϕ′)

sin βn

sin(αn + βn)
sin

(
βn − θ − ϕ′ −

n−1

∑
j=1

αj

)
·

n−1

∏
j=1

sin β j sin
(
αj + β j − 2ϕ′

)
sin
(
αj + β j

)
sin
(

β j+1 − 2ϕ′
)

Effective embedded length of reinforcement le,i:

le,i = d
(

cot
(

θ +
i−1
∑
1

αi

)
− cot

(
θ +

i
∑
1

αi

))
1 ≤ i ≤ n− 1

le,n= min
{

B(n) sin βn
sin(αn+βn)

− d(cot αn − cot(αn + βn)), 1.5B0 − d cot(αn)

}
i = n

Constraints:
0 < αi < π/2

0 < βi < π

αi + βi ≥ βi+1
θ + α1 + α2 + · · ·+ αn = π

hmax ≤ d(M2)

where hmax means the maximum depth of the failure mechanism (M2).
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