Bivariate Unit-Weibull Distribution: Properties and Inference
Abstract
:1. Introduction
2. Bivariate Unit-Weibull Distribution
- 1.
- for
- 2.
- The pdf of , given , is
- 3.
- The pdf of , given , is
- 4.
- The cdf , given , is
2.1. Generating Random Variables
- From a uniform distribution, generate and independently of each other.
- Let .
- Allow to determine through numerical simulation.
- Repeat Steps 1 to 3 n times to get the result , .
2.2. Product Moments
2.3. Correlation Coefficient
2.4. Reliability Function
3. Statistical Inference for the BUW Distribution
3.1. Maximum Likelihood Estimation (MLE)
3.2. Information Matrix
3.3. Estimation by Inference Functions for Margins (IFM)
4. Monte Carlo Simulation Study
- Scenario 1: .
- Scenario 2: .
- Scenario 3: .
- Scenario 4: .
- Scenario 5: .
- Scenario 6: .
5. Illustration
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Elements of the Observed Information Matrix
Appendix B. Simulation Tables
Scenario 1 | MLE Method | IFM Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QM | |||||||||||
30 | Bias | 0.0405 | 0.1680 | 0.0048 | 0.0845 | −0.0647 | 0.0408 | 0.1676 | 0.0044 | 0.0854 | −0.0701 |
MSE | 0.0907 | 0.3265 | 0.0168 | 0.1211 | 0.1956 | 0.0910 | 0.3229 | 0.0166 | 0.1195 | 0.2005 | |
CIL | 1.1173 | 2.0657 | 0.4760 | 1.1742 | 2.0777 | 1.1157 | 2.0645 | 0.4749 | 1.1736 | 2.0586 | |
ICR | 0.9549 | 0.9542 | 0.9246 | 0.9386 | 0.9689 | 0.9573 | 0.9542 | 0.9245 | 0.9390 | 0.9741 | |
50 | Bias | 0.0235 | 0.0906 | 0.0029 | 0.0543 | −0.0320 | 0.0248 | 0.0926 | 0.0029 | 0.0543 | −0.0342 |
MSE | 0.0482 | 0.1672 | 0.0097 | 0.0617 | 0.1535 | 0.0489 | 0.1682 | 0.0097 | 0.0614 | 0.1558 | |
CIL | 0.8501 | 1.5614 | 0.3678 | 0.8916 | 1.6133 | 0.8508 | 1.5624 | 0.3678 | 0.8917 | 1.6055 | |
ICR | 0.9550 | 0.9543 | 0.9331 | 0.9338 | 0.9451 | 0.9533 | 0.9533 | 0.9331 | 0.9393 | 0.9428 | |
75 | Bias | 0.0189 | 0.0551 | 0.0048 | 0.0296 | −0.0181 | 0.0197 | 0.0552 | 0.0048 | 0.0296 | −0.0206 |
MSE | 0.0323 | 0.1062 | 0.0063 | 0.0375 | 0.1121 | 0.0326 | 0.1067 | 0.0062 | 0.0373 | 0.1113 | |
CIL | 0.6904 | 1.2591 | 0.3011 | 0.7176 | 1.3245 | 0.6909 | 1.2596 | 0.3013 | 0.7177 | 1.3186 | |
ICR | 0.9448 | 0.9550 | 0.9373 | 0.9366 | 0.9441 | 0.9455 | 0.9544 | 0.9408 | 0.9374 | 0.9415 | |
100 | Bias | 0.0119 | 0.0405 | 0.0026 | 0.0222 | −0.0154 | 0.0123 | 0.0400 | 0.0029 | 0.0219 | −0.0166 |
MSE | 0.0239 | 0.0808 | 0.0047 | 0.0260 | 0.0869 | 0.0239 | 0.0808 | 0.0047 | 0.0259 | 0.0859 | |
CIL | 0.5944 | 1.0851 | 0.2601 | 0.6189 | 1.1532 | 0.5948 | 1.0853 | 0.2604 | 0.6190 | 1.1485 | |
ICR | 0.9477 | 0.9510 | 0.9403 | 0.9544 | 0.9477 | 0.9450 | 0.9490 | 0.9389 | 0.9537 | 0.9477 | |
200 | Bias | 0.0079 | 0.0258 | 0.0008 | 0.0083 | −0.0007 | 0.0080 | 0.0258 | 0.0009 | 0.0081 | −0.0013 |
MSE | 0.0119 | 0.0383 | 0.0022 | 0.0125 | 0.0439 | 0.0119 | 0.0383 | 0.0022 | 0.0125 | 0.0437 | |
CIL | 0.4184 | 0.7630 | 0.1836 | 0.4342 | 0.8182 | 0.4187 | 0.7633 | 0.1838 | 0.4343 | 0.8160 | |
ICR | 0.9467 | 0.9533 | 0.9453 | 0.9540 | 0.9393 | 0.9473 | 0.9527 | 0.9467 | 0.9527 | 0.9387 | |
500 | Bias | 0.0025 | 0.0063 | −0.0008 | 0.0062 | −0.0010 | 0.0025 | 0.0062 | −0.0008 | 0.0061 | −0.0012 |
MSE | 0.0044 | 0.0146 | 0.0009 | 0.0052 | 0.0172 | 0.0044 | 0.0146 | 0.0009 | 0.0052 | 0.0172 | |
CIL | 0.2634 | 0.4794 | 0.1160 | 0.2743 | 0.5192 | 0.2636 | 0.4796 | 0.1160 | 0.2744 | 0.5183 | |
ICR | 0.9507 | 0.9547 | 0.9467 | 0.9427 | 0.9547 | 0.9513 | 0.9527 | 0.9480 | 0.9420 | 0.9540 | |
Scenario 2 | |||||||||||
30 | Bias | 0.0593 | 0.1801 | 0.0029 | 0.0908 | −0.2892 | 0.0625 | 0.1920 | 0.0034 | 0.0916 | −0.2993 |
MSE | 0.0997 | 0.3186 | 0.0159 | 0.1133 | 0.2248 | 0.1049 | 0.3375 | 0.0165 | 0.1185 | 0.2341 | |
CIL | 1.1301 | 2.0703 | 0.4740 | 1.1771 | 1.9724 | 1.1329 | 2.0781 | 0.4744 | 1.1778 | 2.0189 | |
ICR | 0.9568 | 0.9568 | 0.9290 | 0.9424 | 0.9302 | 0.9557 | 0.9547 | 0.9241 | 0.9389 | 0.9505 | |
50 | Bias | 0.0291 | 0.1007 | 0.0012 | 0.0637 | −0.1823 | 0.0263 | 0.1021 | 0.0006 | 0.0637 | −0.1826 |
MSE | 0.0495 | 0.1678 | 0.0093 | 0.0644 | 0.1246 | 0.0495 | 0.1703 | 0.0094 | 0.0651 | 0.1251 | |
CIL | 0.8510 | 1.5651 | 0.3658 | 0.8948 | 1.5255 | 0.8517 | 1.5682 | 0.3669 | 0.8962 | 1.5299 | |
ICR | 0.9545 | 0.9516 | 0.9370 | 0.9302 | 0.9486 | 0.9536 | 0.9536 | 0.9366 | 0.9290 | 0.9612 | |
75 | Bias | 0.0229 | 0.0679 | 0.0026 | 0.0417 | −0.1263 | 0.0238 | 0.0673 | 0.0030 | 0.0404 | −0.1264 |
MSE | 0.0321 | 0.1070 | 0.0060 | 0.0378 | 0.0777 | 0.0326 | 0.1077 | 0.0061 | 0.0381 | 0.0783 | |
CIL | 0.6900 | 1.2622 | 0.2990 | 0.7203 | 1.2294 | 0.6927 | 1.2644 | 0.3006 | 0.7215 | 1.2356 | |
ICR | 0.9486 | 0.9593 | 0.9398 | 0.9486 | 0.9575 | 0.9477 | 0.9582 | 0.9425 | 0.9442 | 0.9747 | |
100 | Bias | 0.0172 | 0.0522 | 0.0015 | 0.0302 | −0.1007 | 0.0172 | 0.0523 | 0.0015 | 0.0297 | −0.1016 |
MSE | 0.0240 | 0.0827 | 0.0047 | 0.0266 | 0.0576 | 0.0243 | 0.0830 | 0.0047 | 0.0266 | 0.0575 | |
CIL | 0.5946 | 1.0875 | 0.2586 | 0.6200 | 1.0706 | 0.5967 | 1.0897 | 0.2599 | 0.6211 | 1.0661 | |
TCR | 0.9452 | 0.9486 | 0.9351 | 0.9503 | 0.9646 | 0.9432 | 0.9491 | 0.9307 | 0.9524 | 0.9766 | |
200 | Bias | 0.0095 | 0.0325 | 0.0004 | 0.0101 | −0.0368 | 0.0102 | 0.0313 | 0.0005 | 0.0099 | −0.0363 |
MSE | 0.0120 | 0.0391 | 0.0022 | 0.0126 | 0.0277 | 0.0122 | 0.0390 | 0.0022 | 0.0126 | 0.0278 | |
CIL | 0.4169 | 0.7626 | 0.1823 | 0.4334 | 0.7398 | 0.4193 | 0.7647 | 0.1837 | 0.4347 | 0.7382 | |
ICR | 0.9463 | 0.9553 | 0.9433 | 0.9530 | 0.9605 | 0.9453 | 0.9542 | 0.9424 | 0.9549 | 0.9749 | |
500 | Bias | 0.0023 | 0.0078 | −0.0009 | 0.0063 | −0.0068 | 0.0026 | 0.0070 | −0.0008 | 0.0061 | −0.0052 |
MSE | 0.0044 | 0.0145 | 0.0009 | 0.0052 | 0.0125 | 0.0044 | 0.0147 | 0.0009 | 0.0052 | 0.0129 | |
CIL | 0.2619 | 0.4782 | 0.1151 | 0.2735 | 0.4667 | 0.2636 | 0.4797 | 0.1160 | 0.2744 | 0.4621 | |
TCR | 0.9563 | 0.9549 | 0.9494 | 0.9460 | 0.9706 | 0.9506 | 0.9526 | 0.9438 | 0.9445 | 0.9675 |
Scenario 3 | MLE Method | IFM Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QM | |||||||||||
30 | Bias | 0.0374 | 0.1699 | 0.0068 | 0.0826 | 0.0878 | 0.0429 | 0.1724 | 0.0074 | 0.0821 | 0.0927 |
MSE | 0.0868 | 0.3288 | 0.0167 | 0.1187 | 0.2061 | 0.0940 | 0.3299 | 0.0168 | 0.1182 | 0.2156 | |
CIL | 1.1148 | 2.0670 | 0.4777 | 1.1732 | 2.0815 | 1.1176 | 2.0667 | 0.4767 | 1.1715 | 2.0661 | |
ICR | 0.9527 | 0.9566 | 0.9310 | 0.9380 | 0.9744 | 0.9533 | 0.9563 | 0.9337 | 0.9352 | 0.9721 | |
50 | Bias | 0.0225 | 0.0900 | 0.0043 | 0.0517 | 0.0400 | 0.0214 | 0.0903 | 0.0047 | 0.0511 | 0.0450 |
MSE | 0.0487 | 0.1688 | 0.0099 | 0.0602 | 0.1509 | 0.0486 | 0.1682 | 0.0098 | 0.0598 | 0.1514 | |
CIL | 0.8496 | 1.5605 | 0.3685 | 0.8906 | 1.6170 | 0.8489 | 1.5606 | 0.3686 | 0.8904 | 1.6097 | |
ICR | 0.9532 | 0.9546 | 0.9362 | 0.9376 | 0.9489 | 0.9519 | 0.9534 | 0.9385 | 0.9350 | 0.9519 | |
75 | Bias | 0.0175 | 0.0519 | 0.0045 | 0.0300 | 0.0158 | 0.0176 | 0.0518 | 0.0044 | 0.0303 | 0.0138 |
MSE | 0.0328 | 0.1063 | 0.0063 | 0.0370 | 0.1133 | 0.0326 | 0.1062 | 0.0062 | 0.0370 | 0.1136 | |
CIL | 0.6896 | 1.2578 | 0.3009 | 0.7181 | 1.3217 | 0.6899 | 1.2582 | 0.3011 | 0.7184 | 1.3177 | |
ICR | 0.9420 | 0.9556 | 0.9413 | 0.9365 | 0.9427 | 0.9450 | 0.9552 | 0.9409 | 0.9382 | 0.9402 | |
100 | Bias | 0.0114 | 0.0393 | 0.0031 | 0.0214 | −0.0051 | 0.0113 | 0.0392 | 0.0031 | 0.0212 | −0.0044 |
MSE | 0.0239 | 0.0807 | 0.0047 | 0.0257 | 0.0850 | 0.0238 | 0.0809 | 0.0047 | 0.0258 | 0.0844 | |
CIL | 0.5940 | 1.0847 | 0.2603 | 0.6189 | 1.1487 | 0.5943 | 1.0851 | 0.2605 | 0.6191 | 1.1441 | |
ICR | 0.9489 | 0.9482 | 0.9408 | 0.9509 | 0.9509 | 0.9456 | 0.9489 | 0.9415 | 0.9489 | 0.9469 | |
200 | Bias | 0.0079 | 0.0258 | 0.0010 | 0.0082 | −0.0005 | 0.0080 | 0.0258 | 0.0009 | 0.0083 | 0.0001 |
MSE | 0.0119 | 0.0383 | 0.0022 | 0.0124 | 0.0446 | 0.0119 | 0.0383 | 0.0022 | 0.0124 | 0.0444 | |
CIL | 0.4184 | 0.7630 | 0.1837 | 0.4342 | 0.8182 | 0.4187 | 0.7633 | 0.1838 | 0.4344 | 0.8158 | |
ICR | 0.9493 | 0.9513 | 0.9507 | 0.9507 | 0.9407 | 0.9473 | 0.9527 | 0.9540 | 0.9527 | 0.9400 | |
500 | Bias | 0.0025 | 0.0062 | −0.0008 | 0.0060 | −0.0013 | 0.0025 | 0.0062 | −0.0008 | 0.0061 | −0.0011 |
MSE | 0.0044 | 0.0146 | 0.0009 | 0.0051 | 0.0173 | 0.0044 | 0.0146 | 0.0009 | 0.0051 | 0.0172 | |
CIL | 0.2634 | 0.4794 | 0.1160 | 0.2743 | 0.5193 | 0.2636 | 0.4796 | 0.1160 | 0.2744 | 0.5184 | |
ICR | 0.9513 | 0.9540 | 0.9507 | 0.9447 | 0.9573 | 0.9513 | 0.9527 | 0.9513 | 0.9447 | 0.9573 | |
Scenario 4 | |||||||||||
30 | Bias | 0.0402 | 0.1742 | 0.0083 | 0.0899 | 0.2911 | 0.0463 | 0.1864 | 0.0093 | 0.0926 | 0.2995 |
MSE | 0.0844 | 0.3241 | 0.0166 | 0.1144 | 0.2160 | 0.0988 | 0.3481 | 0.0172 | 0.1169 | 0.2258 | |
CIL | 1.1148 | 2.0707 | 0.4777 | 1.1762 | 1.9978 | 1.1207 | 2.0754 | 0.4778 | 1.1774 | 2.0209 | |
ICR | 0.9588 | 0.9631 | 0.9262 | 0.9360 | 0.9393 | 0.9508 | 0.9559 | 0.9231 | 0.9364 | 0.9579 | |
50 | Bias | 0.0235 | 0.1047 | 0.0044 | 0.0544 | 0.1941 | 0.0271 | 0.1017 | 0.0049 | 0.0550 | 0.1966 |
MSE | 0.0496 | 0.1712 | 0.0099 | 0.0591 | 0.1292 | 0.0515 | 0.1708 | 0.0103 | 0.0603 | 0.1295 | |
CIL | 0.8488 | 1.5659 | 0.3677 | 0.8918 | 1.5209 | 0.8523 | 1.5661 | 0.3687 | 0.8926 | 1.5376 | |
ICR | 0.9553 | 0.9553 | 0.9329 | 0.9377 | 0.9436 | 0.9478 | 0.9573 | 0.9307 | 0.9402 | 0.9658 | |
75 | Bias | 0.0167 | 0.0658 | 0.0027 | 0.0365 | 0.1315 | 0.0198 | 0.0598 | 0.0021 | 0.0373 | 0.1324 |
MSE | 0.0325 | 0.1136 | 0.0060 | 0.0379 | 0.0813 | 0.0329 | 0.1130 | 0.0061 | 0.0381 | 0.0809 | |
CIL | 0.6872 | 1.2606 | 0.2992 | 0.7198 | 1.2148 | 0.6910 | 1.2610 | 0.3003 | 0.7215 | 1.2337 | |
ICR | 0.9400 | 0.9472 | 0.9463 | 0.9418 | 0.9346 | 0.9435 | 0.9496 | 0.9426 | 0.9417 | 0.9664 | |
100 | Bias | 0.0114 | 0.0495 | 0.0025 | 0.0245 | 0.0905 | 0.0104 | 0.0495 | 0.0016 | 0.0261 | 0.0895 |
MSE | 0.0238 | 0.0842 | 0.0045 | 0.0250 | 0.0544 | 0.0238 | 0.0850 | 0.0045 | 0.0253 | 0.0543 | |
CIL | 0.5918 | 1.0856 | 0.2588 | 0.6192 | 1.0481 | 0.5940 | 1.0885 | 0.2601 | 0.6213 | 1.0537 | |
ICR | 0.9503 | 0.9435 | 0.9409 | 0.9572 | 0.9563 | 0.9452 | 0.9427 | 0.9435 | 0.9536 | 0.9755 | |
200 | Bias | 0.0084 | 0.0297 | 0.0013 | 0.0100 | 0.0387 | 0.0089 | 0.0287 | 0.0011 | 0.0100 | 0.0399 |
MSE | 0.0120 | 0.0386 | 0.0022 | 0.0125 | 0.0285 | 0.0120 | 0.0383 | 0.0022 | 0.0125 | 0.0285 | |
CIL | 0.4166 | 0.7617 | 0.1825 | 0.4337 | 0.7375 | 0.4189 | 0.7638 | 0.1839 | 0.4350 | 0.7376 | |
ICR | 0.9482 | 0.9512 | 0.9497 | 0.9474 | 0.9684 | 0.9461 | 0.9528 | 0.9506 | 0.9513 | 0.9813 | |
500 | Bias | 0.0024 | 0.0071 | −0.0008 | 0.0063 | 0.0040 | 0.0023 | 0.0069 | −0.0007 | 0.0061 | 0.0036 |
MSE | 0.0044 | 0.0147 | 0.0009 | 0.0051 | 0.0127 | 0.0044 | 0.0148 | 0.0009 | 0.0051 | 0.0129 | |
CIL | 0.2619 | 0.4781 | 0.1151 | 0.2735 | 0.4650 | 0.2635 | 0.4797 | 0.1161 | 0.2744 | 0.4621 | |
ICR | 0.9526 | 0.9560 | 0.9464 | 0.9444 | 0.9547 | 0.9517 | 0.9523 | 0.9510 | 0.9462 | 0.9598 |
Scenario 5 | MLE Method | IFM Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QM | |||||||||||
30 | Bias | 0.1408 | 0.0687 | 0.0665 | 0.0435 | −0.0683 | 0.1419 | 0.0716 | 0.0653 | 0.0424 | −0.0720 |
MSE | 0.3577 | 0.0572 | 0.1152 | 0.0302 | 0.1945 | 0.3623 | 0.0592 | 0.1125 | 0.0299 | 0.1997 | |
CIL | 2.0970 | 0.8835 | 1.1390 | 0.5880 | 2.0834 | 2.0962 | 0.8848 | 1.1362 | 0.5866 | 2.0627 | |
ICR | 0.9664 | 0.9578 | 0.9445 | 0.9391 | 0.9766 | 0.9633 | 0.9541 | 0.9442 | 0.9388 | 0.9755 | |
50 | Bias | 0.0780 | 0.0391 | 0.0420 | 0.0274 | −0.0310 | 0.0804 | 0.0397 | 0.0429 | 0.0271 | −0.0353 |
MSE | 0.1716 | 0.0309 | 0.0613 | 0.0155 | 0.1540 | 0.1740 | 0.0309 | 0.0611 | 0.0154 | 0.1553 | |
CIL | 1.5612 | 0.6693 | 0.8616 | 0.4460 | 1.6160 | 1.5625 | 0.6696 | 0.8620 | 0.4458 | 1.6061 | |
ICR | 0.9592 | 0.9529 | 0.9424 | 0.9339 | 0.9487 | 0.9588 | 0.9532 | 0.9455 | 0.9392 | 0.9441 | |
75 | Bias | 0.0552 | 0.0239 | 0.0313 | 0.0149 | −0.0176 | 0.0559 | 0.0237 | 0.0319 | 0.0148 | −0.0206 |
MSE | 0.1094 | 0.0197 | 0.0370 | 0.0094 | 0.1123 | 0.1101 | 0.0196 | 0.0370 | 0.0093 | 0.1113 | |
CIL | 1.2555 | 0.5397 | 0.6963 | 0.3588 | 1.3253 | 1.2558 | 0.5398 | 0.6967 | 0.3589 | 1.3186 | |
ICR | 0.9632 | 0.9537 | 0.9469 | 0.9367 | 0.9442 | 0.9592 | 0.9544 | 0.9462 | 0.9374 | 0.9415 | |
100 | Bias | 0.0367 | 0.0174 | 0.0206 | 0.0110 | −0.0149 | 0.0374 | 0.0172 | 0.0212 | 0.0109 | −0.0166 |
MSE | 0.0800 | 0.0148 | 0.0268 | 0.0065 | 0.0872 | 0.0803 | 0.0148 | 0.0267 | 0.0065 | 0.0859 | |
CIL | 1.0753 | 0.4651 | 0.5980 | 0.3094 | 1.1532 | 1.0757 | 0.4651 | 0.5984 | 0.3095 | 1.1484 | |
ICR | 0.9631 | 0.9510 | 0.9370 | 0.9544 | 0.9484 | 0.9624 | 0.9490 | 0.9362 | 0.9537 | 0.9477 | |
200 | Bias | 0.0237 | 0.0111 | 0.0065 | 0.0041 | −0.0012 | 0.0238 | 0.0110 | 0.0065 | 0.0041 | −0.0013 |
MSE | 0.0393 | 0.0070 | 0.0118 | 0.0031 | 0.0436 | 0.0393 | 0.0070 | 0.0118 | 0.0031 | 0.0437 | |
CIL | 0.7532 | 0.3270 | 0.4180 | 0.2171 | 0.8183 | 0.7535 | 0.3271 | 0.4183 | 0.2172 | 0.8160 | |
ICR | 0.9453 | 0.9533 | 0.9460 | 0.9540 | 0.9400 | 0.9480 | 0.9527 | 0.9487 | 0.9527 | 0.9387 | |
500 | Bias | 0.0069 | 0.0027 | 0.0015 | 0.0031 | −0.0010 | 0.0069 | 0.0027 | 0.0015 | 0.0031 | −0.0012 |
MSE | 0.0147 | 0.0027 | 0.0046 | 0.0013 | 0.0172 | 0.0147 | 0.0027 | 0.0046 | 0.0013 | 0.0172 | |
CIL | 0.4716 | 0.2055 | 0.2633 | 0.1372 | 0.5192 | 0.4717 | 0.2055 | 0.2634 | 0.1372 | 0.5183 | |
ICR | 0.9533 | 0.9547 | 0.9507 | 0.9427 | 0.9547 | 0.9533 | 0.9527 | 0.9493 | 0.9420 | 0.9533 | |
Scenario 6 | |||||||||||
30 | Bias | 0.1775 | 0.0747 | 0.0646 | 0.0428 | −0.2893 | 0.1901 | 0.0834 | 0.0664 | 0.0470 | −0.2994 |
MSE | 0.3854 | 0.0579 | 0.1121 | 0.0281 | 0.2221 | 0.4210 | 0.0615 | 0.1114 | 0.0298 | 0.2341 | |
CIL | 2.1327 | 0.8858 | 1.1364 | 0.5872 | 2.0001 | 2.1476 | 0.8912 | 1.1369 | 0.5895 | 2.0130 | |
ICR | 0.9701 | 0.9590 | 0.9369 | 0.9435 | 0.9391 | 0.9684 | 0.9568 | 0.9399 | 0.9389 | 0.9515 | |
50 | Bias | 0.0854 | 0.0433 | 0.0442 | 0.0308 | −0.1791 | 0.0858 | 0.0435 | 0.0437 | 0.0320 | −0.1838 |
MSE | 0.1687 | 0.0306 | 0.0552 | 0.0157 | 0.1200 | 0.1726 | 0.0312 | 0.0559 | 0.0162 | 0.1253 | |
CIL | 1.5643 | 0.6708 | 0.8600 | 0.4471 | 1.5351 | 1.5669 | 0.6721 | 0.8619 | 0.4482 | 1.5338 | |
ICR | 0.9639 | 0.9513 | 0.9561 | 0.9318 | 0.9581 | 0.9630 | 0.9526 | 0.9554 | 0.9298 | 0.9649 | |
75 | Bias | 0.0669 | 0.0297 | 0.0356 | 0.0200 | −0.1269 | 0.0672 | 0.0288 | 0.0359 | 0.0202 | −0.1264 |
MSE | 0.1082 | 0.0197 | 0.0365 | 0.0095 | 0.0776 | 0.1091 | 0.0198 | 0.0366 | 0.0095 | 0.0783 | |
CIL | 1.2607 | 0.5412 | 0.6959 | 0.3600 | 1.2439 | 1.2628 | 0.5419 | 0.6984 | 0.3607 | 1.2354 | |
ICR | 0.9654 | 0.9592 | 0.9504 | 0.9459 | 0.9690 | 0.9616 | 0.9582 | 0.9538 | 0.9442 | 0.9738 | |
100 | Bias | 0.0486 | 0.0223 | 0.0244 | 0.0150 | −0.0983 | 0.0500 | 0.0224 | 0.0234 | 0.0148 | −0.1014 |
MSE | 0.0807 | 0.0153 | 0.0266 | 0.0067 | 0.0576 | 0.0823 | 0.0152 | 0.0268 | 0.0066 | 0.0575 | |
CIL | 1.0801 | 0.4660 | 0.5972 | 0.3100 | 1.0676 | 1.0827 | 0.4670 | 0.5992 | 0.3106 | 1.0655 | |
ICR | 0.9582 | 0.9465 | 0.9406 | 0.9498 | 0.9632 | 0.9608 | 0.9491 | 0.9391 | 0.9525 | 0.9750 | |
200 | Bias | 0.0307 | 0.0139 | 0.0068 | 0.0049 | −0.0361 | 0.0294 | 0.0134 | 0.0071 | 0.0048 | −0.0359 |
MSE | 0.0402 | 0.0072 | 0.0118 | 0.0032 | 0.0277 | 0.0402 | 0.0072 | 0.0119 | 0.0031 | 0.0278 | |
CIL | 0.7541 | 0.3268 | 0.4160 | 0.2167 | 0.7413 | 0.7557 | 0.3277 | 0.4184 | 0.2173 | 0.7375 | |
ICR | 0.9480 | 0.9554 | 0.9546 | 0.9524 | 0.9673 | 0.9454 | 0.9543 | 0.9550 | 0.9550 | 0.9742 | |
500 | Bias | 0.0070 | 0.0033 | 0.0011 | 0.0030 | −0.0059 | 0.0073 | 0.0029 | 0.0014 | 0.0030 | −0.0051 |
MSE | 0.0147 | 0.0027 | 0.0045 | 0.0013 | 0.0126 | 0.0147 | 0.0027 | 0.0046 | 0.0013 | 0.0129 | |
CIL | 0.4702 | 0.2049 | 0.2617 | 0.1367 | 0.4666 | 0.4718 | 0.2056 | 0.2634 | 0.1372 | 0.4620 | |
ICR | 0.9544 | 0.9558 | 0.9483 | 0.9455 | 0.9741 | 0.9527 | 0.9520 | 0.9466 | 0.9446 | 0.9655 |
References
- Ferrari, S.; Cribari-Neto, F. Beta regression for modelling rates and proportions. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Branscum, A.J.; Johnson, W.O.; Thurmond, M.C. Bayesian beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth diseases viruses. Aust. N. Z. J. Stat. 2007, 49, 287–301. [Google Scholar] [CrossRef]
- Ospina, R.; Ferrari, S.L.P. Inflated beta distribution. Stat. Pap. 2010, 51, 111–126. [Google Scholar] [CrossRef]
- Ospina, R.; Ferrari, S.L.P. A general class of zero-or-one inflated beta regression models. Comput. Stat. Data Anal. 2012, 56, 1609–1623. [Google Scholar] [CrossRef]
- Paolino, P. Maximum likelihood estimation of models with beta-distributed dependent variables. Political Anal. 2001, 9, 325–346. [Google Scholar] [CrossRef]
- Cribari-Neto, F.; Vasconcellos, K.L.P. Nearly unbiased maximum likelhood estimation for the beta distribution. J. Stat. Comput. Simul. 2002, 72, 107–118. [Google Scholar] [CrossRef]
- Kieschnick, R.; Mccullough, B.D. Regression analysis of variates observed on (0, 1). Stat. Model. 2003, 3, 193–213. [Google Scholar] [CrossRef]
- Vasconcellos, K.L.P.; Cribari-Neto, F. Improved maximum likelihood estimation in a new class of beta regression models. Braz. J. Probab. Stat. 2005, 19, 13–31. [Google Scholar]
- Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. Power-models for proportions with zero/one excess. Appl. Math. Inf. Sci. 2018, 12, 293–303. [Google Scholar] [CrossRef]
- Grassia, A. On a family of distributions with argument between 0 and 1 obtained by transformation of the Gamma distribution and derived compound distributions. Aust. J. Stat. 1977, 19, 108–114. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Sordo, M.A.; Calderín-Ojeda, E. The Log-Lindley distribution as an alternative to the Beta regression model with applications in insurance. Insur. Math. Econ. 2013, 54, 49–57. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.F.B.; Ghitany, M.E. The unit-Weibull distribution and associated inference. J. Appl. Probab. Stat. 2018, 13, 1–22. [Google Scholar]
- Mazucheli, J.; Menezes, A.; Dey, S. The unit-Birnbaum-Saunders distribution with applications. Chil. J. Stat. 2018, 9, 47–57. [Google Scholar]
- Mazucheli, J.; Menezes, A.F.B.; Chakraborty, S. On the one parameter unit-Lindley distribution and its associated regression model for proportion data. J. Appl. Stat. 2019, 49, 700–714. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Azevedo-Farias, R.B.; Tovar-Falón, R. New Class of Unit-Power-Skew-Normal Distribution and Its Associated Regression Model for Bounded Responses. Mathematics 2022, 10, 3035. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Tovar-Falón, R. New Regression Models Based on the Unit-Sinh-Normal Distribution: Properties, Inference, and Applications. Mathematics 2021, 9, 1231. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Gómez, H.W.; Tovar-Falón, R. Modeling Proportion Data with Inflation by Using a Power-Skew-Normal/Logit Mixture Model. Mathematics 2021, 9, 1989. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Moreno-Arenas, G. On a multivariate regression model for rates and proportions. J. Appl. Stat. 2019, 46, 1084–1106. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Lemonte, A.J.; Moreno-Arenas, G.; Tovar-Falón, R. The Bivariate Unit-Sinh-Normal Distribution and Its Related Regression Model. Mathematics 2022, 10, 3125. [Google Scholar] [CrossRef]
- Gumbel, E.G. Bivariate exponential distributions. J. Am. Stat. Assoc. 1960, 292, 698–707. [Google Scholar] [CrossRef]
- Gokhale, S.; Khare, M. Vehicle wake factor for heterogeneous traffic in urban environments. Int. J. Environ. Pollut. 2007, 30, 97–105. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Azevedo-Farias, R.B.; Tovar-Falón, R. An Exponentiated Multivariate Extension for the Birnbaum-Saunders Log-Linear Model. Mathematics 2022, 10, 1299. [Google Scholar] [CrossRef]
- Freeman, D.G. Drunk Driving Legislation and Traffic Fatalities: New Evidence on BAC 08 Laws. Contemp. Econ. Policy 2007, 25, 293–308. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Vergara-Cardozo, S.; Tovar-Falón, R.; Rodriguez-Quevedo, L. The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model. Mathematics 2023, 11, 1095. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Muhammed, H.Z.; El-Sherpieny, E.S.A. Bivariate Weibull Distribution: Properties and Different Methods of Estimation. Ann. Data. Sci. 2020, 7, 163–193. [Google Scholar] [CrossRef]
- Sklar, A. Random variables, joint distributions, and copulas. Kybernetica 1973, 9, 449–460. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org (accessed on 31 July 2021).
- Basu, A. Bivariate failure rate. J. Am. Stat. Assoc. 1971, 66, 103–104. [Google Scholar] [CrossRef]
- Joe, H. Asymptotic efficiency of the two-stage estimation method for copula-based models. J. Multivar. Anal. 2005, 94, 401–419. [Google Scholar] [CrossRef]
- Kundu, D.; Gupta, A.K. Bayes estimation for the Marshall-Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 2013, 57, 271–281. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, A.; Tang, Y.; Shen, L. Fast Bayesian Inference of Reparameterized Gamma Process With Random Effects. IEEE Trans. Reliab. 2023, 1–14. [Google Scholar] [CrossRef]
- Peralta, D.; DeOliveira, R.P.; Achcar, J.A. A hierarchical Bayesian analysis for bivariate Weibull distribution under left-censoring scheme. J. Appl. Stat. 2023, 1–20. [Google Scholar] [CrossRef]
- Arnold, B.C.; Castillo, E.; Sarabia, J.M. Conditionally specified multivariate skewed distributions. Sankhya Indian J. Stat. Ser. A 2002, 64, 206–226. [Google Scholar]
- Akaike, H. A new look at statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–722. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
3.0 | 2.0 | 1.0 | 1.0 | −0.75 | −0.235 |
3.0 | 2.0 | 1.0 | 1.0 | −0.25 | −0.078 |
3.0 | 2.0 | 1.0 | 1.0 | 0.25 | 0.078 |
3.0 | 2.0 | 1.0 | 1.0 | 0.75 | 0.235 |
1.5 | 2.5 | 1.0 | 1.0 | −0.99 | −0.317 |
1.5 | 2.5 | 1.0 | 1.0 | 0.50 | 0.160 |
4.5 | 1.5 | 1.0 | 1.0 | −0.99 | −0.307 |
4.5 | 1.5 | 1.0 | 1.0 | 0.99 | 0.307 |
7.0 | 2.0 | 1.0 | 1.0 | −0.90 | −0.269 |
7.0 | 2.0 | 1.0 | 1.0 | −0.50 | −0.150 |
7.0 | 2.0 | 1.0 | 1.0 | −0.10 | −0.030 |
3.5 | 1.8 | 1.0 | 1.0 | 0.90 | 0.281 |
2.0 | 12 | 1.0 | 2.5 | −0.80 | −0.258 |
3.5 | 1.8 | 1.8 | 1.5 | 0.99 | 0.325 |
0.9 | 3.0 | 1.0 | 1.0 | −0.990 | −0.315 |
Parameters | BVSJB | BVN | BVSN | BVUW |
---|---|---|---|---|
0.1554(0.0010) | 0.1532(0.0005) | 0.1546(0.0005) | 18.0497(0.3906) | |
0.0624(0.0018) | 0.0595(0.0005) | 0.0602(0.0005) | 9.3641(0.1949) | |
5.0188(0.9010) | 1.9351(0.0032) | |||
2.7763(0.1020) | 3.0170(0.0096) | |||
1.7204(0.6972) | 0.0003(0.00001) | 0.0188(0.0003) | ||
8.0839(0.2439) | 0.0004(0.00001) | 0.0207(0.0004) | ||
3.2156(0.5746) | 0.0001(0.00001) | 0.6973(0.0594) | 0.9990(0.0038) | |
AIC | −10,980.07 | −12,250.64 | −12,245.92 | −12,447.81 |
BIC | −10,944.44 | −12,225.19 | −12,220.47 | −12,422.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovar-Falón, R.; Martínez-Flórez, G.; Páez-Martínez, L. Bivariate Unit-Weibull Distribution: Properties and Inference. Mathematics 2023, 11, 3760. https://doi.org/10.3390/math11173760
Tovar-Falón R, Martínez-Flórez G, Páez-Martínez L. Bivariate Unit-Weibull Distribution: Properties and Inference. Mathematics. 2023; 11(17):3760. https://doi.org/10.3390/math11173760
Chicago/Turabian StyleTovar-Falón, Roger, Guillermo Martínez-Flórez, and Luis Páez-Martínez. 2023. "Bivariate Unit-Weibull Distribution: Properties and Inference" Mathematics 11, no. 17: 3760. https://doi.org/10.3390/math11173760
APA StyleTovar-Falón, R., Martínez-Flórez, G., & Páez-Martínez, L. (2023). Bivariate Unit-Weibull Distribution: Properties and Inference. Mathematics, 11(17), 3760. https://doi.org/10.3390/math11173760