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Abstract: This paper is aimed at efficient numerical implementation of the fractional-order general-
ization of the stochastic Stokes–Darcy model, which has important scientific, applied, and economic
significance in hydrology, the oil industry, and biomedicine. The essence of this generalization of the
stochastic model is the introduction of fractional time derivatives in the sense of Caputo’s definition
to take into account long-term changes in the properties of media. An efficient numerical method
for the implementation of the fractional-order Stokes–Darcy model is proposed, which is based on
the use of a higher-order approximation formula for the fractional derivative, higher-order finite
difference relations, and a finite element approximation of the problem in the spatial direction. In
the paper, a rigorous theoretical analysis of the stability and convergence of the proposed numerical
method is carried out, which is confirmed by numerous computational experiments. Further, the
proposed method is applied to the implementation of the fractional-order stochastic Stokes–Darcy
model using an ensemble technique, in which the approximation is carried out in such a way that the
resulting systems of linear equations have the same coefficient matrix for all realizations. Furthermore,
evaluation of the discrete fractional derivatives is carried out with the use of parallel threads. The
efficiency of applying both approaches has been demonstrated in numerical tests.

Keywords: fractional-order stochastic Stokes–Darcy model; finite element method; convergence;
parallel computing

MSC: 65N30

1. Introduction

The model described by the joint Stokes–Darcy equations occupies an important place
in computational fluid dynamics due to its wide application in problems of interaction
between surface and underground flows, in predicting processes occurring in oil reservoirs
with a cavernous-porous structure, in underground systems of karst aquifers, and others.
In addition, this model is used in forecasting and assessing the risk of flooding of territories
as a result of groundwater and surface water. In this model, the free fluid flow is described
using the Stokes equation, and the flow in a porous medium is described by the Darcy
equation. It is believed [1] that the joint Stokes–Darcy model is more adequate than each of
the models considered separately.

This model is most fully studied under the assumption that the input parameters of
the problem, such as physical quantities describing the model, media properties, exposure
conditions, domain geometry, boundary conditions, and initial conditions, are known. In
reality, there are many uncertainties that arise from the difficulty in determining real data
due to measurement noise, internal variability in physical quantities, and the adoption
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of simplifying assumptions. As a result, a plausible description of the fluid flow process
using classical deterministic partial differential equations seems impossible. This often
gives rise to the risks of making inadequate technological and managerial decisions. In
practice, knowledge about the qualitative and quantitative properties of a porous medium
is often fragmentary, since the input data are formed on the basis of laboratory analysis of
samples taken at several rarefied points of the territory with their subsequent interpolation.

The study of the stochastic generalization of the deterministic Stokes–Darcy model is
a fairly new and relevant area in modern computational fluid dynamics. The earliest work
in this direction, in our opinion, is the paper of Kumar et al. [2] published in 2018. Interest
in this model has grown rapidly over the course of 3–4 years, as evidenced by numerous
works published to this day [1,3–6].

A significant drawback of the stochastic Stokes–Darcy model is the neglect of an
extremely important property of a porous medium—memory, which largely affects the
nature of the fluid flow. The need to take into account this property lies in the fact that the
porosity and permeability of the medium change in the process of fluid flow, and more
noticeably lead to a deceleration in the flow rate over time. Therefore, the nature of the
fluid flow is determined not only by the current state of the porous medium, but also by all
its previous states.

Taking into account the importance of this direction, this paper studies a further
generalization of the stochastic Stokes–Darcy model, which takes into account long-term
changes in the properties of media. Accounting for memory in our work is achieved by
using fractional differential calculus; namely, by replacing integer time derivatives with
fractional-order derivatives in the sense of Caputo’s definition. This generalization is a
natural generalization of the works of scientists in the field of fractional differential fluid
flow theory [7–9] and is based on the hypotheses put forward in [7].

The main problem associated with the considered model is the complexity of its
numerical implementation. For example, the application of the stochastic Galerkin method
to this model, which is based on the expansion in generalized polynomial chaos, is difficult
due to the complication of using existing solvers without their serious modification [2].
Stochastic collocation methods [10,11] do not have this disadvantage; however, the number
of nodes increases with an increase in stochastic dimensions, which leads to a significant
increase in computational complexity. The very popular Monte Carlo method, being easy
to implement and allowing the use of well-known deterministic algorithms and having a
high potential for parallelization, has a rather low convergence rate [3]. Much effort has
been put into the development of fast convergent methods, such as quasi-Monte Carlo
methods [12], multilevel Monte Carlo methods [2,13,14], centroidal Voronoi tilings [15], and
Latin hypercube selection [16]. Despite the fact that these methods make it possible to use
existing deterministic algorithms without changes, the complex form of the equations in the
proposed fractional-order stochastic model leads to high computational costs. In addition,
accounting for uncertainty usually leads to the need to run the solvers of these methods
multiple times in order to obtain statistical moments. This drawback is partially overcome
in the so-called ensemble algorithms [17], in which the problem is solved simultaneously
for all realizations in the ensemble instead of solving the problem individually for each
realization. In the latter work, this was achieved by approximating the nonlinear term
u · ∇u as follows:

un · ∇un+1 ≈ un · ∇un+1 + (un − un) · ∇un,

where un is the average velocity for all realizations in the ensemble. As a result of this
approximation, the sought coefficients of un+1 do not depend on the current realization in
the ensemble. Therefore, the systems of linear equations for all realizations have the same
coefficient matrix, but different right-hand sides. This makes it possible to use efficient
factorization methods for systems of linear equations, which significantly speeds up the
solution of the problem.

Since the permeability fields do not have obvious separation of scales, a multiscale
method [18,19] is an effective method for solving fluid flow problems because of its usage
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of limited global information. In particular, in [18] the problem of fluid motion in a porous
medium is solved using a stochastic mixed multiscale finite element method (FEM) on
a coarse grid. This approach does not require interpolation in the stochastic space and
can be combined with approaches based on interpolation on a coarse grid. In addition
to this, in [19], a new mixed multiscale FEM is proposed within a heterogeneous multi-
scale method that provides both local and global mass conservation. In [20], a stochastic
FEM solution based on the perturbation method is developed. The paper [5] proposes
three algorithms for quantifying uncertainty. Due to the complexity of the media under
consideration, the initial data can be characterized by a weak singularity. Recent studies
address this class of problems and propose Sinc-collocation methods [21] and methods
based on orthogonal spline collocation [22,23] for their solution. In [3], an efficient ap-
proach for implementing the stochastic Stokes–Darcy model with a random hydraulic
conductivity tensor is proposed, which is based on separation of the Stokes–Darcy system
into two subproblems, as well as on assembling a common matrix of coefficients for all
realizations in the ensemble. This approach significantly speeds up the solution of the
resulting systems of linear equations without affecting the accuracy of calculations. In [24],
a stabilized mixed method for solving the problem is proposed that does not use Lagrange
multipliers. In [1,25,26], a stochastic collocation method on sparse grids is developed for
the Stokes–Darcy model with random hydraulic conductivity. In [27], an ensemble domain
decomposition method is proposed, the peculiarity of which is that the solution of the
problem is reduced to solving a system of linear algebraic equations with a common matrix
of coefficients for each deterministic numerical model.

Recent studies have focused on the construction of higher-order numerical schemes
for the Stokes–Darcy equations with integer time derivatives. For example, in [6], a second-
order ensemble numerical method is proposed for stochastic Stokes–Darcy equations based
on the results of [3,17]. Li et al. [28] constructed a second-order fractional time-stepping
method. Qin et al. [29] and Li et al. [30] proposed numerical schemes that combine
a time filter and a Backward Euler scheme to increase the convergence order without
increasing the amount of computation. Furthermore, [29] obtained a third-order scheme
by applying a time filter to the BDF2 scheme. Chen et al. [31] proposed a third-order in
time Adam–Moulton–Bashforth method. Further, recent papers have studied the nonlinear
generalizations of Stokes–Darcy equations [32–34] by applying domain decomposition
techniques, optimization methods, and mortar finite element methods. Other effective
techniques should be noted, such as the optimal homotopy asymptotic method [35,36],
which was successfully applied to studying nonlinear behaviors described by partial
differential equations containing fractional-order time derivatives [37,38].

The present study is aimed at continuing the development of ensemble methods for
solving stochastic Stokes–Darcy equations for cases when the equations contain fractional
time derivatives. This work has several key differences from previous studies. First, an
ensemble method for implementing a fractional-order stochastic generalization of the
Stokes–Darcy model is constructed in the work. In our opinion, this is the first study of
the specified generalization of the model. Secondly, in contrast to the original works [3,6]
employing the ensemble technique, the constructed computational scheme has an order of
convergence greater than 2 in the time variable. This is achieved by using an approximation
formula of the order O

(
τ3−ν

)
for the fractional derivative in the sense of Caputo, as well as

by a special approximation of some terms. Thirdly, the paper proposes a parallel algorithm
to accelerate the computation process and analyzes the acceleration rate on a test problem.

The main contribution of this study is a higher-order numerical scheme allowing for
parallel execution, which makes it possible to efficiently solve the fractional-order stochastic
Stokes–Darcy equations.

The structure of the article is as follows. In the next section, the formulation of a new
initial boundary-value problem for the fractional-order stochastic generalization of the
Stokes–Darcy equation is given. Section 2.2 proposes a method for solving this problem.
Section 2.3 is devoted to the theoretical study of the solution method. Section 3 contains



Mathematics 2023, 11, 3763 4 of 27

the results of computational experiments to confirm the results of the theoretical analysis.
Finally, Section 4 discusses the results obtained.

2. Materials and Methods
2.1. Formulation of the Problem

Consider the fluid flow process in two non-intersecting bounded domains Ω f ⊂ Rd

and Ωp ⊂ Rd (d = 2, 3) separated by an interface I, i.e., Ω f ∩Ωp = ∅, Ω f ∩Ωp = I and
Ω f ∪Ωp = Ω (Figure 1). It is assumed that a free surface flow occurs in Ω f , then the flow
moves into the domain Ωp with a porous medium. Let n f and np denote outer unit normal
vectors to the boundaries ∂Ω f and ∂Ωp, and (mi)i=1,2,...,d−1 denote an orthonormal system
of tangential vectors to the interface I. Further, the fluid flow process is studied on the time
interval J, where J = (0, T] for T > 0.

Figure 1. The integration domain Ω, consisting of the domain of free fluid flow Ω f and the domain
of porous medium Ωp, separated by an interface I.

Let u and p denote the fluid velocity and pressure in Ω f , respectively; let φ be the
piezometric head in Ωp; let µ be the fluid viscosity and K be the hydraulic conductivity
tensor of the porous medium. Then, the fractional-order generalization of the linearized
Stokes–Darcy model reads as follows:

Problem 1. Find u, p, φ in Ω× J satisfying the following conditions:

∂α
0,tu− µ∇2u +∇p = f f , (x, t) ∈ Ω f × J, α ∈ (0, 1), (1)

∇ · u = 0, (x, t) ∈ Ω f × J, (2)

u = 0, (x, t) ∈
(

∂Ω f \I
)
× J, (3)

S∂
β
0,tφ−∇ · (K∇φ) = fp, (x, t) ∈ Ωp × J, β ∈ (0, 1), (4)

K∇φ · np = 0, (x, t) ∈
(
∂Ωp\I

)
× J, (5)

u · n f −K∇φ · np = 0, (x, t) ∈ I × J, (6)

p− µn f∇u · n f = gφ, (x, t) ∈ I × J, (7)

− n f · ∇u ·mi =
αBJS√

mi ·Kmi
u ·mi, (x, t) ∈ I × J, 1 ≤ i ≤ d− 1, (8)

u = u0, (x, t) ∈ Ω f × {0}, (9)

φ = φ0, (x, t) ∈ Ωp × {0}, (10)
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where the fractional derivative in the sense of Caputo is defined as

∂ν
0,t f (x, t) =

1
Γ(1− ν)

∫ t

0

∂ f
∂t

(x, θ)
1

(t− θ)ν dθ, ν ∈ (0, 1),

and S is the reservoir capacity coefficient, g is the gravitational acceleration constant, and αBJS is a
dimensionless parameter that depends on the structure of the porous medium.

A feature of this problem is that the hydraulic conductivity K, the initial data u0, φ0,
and the right-hand sides f f , fp are not fully known in practice. Most often, the mean and
variance of these values are available as a result of geological study. Therefore, there is a
high degree of uncertainty that must be taken into account when modeling a fluid flow
process in such complex media.

To account for the uncertainty effects, we utilize a commonly acceptable approach,

in which a set of input data
{(

Kω, u0,ω, φ0,ω, f f ,ω, fp,ω

)}Nω

ω=1
is randomly generated, then

Problem 1 is solved Nω times with specified data. As a result, one obtains a series of
problems instead of Problem 1. Thus, a set of solutions {(uω, pω, φω)}Nω

ω=1 is found, with
the help of which the statistical moments are subsequently determined.

Therefore, the rest of this section, as well as Sections 2.2–2.4, are aimed at developing
a numerical method for solving the problem for one of the Nω realizations. Further, in
Section 3, the proposed method is applied to the solution of a stochastic problem that
covers Nω samples of input parameters.

We introduce the following spaces:

X f =

{
v ∈

(
H1
(

Ω f

))d ∣∣∣ v = 0 on ∂Ω f \I
}

, (11)

Q f =

{
q ∈ L2

(
Ω f

) ∣∣∣ ∫
Ω f

q dx = 0

}
, (12)

Qp =
{

ψ ∈ H1(Ωp
) ∣∣∣ ψ = 0 on ∂Ωp\I

}
, (13)

X = X f ×Qp,

where the standard notation for Sobolev spaces Hk(Ω) and Lebesgue spaces Lp(Ω) is
utilized. We use the notation ( · , · )Ω to denote the dot product in L2(Ω), the notations
‖v‖Ω f

and ‖ψ‖Ωp
stand for ‖v‖L2(Ω f )

and ‖ψ‖L2(Ωp) for brevity, and the norm in X is
defined as

‖v̂‖ =
(
‖v‖2

Ω f
+ ‖ψ‖2

Ωp

)1/2
, v̂ ∈ X.

In order to construct a weak formulation of Problem 1 for the ω-th implementation,
we multiply Equations (1), (2) and (4) by arbitrary elements v ∈ X f , q ∈ Q f , and gψ ∈ Qp,
respectively, then integrate the resulting equations over the corresponding domains Ω f
and Ωp, taking into account the boundary conditions (3) and (5)–(8), and use the expansion
of the test velocity vector v in terms of its normal and tangential components:

v =
(

v · n f

)
n f +

d−1

∑
i=1

(v ·mi)mi. (14)

Moreover, we introduce the notation û = [u, φ]>, v̂ = [v, ψ]> for brevity.

Problem 2 (Weak formulation). Find (ûω, pω) : J 7→ X×Q f satisfying the identity

Dα,β(ûω, v̂) +A(Kω; ûω, v̂)−B(v̂, pω) + B(ûω, q)

+AI(γω; ûω, v̂)− I(ûω, v̂) =
(

f̂ω, v̂
)

, (15)
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for all (v̂, q) ∈ X×Q f , where

Dα,β(ûω, v̂) =
(
∂α

0,tuω, v
)

Ω f
+
(

gS∂
β
0,tφω, ψ

)
Ωp

,

A(Kω; ûω, v̂) = A f (ûω, v̂) +Ap(Kω; ûω, v̂),

A f (ûω, v̂) = (µ∇uω,∇v)Ω f
,

Ap(Kω; ûω, v̂) = g(Kω∇φω,∇ψ)Ωp
, (16)

AI(γω; ûω, v̂) = µ
∫

I
γω(uω ·mi)(v ·mi)ds,

I(ûω, v̂) = HI(v, φω)−HI(uω, ψ),

B(v̂, q) = (q,∇ · v)Ω f
,(

f̂ω, v̂
)
=
(

f f ,ω, v
)

Ω f
+
(

g fp,ω, ψ
)

Ωp
,

and the following notation is introduced:

HI(v, φω) = g
∫

I
φω

(
v · n f

)
ds, (17)

γi,ω =
αBJS√

mi ·Kωmi
, γω =

d−1

∑
i=1

γi,ω.

2.2. Numerical Method

We construct a numerical method for solving Problem 1 in two stages. First, we
discretize the problem with respect to the time variable [39]. To do this, we introduce
a uniform partition of the time interval Jτ = {tn = nτ, n = 0, 1, . . . , N, Nτ = T} for the
time discretization parameter τ > 0, and the timestamp t = tn will be referred to as the nth
time layer. We also introduce the notation f n = f ( · , tn) for convenience.

In general, the construction of our computational method is based on the use of
different approaches to discretize the problem on different time layers to increase the
accuracy of the method. The first approach is applied to the first two time layers, t1 and
t2, and is based on the use of a Crank–Nicolson-type approximation [40]. The second
approach covers the rest of the time layers, n ≥ 3, and is based on the use of higher-order
approximation formulas. In particular, we employ the following result from [41] in order
to approximate fractional derivatives starting from the third time layer.

Lemma 1. The discrete analogue ∆ν
τ f n of the fractional derivative in the sense of Caputo ∂ν

0,t f (tn)
of order ν ∈ (0, 1) can be represented as [41]

∆ν
τ f n =

λ
(ν)
0 τ−ν

ς
(ν)
0

(
f n −

n

∑
s=1

δ
(ν)
n,n−s f n−s

)
, n ≥ 3, (18)

where

ς
(ν)
0 = Γ(3− ν), λ

(ν)
0 = 21−ν

(
1 +

ν

2

)
,

δ
(ν)
3,2 = −

b(ν)1 + c(ν)2 − 2

λ
(ν)
0

, δ
(ν)
3,1 = −

a(ν)1 + b(ν)2 + ν
2

λ
(ν)
0

, δ
(ν)
3,0 = −

a(ν)2

λ
(ν)
0

,

and in the case of n ≥ 4:

δ
(ν)
n,n−1 = −

b(ν)1 + c(ν)2 − 2

λ
(ν)
0

, δ
(ν)
n,n−2 = −

a(ν)1 + b(ν)2 + c(ν)3 + ν
2

λ
(ν)
0

,
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δ
(ν)
n,n−s = −

a(ν)s−1 + b(ν)s + c(ν)s+1

λ
(ν)
0

, s = 3, 4, . . . , n− 2,

δ
(ν)
n,1 = −

a(ν)n−2 + b(ν)n−1

λ
(ν)
0

, δ
(ν)
n,0 = −

a(ν)n−1

λ
(ν)
0

,

and

a(ν)s = −3
2
(2− ν)(s + 1)1−ν +

1
2
(2− ν)s1−ν + (s + 1)2−ν − s2−ν,

b(ν)s = 2(2− ν)(s + 1)1−ν − 2(s + 1)2−ν + 2s2−ν,

c(ν)s = −1
2
(2− ν)

(
(s + 1)1−ν + s1−ν

)
+ (s + 1)2−ν − s2−ν,

where the quantity R(ν)
n = ∂ν

0,tn
f − ∆ν

τ f n, n ≥ 2 satisfies the estimate

∣∣∣R(ν)
n

∣∣∣ ≤ ( √
3

27Γ(1− ν)
+

1
6Γ(2− ν)

)
max

t0≤t≤tn

∣∣∣∂3
t f (t)

∣∣∣τ3−ν.

The properties of the coefficients δ
(ν)
n,s have been rigorously studied in [41]. The

following lemma summarizes the properties that will be used while proving the stability
and convergence of the proposed numerical scheme.

Lemma 2. The coefficients δ
(ν)
n,s have the following properties [41]:

(1) δ
(ν)
n,n−1 ∈

(
0, 4

3

)
;

(2) δ
(ν)
n,n−2 ∈

(
− 1

2 , 1
3

)
;

(3) δ
(ν)
n,n−s > 0, s = 3, 4, . . . , n;

(4)
n−1

∑
s=0

δ
(ν)
n,s = 1.

Approximation of fractional derivatives on the first and second time layers is carried
out according to another formula, which is formulated in the following lemma.

Lemma 3. The discrete analogue ∆ ν
τ f n of the fractional derivative in the sense of Caputo ∂ν

0,t f (tn)
of order ν ∈ (0, 1) can be represented as [42]

∆ ν
τ f n =

τ−ν

ς
(ν)
0

n

∑
s=1

δ
(ν)
n,s

(
f s − f s−1

)
, n = 1, 2, (19)

where
δ
(ν)
n,s = (n− s + 1)1−ν − (n− s)1−ν, ς

(ν)
0 = Γ(2− ν),

where the quantity R(ν)
n = ∂ν

0,t f (tn)− ∆ ν
τ f n satisfies the estimate∣∣∣R(ν)

n

∣∣∣ ≤ 5− ν

8(1− ν)
max

0≤t≤tn

∣∣∣∂2
t f (t)

∣∣∣τ2−ν.

By combining the results of Lemmas 1 and 3, we conclude that the following relation
holds for the bilinear form Dα,β(ûω, v̂) on the nth time layer:

Dα,β(ûn
ω, v̂) = Dα,β

τ (ûn
ω, v̂) + (rn

11, v)Ω f
+ (rn

12, ψ)Ωp
, n ≥ 1, (20)



Mathematics 2023, 11, 3763 8 of 27

where

Dα,β
τ (ûn

ω, v̂) =


(∆α

τun
ω, v)Ω f

+
(

gS∆β
τφn

ω, ψ
)

Ωp
, n ≥ 3,(

∆ α
τ un

ω, v
)

Ω f
+
(

gS∆ β
τ φn

ω, ψ
)

Ωp
, n = 1, 2,

(21)

and rn
11 =

[
O
(

τ2−α
)

, O
(

τ2−α
)]>, rn

12 = O
(

τ2−β
)

when n = 1, 2; rn
11 =

[
O
(

τ3−α
)

, O
(

τ3−α
)]>, rn

12 = O
(
τ3−β

)
when

n ≥ 3.
Further, we transform the terms in (15) as shown below:

AI(γω; ûn
ω, v̂) = AI

(
d−1

∑
i=1

(γi + (γi,ω − γi)); ûn
ω, v

)

= AI

(
d−1

∑
i=1

γi; ûn
ω, v

)
+AI

(
d−1

∑
i=1

(γi,ω − γi); σûn−1
ω , v

)

+µ
d−1

∑
i=1

∫
I
(γi,ω − γi)(r

n
3 ·mi)(v ·mi)ds, (22)

Ap(Kω; ûn
ω, v̂) = Ap

(
K+

(
Kω −K

)
; ûn

ω, v̂
)

= Ap

(
K; ûn

ω, v̂
)
+Ap

(
Kω −K; σûn−1

ω , v̂
)
+ g
((

Kω −K
)
∇rn

5 ,∇ψ
)

Ωp
, (23)

I(ûn
ω, v̂) = I

(
σûn−1

ω , v̂
)
+HI(v, rn

2 )−HI(rn
4 , ψ), (24)

where

σûn
ω = [σun

ω, σφn
ω ]
>, σun

ω = 3un
ω − 3un−1

ω + un−2
ω , σφn

ω = 3φn
ω − 3φn−1

ω + φn−2
ω ,

γi =
1

Nω

Nω

∑
ω=1

γi,ω, K =
1

Nω

Nω

∑
ω=1

Kω,

rn
2 = O

(
τ3
)

, rn
3 =

[
O
(

τ3
)

, O
(

τ3
)]>

, rn
4 =

[
O
(

τ3
)

, O
(

τ3
)]>

, rn
5 = O

(
τ3
)

.

By using the approximations (20)–(24) and introducing the notation

ûn−1/2
ω =

1
2

(
ûn

ω + ûn−1
ω

)
, (25)

we rewrite Problem 2 in the following way.

Problem 3. Let
(

ûk
ω , pk

ω

)
∈ X× Q f , k = 0, 1, . . . , n− 1 be known; in particular, û0

ω = [u0, φ0]
>.

Find (ûn
ω, pn

ω) ∈ X×Q f , n ≥ 1 satisfying the following identities for any (v̂, q) ∈ X×Q f :
Case I: when n = 1, 2:

Dα,β
τ

(
ûn−1/2

ω , v̂
)
+A

(
K; ûn−1/2

ω , v̂
)
−B

(
v̂, pn−1/2

ω

)
+ B

(
ûn−1/2

ω , q
)

+ I
(

ûn−1/2
ω , v̂

)
+AI

(
γω; ûn−1/2

ω , v̂
)

=
(

f̂n−1/2
ω , v̂

)
+
(

rn−1/2
11 , v

)
Ω f

+
(

rn−1/2
12 , ψ

)
Ωp

+HI

(
v, rn−1/2

2

)
+HI

(
rn−1/2

4 , ψ
)

− µ
d−1

∑
i=1

∫
I

γi,ω

(
rn−1/2

3 ·mi

)
(v ·mi)ds + g

(
Kω∇rn−1/2

5 ,∇ψ
)

Ωp
, (26)
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Case II: when n ≥ 3:

Dα,β
τ (ûn

ω, v̂) +A
(
K; ûn

ω, v̂
)
−B(v̂, pn

ω) + B(ûn
ω, q)

+AI

(
d−1

∑
i=1

γi; ûn
ω, v̂

)
+AI

(
d−1

∑
i=1

(γi,ω − γi); σûn−1
ω , v̂

)
+ I

(
σûn−1

ω , v̂
)
+Ap

(
Kω −K; σûn−1

ω , v̂
)

=
(

f̂n
ω, v̂

)
+ (rn

11, v)Ω f
+ (rn

12, ψ)Ωp
+HI(v, rn

2 ) +HI(rn
4 , ψ)

− µ
d−1

∑
i=1

∫
I
(γi,ω − γi)(r

n
3 ·mi)(v ·mi)ds + g

((
Kω −K

)
∇rn

5 ,∇ψ
)

Ωp
. (27)

Now we discretize the problem with respect to spatial variables. To this end, we intro-
duce the partitions T f h and Tph in Ω f and Ωp, respectively, that may consist of triangles,
quadrilaterals, prisms, or parallelepipeds, and let Th = T f h ∪ Tph. Denote by X f h ⊂ X f ,
Q f h ⊂ Q f , Qph ⊂ Qp finite element spaces with the following approximation properties:

inf
vh∈X f h

‖v− vh‖Ω f
≤ Chl+1‖v‖Hl+1(Ω f )

, ∀v ∈
(

Hl+1
(

Ω f

))d
,

inf
vh∈X f h

‖∇(v− vh)‖Ω f
≤ Chl‖v‖Hl+1(Ω f )

, ∀v ∈
(

Hl+1
(

Ω f

))d
,

inf
qh∈Q f h

‖q− qh‖Ω f
≤ Chl‖q‖Hl(Ω f )

, ∀q ∈ Hl
(

Ω f

)
, (28)

inf
ψh∈Qph

‖ψ− ψh‖Ωp
≤ Chm+1‖ψ‖Hm+1(Ωp), ∀ψ ∈ Hm+1(Ωp

)
,

inf
ψh∈Qph

‖∇(ψ− ψh)‖Ωp
≤ Chm‖ψ‖Hm+1(Ωp), ∀ψ ∈ Hm+1(Ωp

)
,

and let Xh = X f h ×Qph.
By discarding the error terms in (26) and (27), the following discrete problem can

be obtained.

Problem 4. Let
(

ûk
ω,h, pk

ω,h

)
∈ Xh ×Q f h, k = 0, 1, . . . , n− 1 be known; in particular, let û0

ω,h

consist of L2-projections of the initial conditions (9), (10). Find
(

ûn
ω,h, pn

ω,h

)
∈ Xh ×Q f h, n ≥ 1

satisfying the following identities for any (v̂h, qh) ∈ Xh ×Q f h:
Case I: when n = 1, 2:

Dα,β
τ

(
ûn−1/2

ω,h , v̂h

)
+A

(
K; ûn−1/2

ω,h , v̂h

)
−B

(
v̂h, pn−1/2

ω,h

)
+ B

(
ûn−1/2

ω,h , qh

)
+ I

(
ûn−1/2

ω,h , v̂h

)
+AI

(
d−1

∑
i=1

γi,ω; ûn−1/2
ω,h , v̂h

)
=
(

f̂n−1/2
ω , v̂h

)
, (29)

Case II: when n ≥ 3:

Dα,β
τ

(
ûn

ω,h, v̂h

)
+A

(
K; ûn

ω,h, v̂h

)
−B

(
v̂h, pn

ω,h

)
+ B

(
ûn

ω,h, qh

)
+AI

(
d−1

∑
i=1

γi; ûn
ω,h, v̂h

)
+AI

(
d−1

∑
i=1

(γi,ω − γi); σûn−1
ω,h , v̂h

)
+ I

(
σûn−1

ω,h , v̂h

)
+Ap

(
Kω −K; σûn−1

ω,h , v̂h

)
=
(

f̂n
ω, v̂h

)
. (30)
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As in the original papers [3,17], the advantage of the proposed discrete scheme (29)
and (30) is that the stiffness matrix is the same for all realizations ω = 1, 2, . . . , Nω. When
implementing the algorithm, only the right-hand sides of systems of linear algebraic
equations are different. This makes it possible to use efficient methods for solving systems
of equations and save computational resources. Further implementation details will be
covered in Sections 2.4 and 3.2.

2.3. Theoretical Analysis of the Numerical Method
2.3.1. Preliminaries

This section presents auxiliary results and the assumptions under which we obtain a
priori estimates of the stability and convergence for the numerical scheme (29) and (30).
First, let us present the following well-known inequalities, which will be used in obtaining
the main results:

‖v‖I ≤ Ctr‖v‖1/2
Ω f
‖∇v‖1/2

Ω f
, ‖ψ‖I ≤ Ctr‖ψ‖1/2

Ωp
‖∇ψ‖1/2

Ωp
, (31)

‖v‖Ω f
≤ CP, f ‖∇v‖Ω f

, ‖ψ‖Ωp
≤ CP,p‖∇ψ‖Ωp

, (32)

ab ≤ εa2 +
1
4ε

b2, a, b > 0. (33)

Assumption 1. Problem 1 has a unique solution having a sufficient number of derivatives required
to perform the analysis.

Assumption 2. Let kmin(x) and kmin(x) be the minimum eigenvalue of tensors and vectors. Let
us assume that the following conditions hold:

γmin
i = min

x∈I
γi(x), (34)

γmax
i = max

x∈I
γi(x), (35)

γmax = max
i=1,2,...,d−1

γmax
i , (36)

γ′max
i,ω = max

x∈I
|γi,ω(x)− γi(x)|, (37)

γ′max
ω = max

i=1,2,...,d−1
γ′max

i,ω = max
i=1,2,...,d−1

max
x∈I
|γi,ω(x)− γi(x)|, (38)

κ′ω,max = max
x∈Ωp

∣∣∣Kω −K
∣∣∣, (39)

µ
(

1− ε− γmax
i CtrCP, f

)
≥ µ0 > 0, (40)

where ε > 0, and Ctr and CP, f are constants from (31) and (32).

The following Gronwall lemma will be used several times in obtaining the main results.

Lemma 4. Let non-negative sequences {yn}, {zn}, { fn} satisfy the inequalities yn ≤ fn +
n−1

∑
i=0

ziyi.

Then, the following inequality holds:

yn ≤ fn +
n−1

∑
i=0

fizi exp

(
n−1

∑
j=i+1

zj

)
.
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2.3.2. Stability of the Numerical Scheme

Now we turn to the proof of the stability of the proposed numerical method (29)
and (30) similarly to [43]. Let us first consider the case of n = 1, 2. The symbol C with
possible subscripts will denote a generic positive constant that may take different values
case by case.

Lemma 5. Let
(

ûn
ω,h, pn

ω,h

)
∈ Xh × Q f h be the solution of Problem 4. Then, the following

inequality holds under Assumption 2:

En
α,β +

∥∥∥∇ûn−1/2
ω,h

∥∥∥2
≤ Cα,β

(
E0

α,β +
n

∑
s=1

∥∥∥f̂s−1/2
f ,ω

∥∥∥2
)

, n = 1, 2,

which implies the stability of the numerical method (29) and (30) with respect to the initial data and
the right-hand sides of the equations on the first two time layers, where

En
α,β = τ−α

∥∥∥un
ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φn
ω,h

∥∥∥2

Ωp
,

and Cα,β is a positive constant that only depends on the orders of fractional derivatives, α and β.

Proof. Choose (v̂h, qh) =
(

ûn−1/2
ω,h , pn−1/2

ω,h

)
in the identity (29) to obtain

Dα,β
τ

(
ûn−1/2

ω,h , ûn−1/2
ω,h

)
+A

(
K; ûn−1/2

ω,h , ûn−1/2
ω,h

)
+AI

(
d−1

∑
i=1

γi,ω; ûn−1/2
ω,h , ûn−1/2

ω,h

)

−I
(

ûn−1/2
ω,h , ûn−1/2

ω,h

)
=
(

f̂n−1/2
ω , ûn−1/2

ω,h

)
. (41)

Let us estimate the terms of (41). Due to the expansion (19) and the notation (25), the
first term on the left-hand side of (41) is estimated as

Dα,β
τ

(
û1/2

ω,h , û1/2
ω,h

)
=

1
2

[(
∆ α

τ u1
ω,h, u1/2

ω,h

)
Ω f

+
(

gS∆ β
τ φ1

ω,h, φ1/2
ω,h

)
Ωp

]

=
1
4

τ−αδ
α
1,1

ς
(α)
0

(∥∥∥u1
ω,h

∥∥∥2

Ω f
−
∥∥∥u0

ω,h

∥∥∥2

Ω f

)
+ gS

τ−βδ
β
1,1

ς
(β)
0

(∥∥∥φ1
ω,h

∥∥∥2

Ωp
−
∥∥∥φ0

ω,h

∥∥∥2

Ωp

) (42)

and

Dα,β
τ

(
û3/2

ω,h , û3/2
ω,h

)
=

1
2

[(
∆ α

τ u2
ω,h, u3/2

ω,h

)
Ω f

+
(

∆ α
τ u1

ω,h, u3/2
ω,h

)
Ω f

]
+

1
2

[(
gS∆ β

τ φ2
ω,h, φ3/2

ω,h

)
Ωp

+
(

gS∆ β
τ φ1

ω,h, φ3/2
ω,h

)
Ωp

]
=

τ−α

4ς
(α)
0

[
δ

α
2,2

(
u2

ω,h − u1
ω,h, u2

ω,h + u1
ω,h

)
Ω f

+
(

δ
α
2,1 + δ

α
1,1

)(
u1

ω,h − u0
ω,h, u3/2

ω,h

)
Ω f

]

+
gSτ−β

4ς
(β)
0

[
δ

β
2,2

(
φ2

ω,h − φ1
ω,h, φ2

ω,h + φ1
ω,h

)
Ωp

+
(

δ
β
2,1 + δ

β
1,1

)(
φ1

ω,h − φ0
ω,h, φ3/2

ω,h

)
Ωp

]

≥ τ−α

4ς
(α)
0

[
1
2

δ
α
2,2

∥∥∥u2
ω,h

∥∥∥2

Ω f
− Cα

(∥∥∥u1
ω,h

∥∥∥2

Ω f
+
∥∥∥u0

ω,h

∥∥∥2

Ω f

)]

+
gSτ−β

4ς
(β)
0

[
1
2

δ
β
2,2

∥∥∥φ2
ω,h

∥∥∥2

Ωp
− Cβ

(∥∥∥φ1
ω,h

∥∥∥2

Ω f
−
∥∥∥φ0

ω,h

∥∥∥2

Ω f

)]
, (43)
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where Cν is a positive constant depending only on ν. For the second term on the left-hand
side of (41) we have:

A
(
K; ûn−1/2

ω,h , ûn−1/2
ω,h

)
≥ µ

∥∥∥∇un−1/2
ω,h

∥∥∥2

Ω f
+ gkmin

∥∥∥∇φn−1/2
ω,h

∥∥∥2

Ωp
. (44)

Further, by virtue of Assumption 2, relation (14), and inequalities (31) and (32), we
arrive at the inequality

AI

(
d−1

∑
i=1

γi,ω; ûn−1/2
ω,h , ûn−1/2

ω,h

)
≤ µγmax

i

d−1

∑
i=1

∥∥∥un−1/2
ω,h ·mi

∥∥∥2

I
≤ µγmax

i

∥∥∥un−1/2
ω,h

∥∥∥2

I

≤ µγmax
i CtrCP, f

∥∥∥∇un−1/2
ω,h

∥∥∥2

Ω f
. (45)

Finally, using (32) and (33) yields(
f̂n−1/2

ω , ûn−1/2
ω,h

)
≤ CP, f

∥∥∥fn−1/2
f ,ω

∥∥∥
Ω f

∥∥∥∇un−1/2
ω,h

∥∥∥
Ω f

+ CP,pg
∥∥∥ f n−1/2

p,ω

∥∥∥
Ωp

∥∥∥∇φn−1/2
ω,h

∥∥∥
Ωp

≤ εµ
∥∥∥∇un−1/2

ω,h

∥∥∥2

Ω f
+ εgkmin

∥∥∥∇φn−1/2
ω,h

∥∥∥2

Ωp
+ C1

(∥∥∥fn−1/2
f ,ω

∥∥∥2

Ω f
+
∥∥∥ f n−1/2

p,ω

∥∥∥2

Ωp

)
, (46)

where ε is a sufficiently small number and C1 is a constant depending on the domains Ω f
and Ωp.

Making use of the inequalities (42)–(46) and Assumption (40), we obtain from the
identity (41) that

τ−α
∥∥∥u1

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ1
ω,h

∥∥∥2

Ωp
+
∥∥∥∇û1/2

ω,h

∥∥∥2

+Cα,β

(
τ−α

∥∥∥u0
ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ0
ω,h

∥∥∥2

Ωp
+
∥∥∥f1/2

f ,ω

∥∥∥2

Ω f
+
∥∥∥ f 1/2

p,ω

∥∥∥2

Ωp

)
(47)

and

τ−α
∥∥∥u2

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ2
ω,h

∥∥∥2

Ω f
+
∥∥∥∇û3/2

ω,h

∥∥∥2
≤ τ−α

∥∥∥u1
ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ1
ω,h

∥∥∥2

Ω f

+τ−α
∥∥∥u0

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ0
ω,h

∥∥∥2

Ω f
+ Cα,β

(∥∥∥f3/2
f ,ω

∥∥∥2

Ω f
+
∥∥∥ f 3/2

p,ω

∥∥∥2

Ωp

)
. (48)

By estimating the first two terms on the right-hand side of (48) with the use of inequal-
ity (47), we obtain

τ−α
∥∥∥u2

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ2
ω,h

∥∥∥2

Ω f
+
∥∥∥∇û3/2

ω,h

∥∥∥2

≤ Cα,β

(
τ−α

∥∥∥u0
ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φ0
ω,h

∥∥∥2

Ω f
+

2

∑
s=1

(∥∥∥fs−1/2
f ,ω

∥∥∥2

Ω f
+
∥∥∥ f s−1/2

p,ω

∥∥∥2

Ωp

))
. (49)

Thus, combining (47) and (49) yields the assertion of the lemma.

Before we obtain the main result, let us prove the following auxiliary lemma that will
be used while estimating the terms with fractional derivatives in the case of n ≥ 3.
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Lemma 6. The following inequality holds for the bilinear form Dα,β
τ (ûn, ûn), n ≥ 3:

Dα,β
τ (ûn, ûn) ≥ τ−α

[
‖un‖2

Ω f
− χα

n

∑
s=1

∣∣∣δ(α)n,n−s

∣∣∣∥∥un−s∥∥2
Ω f

]

+ τ−β

[
‖φn‖2

Ωp
− χβ

n

∑
s=1

∣∣∣δ(β)
n,n−s

∣∣∣∥∥φn−s∥∥2
Ωp

]
, (50)

where χα =

(
λ
(α)
0

)2

2ς
(α)
0

(
λ
(α)
0 −ς

(α)
0

) , χβ =

(
gSλ

(β)
0

)2

2ς
(β)
0

(
gSλ

(β)
0 −ς

(β)
0

) .

Proof. Choose v̂ = ûn in (21) and use the expansion (18) to obtain

Dα,β
τ (ûn, ûn) =

λ
(α)
0 τ−α

ς
(α)
0

(
un −

n

∑
s=1

δ
(α)
n,n−sun−s, un

)
Ω f

+
gSλ

(β)
0 τ−β

ς
(β)
0

(
φn −

n

∑
s=1

δ
(β)
n,n−sφn−s, φn

)
Ωp

.

Further, applying the Cauchy inequality and the inequality (33) yields

Dα,β
τ (ûn, ûn) ≥

λ
(α)
0 τ−α

ς
(α)
0

[
‖un‖2

Ω f
− 1

4εα

n

∑
s=1

∣∣∣δ(α)n,n−s

∣∣∣∥∥un−s∥∥2
Ω f
− εα‖un‖2

Ω f

n

∑
s=1

∣∣∣δ(α)n,n−s

∣∣∣]

+
gSλ

(β)
0 τ−β

ς
(β)
0

[
‖φn‖2

Ωp
− 1

4εβ

n

∑
s=1

∣∣∣δ(β)
n,n−s

∣∣∣∥∥φn−s∥∥2
Ωp
− εβ‖φn‖2

Ωp

n

∑
s=1

∣∣∣δ(β)
n,n−s

∣∣∣]. (51)

Since it follows from Lemma 2 that δ
(ν)
n,s > 0 for s 6= n − 2, and

∣∣∣δ(ν)n,n−2

∣∣∣ < 1
2 , it

is easy to see that
n

∑
s=1

∣∣∣δ(ν)n,n−s

∣∣∣ < 2. In this case, it suffices to choose εα = 1
2

(
1− ς

(α)
0

λ
(α)
0

)
,

εβ = 1
2

(
1− ς

(β)
0

gSλ
(β)
0

)
in (51) to obtain an assertion of the lemma.

Now we are ready to prove the stability of the proposed numerical method.

Theorem 1. Let
(

ûn
ω,h, pn

ω,h

)
∈ X f h × Qph be the solution of Problem 4. Then, the following

inequality holds under Assumption 2:

En
α,β +

∥∥∥∇ûn
ω,h

∥∥∥2
≤ Cα,β

(
E0

α,β +
n

∑
s=0

∥∥∥f̂s
f ,ω

∥∥∥2
)

, n ≥ 1,

which implies the stability of the numerical method with respect to the initial data and the right-hand
sides of Equations (1) and (4), where

En
α,β = τ−α

∥∥∥un
ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φn
ω,h

∥∥∥2

Ωp
,

and Cα,β is a positive constant that only depends on the orders of fractional derivatives, α and β.
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Proof. Choose (v̂h, qh) =
(

ûn
ω,h, pn

ω,h

)
in the identity (30) to obtain

7

∑
k=1
Tk ≡ D

α,β
τ

(
ûn

ω,h, ûn
ω,h

)
+A

(
K; ûn

ω,h, ûn
ω,h

)
+AI

(
d−1

∑
i=1

γi; ûn
ω,h, ûn

ω,h

)

+AI

(
d−1

∑
i=1

(γi,ω − γi); σûn−1
ω,h , ûn

ω,h

)
− I

(
σûn−1

ω,h , ûn
ω,h

)
+Ap

(
Kω −K; σûn−1

ω,h , ûn
ω,h

)
−
(

f̂n
ω,h, ûn

ω,h

)
= 0. (52)

Let us estimate the terms T1, T2, . . . , T7 similarly to Lemma 5 with the use of Lemma 6,
Assumption 2, and inequalities (31)–(33):

T1 ≥ τ−α

[∥∥∥un
ω,h

∥∥∥2

Ω f
− χα

n

∑
s=1

∣∣∣δ(α)n,n−s

∣∣∣∥∥∥un−s
ω,h

∥∥∥2

Ω f

]
+ τ−β

[∥∥∥φn
ω,h

∥∥∥2

Ωp
− χβ

n

∑
s=1

∣∣∣δ(β)
n,n−s

∣∣∣∥∥∥φn−s
ω,h

∥∥∥2

Ωp

]
,

T2 ≥ µ
∥∥∥∇un

ω,h

∥∥∥2

Ω f
+ gkmin

∥∥∥∇φn
ω,h

∥∥∥2

Ωp
,

T3 ≤ µγmaxCtrCP, f

∥∥∥∇un
ω,h

∥∥∥2

Ω f
,

T4 + T5 ≤ µγ′max
ω

∣∣∣∣∣d−1

∑
i=1

∫
I

(
σun−1

ω,h ·mi

)(
un

ω,h ·mi

)
ds

∣∣∣∣∣
+ g
∥∥∥σφn−1

h

∥∥∥
I

∥∥∥un
ω,h · n f

∥∥∥
I
+ g‖φn

h‖I

∥∥∥σun−1
ω,h · n f

∥∥∥
I

≤ µγ′max
ω

∥∥∥σun−1
ω,h

∥∥∥
I

∥∥∥un
ω,h

∥∥∥
I
+ g
∥∥∥σφn−1

h

∥∥∥
I

∥∥∥un
ω,h

∥∥∥
I
+ g‖φn

h‖I

∥∥∥σun−1
ω,h

∥∥∥
I

≤ µε

2CtrCP, f

∥∥∥un
ω,h

∥∥∥2

I
+

gkminε

3CtrCP,p
‖φn

h‖I + C
∥∥∥σun−1

ω,h

∥∥∥2

I
+ C

(∥∥∥σun−1
ω,h

∥∥∥2

I
+
∥∥∥σφn−1

ω,h

∥∥∥2

I

)
≤ 1

2
µε
∥∥∥∇un

ω,h

∥∥∥2

Ω f
+

1
3

gkminε‖∇φn
h‖

2
Ωp

+ C
n−1

∑
s=n−3

∥∥∥∇ûs
ω,h

∥∥∥2
,

T6 ≤ g
∫

Ωp
κ′ω(x)

∣∣∣∇(σφn−1
ω,h

)∣∣∣
2

∣∣∣∇φn
ω,h

∣∣∣
2
dx

≤ C
∥∥∥∇(σφn−1

ω,h

)∥∥∥
Ωp

∥∥∥∇φn
ω,h

∥∥∥
Ωp

≤ C
n−1

∑
s=n−3

∥∥∥∇φs
ω,h

∥∥∥2

Ωp
+

1
3

εgkmin

∥∥∥∇φn
ω,h

∥∥∥2

Ωp
,

T7 ≤
∥∥∥fn

f ,ω

∥∥∥
Ω f

∥∥∥un
ω,h

∥∥∥
Ω f

+ g
∥∥∥ f n

p,ω

∥∥∥
Ωp

∥∥∥φn
ω,h

∥∥∥
Ωp

≤ 1
2

µε
∥∥∥∇un

ω,h

∥∥∥2

Ω f
+

1
3

εgkmin

∥∥∥∇φn
ω,h

∥∥∥2

Ωp
+ C

∥∥∥f̂n
ω

∥∥∥2
,

where | · |2 denotes the two-norm of a vector.
Then, taking into account the obtained inequalities, we obtain from (52) that

τ−α
∥∥∥un

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φn
ω,h

∥∥∥2

Ωp
+ µ

(
1− ε− γmaxCtrCP, f

)∥∥∥∇un
ω,h

∥∥∥2

Ω f
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+gkmin(1− ε)
∥∥∥∇φn

ω,h

∥∥∥2

Ωp
≤ τ−αχα

n

∑
s=1

∣∣∣δ(α)n,n−s

∣∣∣∥∥∥un−s
ω,h

∥∥∥2

Ω f

+τ−βχβ

n

∑
s=1

∣∣∣δ(β)
n,n−s

∣∣∣∥∥∥φn−s
ω,h

∥∥∥2

Ωp
+ C

n−1

∑
s=n−3

∥∥∥∇ûs
ω,h

∥∥∥2
+ C

∥∥∥f̂n
ω

∥∥∥2
.

Given the assumption (40), it follows that

τ−α
∥∥∥un

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φn
ω,h

∥∥∥2

Ωp
+
∥∥∥∇ûn

ω,h

∥∥∥2

≤ C′α,β

n−1

∑
s=0

∣∣∣δ(α)n,s

∣∣∣(τ−α
∥∥∥us

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φs
ω,h

∥∥∥2

Ωp

)

+C′α,β

n−1

∑
s=n−3

∣∣∣δ(α)n,s

∣∣∣∥∥∥∇ûs
ω,h

∥∥∥2
+ C

∥∥∥f̂n
ω

∥∥∥2
, (53)

where C′α,β is a positive constant depending on constants c′α,β = max

 max
1≤s≤n

∣∣∣δ(α)n,s

∣∣∣∣∣∣δ(β)
n,s

∣∣∣ , 1

 and

c′′α = max

max
1≤s≤3

1∣∣∣δ(α)n,n−s

∣∣∣ , 1

. Further, by estimating the terms
∥∥∥us

ω,h

∥∥∥2

Ω f
and

∥∥∥φs
ω,h

∥∥∥2

Ωp
for

s = 1, 2 with the use of Lemma 5, we conclude that

τ−α
∥∥∥un

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φn
ω,h

∥∥∥2

Ωp
+
∥∥∥∇ûn

ω,h

∥∥∥2

≤ C′α,β

n−1

∑
s=3

∣∣∣δ(α)n,s

∣∣∣(τ−α
∥∥∥us

ω,h

∥∥∥2

Ω f
+ τ−β

∥∥∥φs
ω,h

∥∥∥2

Ωp
+
∥∥∥∇ûs

ω,h

∥∥∥2
)

+Cατ−α
∥∥∥u0

ω,h

∥∥∥2

Ω f
+ Cβτ−β

∥∥∥φ0
ω,h

∥∥∥2

Ωp
+ C

(∥∥∥f̂n
ω

∥∥∥2
+

2

∑
s=1

∥∥∥f̂n−1/2
ω

∥∥∥2
)

.

Therefore, by virtue of Lemma 4, we obtain the assertion of the theorem.

2.3.3. Convergence of the Numerical Scheme

Consider the projection operators Φh : Qp → Qph, Πh : X f → X f h, Ξh : Q f → Q f h
satisfying the identities

(∇(ψ−Φhψ),∇ψh) = 0, ∀ψh ∈ Qph, (54)

(∇ · (v−Πhv), qh) = 0, ∀qh ∈ Q f h, (55)

(∇ · vh, qh − Ξhqh) = 0, ∀vh ∈ X f h. (56)

Let us introduce the notation

un
ω − un

ω,h = (un
ω −Πhun

ω) +
(

Πhun
ω − un

ω,h

)
= ξn

u + θn
u,

pn
ω − pn

ω,h = (pn
ω − Ξh pn

ω) +
(

Ξh pn
ω − pn

ω,h

)
= ξn

p + θn
p , (57)

φn
ω − φn

ω,h = (φn
ω −Φhφn

ω) +
(

Φhφn
ω − φn

ω,h

)
= ξn

φ + θn
φ,

where the subscript ω is temporarily omitted.
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To increase the convergence order in the time variable on the first and second time
layers, a smaller time step in the intervals (0, t1) and (t1, t2) is chosen. Specifically, assuming
that L is the smallest integer such that L ≥ τ

2
ν−4 , we introduce the substep τ1 such that

τ1 =
τ

L
= τ

6−ν
4−ν , (58)

where ν = max{α, β}.
Let us first consider the case of n = 1, 2.

Lemma 7. Let
(

un
ω,h, pn

ω,h, φn
ω,h

)
∈ X f h ×Q f h ×Qph be the solution of Problem 4, and

(un
ω, pn

ω, φn
ω) ∈ X f ×Q f ×Qp be the solution of Problem 3. Then, the following estimate holds for

n = 1, 2 under Assumptions 1 and 2:

∥∥∥un
ω − un

ω,h

∥∥∥2

Ω f
+
∥∥∥φn

ω − φn
ω,h

∥∥∥2

Ωp
+ τ

6ν1−ν2
1

4−ν1

∥∥∥∇(un−1/2
ω − un−1/2

ω,h

)∥∥∥2

Ω f

+τ
6ν1−ν2

1
4−ν1

∥∥∥∇(φn−1/2
ω − φn−1/2

ω,h

)∥∥∥2

Ωp

≤ Cα,β

(
τ

6ν1−ν2
1

4−ν1

(
h2l+1 + h2m+1

)
+ h2l+2 + h2m+2 + τ6−ν1

)
,

where ν1 = max{α, β} and l and m are defined in (28).

Proof. Consider the difference between the identities (26) and (29) with the substep τ1.
Then, use the notation (57) and choose (vh, qh, ψh) =

(
θn−1/2

u , θn−1/2
p , θn−1/2

φ

)
to obtain(

∆ α
τ1

θn−1/2
u , θn−1/2

u

)
Ω f

+ g
(

S∆ β
τ1

θn−1/2
φ , θn−1/2

φ

)
Ωp

+
(

µ∇θn−1/2
u ,∇θn−1/2

u

)
Ω f

+ g
(
Kω∇θn−1/2

φ ,∇θn−1/2
φ

)
Ωp

+ µ
d−1

∑
i=1

∫
I

γi,ω

(
θn−1/2

u ·mi

)2
ds

= −
(

∆ α
τ1

ξn−1/2
u , θn−1/2

u

)
Ω f
− g
(

S∆ β
τ1

ξn−1/2
φ , θn−1/2

φ

)
Ωp

+HI

(
ξn−1/2

u , θn−1/2
φ

)
−HI

(
θn−1/2

u , ξn−1/2
φ

)
+HI

(
θn−1/2

u , rn−1/2
2

)
+HI

(
rn−1/2

4 , θn−1/2
φ

)
− µ

d−1

∑
i=1

∫
I

γi,ω

(
ξn−1/2

u ·mi

)(
θn−1/2

u ·mi

)
ds

+
(

rn−1/2
11 , θn−1/2

u

)
Ω f

+
(

rn−1/2
12 , θn−1/2

φ

)
Ωp

+ g
(
Kω∇rn−1/2

5 ,∇θn−1/2
φ

)
Ωp

+ µ
d−1

∑
i=1

∫
I

γi,ω

(
rn−1/2

3 ·mi

)(
θn−1/2

u ·mi

)
ds. (59)

Estimate the terms in (59) using the technique applied in Lemma 5. For the first and
second terms on the left-hand side of (59), we have:

(
∆ α

τ1
θ1/2

u , θ1/2
u

)
Ω f

+ g
(

S∆ β
τ1

θ1/2
φ , θ1/2

φ

)
Ωp

=
1
4

τ−α
1 δ

(α)
1,1

ς
(α)
0

∥∥∥θ1
u

∥∥∥2

Ωp
+

τ
−β
1 δ

(β)
1,1

ς
(β)
0

gS
∥∥∥θ1

φ

∥∥∥2

Ωp

,

(
∆ α

τ1
θ3/2

u , θ3/2
u

)
Ω f

+ g
(

S∆ β
τ1

θ3/2
φ , θ3/2

φ

)
Ωp
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≥
τ−α

1

8ς
(α)
0

(
δ
(α)
2,2

∥∥∥θ2
u

∥∥∥2

Ω f
− Cα

∥∥∥θ1
u

∥∥∥2

Ω f

)
+

gSτ
−β
1

8ς
(β)
0

(
δ
(β)
2,2

∥∥∥θ2
φ

∥∥∥2

Ωp
− Cβ

∥∥∥θ1
φ

∥∥∥2

Ωp

)
.

For the third, fourth, and fifth terms, we have:(
µ∇θn−1/2

u ,∇θn−1/2
u

)
Ω f

+ g
(
Kω∇θn−1/2

φ ,∇θn−1/2
φ

)
Ωp

≥ µ
∥∥∥∇θn−1/2

u

∥∥∥2

Ω f
+ gkmin

∥∥∥∇θn−1/2
φ

∥∥∥2

Ωp
,

−µ
d−1

∑
i=1

∫
I

γi,ω

(
θn−1/2

u ·mi

)2
ds ≤ µγmax

i CtrCP, f

∥∥∥∇θn−1/2
u

∥∥∥2

Ω f
.

Considering that ξ0
u = 0 and ξ0

φ = 0, the first term on the right-hand side of (59) is
estimated as follows:

−
(

∆ α
τ1

ξ1/2
u , θ1/2

u

)
Ω f
− g
(

S∆ β
τ1

ξ1/2
φ , θ1/2

φ

)
Ωp

≤
ετ−α

1 δ
α
1,1

4ς
(α)
0

∥∥∥θ1
u

∥∥∥2

Ω f
+

ετ
−β
1 gSδ

β
1,1

4ς
(β)
0

∥∥∥θ1
φ

∥∥∥2

Ωp
+ Cατ−α

1

∥∥∥ξ1
u

∥∥∥2

Ω f
+ Cβτ

−β
1

∥∥∥ξ1
φ

∥∥∥2

Ωp
,

−
(

∆α
τξ3/2

u , θ3/2
u

)
Ω f
− g
(

S∆β
τξ3/2

φ , θ3/2
φ

)
Ωp

≤
εδ

α
2,2τ−α

1

8ς
(α)
0

∥∥∥θ2
u

∥∥∥2

Ω f
+

εδ
α
2,2τ−α

1

8ς
(α)
0

∥∥∥θ1
u

∥∥∥2

Ω f
+ Cατ−α

1

2

∑
s=1
‖ξs

u‖
2
Ω f

+
gSεδ

β
2,2τ
−β
1

8ς
(β)
0

∥∥∥θ2
φ

∥∥∥2

Ωp
+

gSεδ
β
2,2τ
−β
1

8ς
(β)
0

∥∥∥θ1
φ

∥∥∥2

Ωp
+ Cβτ

−β
1

2

∑
s=1

∥∥∥ξs
φ

∥∥∥2

Ωp
.

The remaining terms are estimated as follows:

HI

(
ξn−1/2

u , θn−1/2
φ

)
−HI

(
θn−1/2

u , ξn−1/2
φ

)
+HI

(
θn−1/2

u , rn−1/2
2

)
+HI

(
rn−1/2

4 , θn−1/2
φ

)
≤ 2εµ

∥∥∥∇θn−1/2
u

∥∥∥2

Ω f
+ 2εgkmin

∥∥∥∇θn−1/2
φ

∥∥∥2

Ωp

+C
(∥∥∥ξn−1/2

u

∥∥∥
Ω f

∥∥∥∇ξn−1/2
u

∥∥∥
Ω f

+
∥∥∥ξn−1/2

φ

∥∥∥
Ωp

∥∥∥∇ξn−1/2
φ

∥∥∥
Ωp

)
+C
(∥∥∥rn−1/2

2

∥∥∥
Ωp

∥∥∥∇rn−1/2
2

∥∥∥
Ωp

+
∥∥∥rn−1/2

4

∥∥∥
Ω f

∥∥∥∇rn−1/2
4

∥∥∥
Ω f

)
,

µ
d−1

∑
i=1

∫
I

γi,ω

(
ξn−1/2

u ·mi

)(
θn−1/2

u ·mi

)
ds ≤ C

∥∥∥ξn−1/2
u

∥∥∥
Ω f

∥∥∥∇ξn−1/2
u

∥∥∥
Ω f

+ εµ
∥∥∥∇θn−1/2

u

∥∥∥2

Ω f
,

(
rn−1/2

11 , θn−1/2
u

)
Ω f
≤ C

∥∥∥rn−1/2
11

∥∥∥2

Ω f
+ εµ

∥∥∥∇θn−1/2
u

∥∥∥2

Ω f
,

(
rn−1/2

12 , θn−1/2
φ

)
Ωp
≤ C

∥∥∥rn−1/2
12

∥∥∥2

Ωp
+ εgkmin

∥∥∥∇θn−1/2
φ

∥∥∥2

Ωp
,

g
(
Kω∇rn−1/2

5 ,∇θn−1/2
φ

)
Ωp
≤ C

∥∥∥∇rn−1/2
5

∥∥∥2

Ωp
+ εgkmin

∥∥∥∇θn−1/2
φ

∥∥∥2

Ωp
,

µ
d−1

∑
i=1

∫
I

γi,ω

(
rn−1/2

3 ·mi

)(
θn−1/2

u ·mi

)
ds ≤ C

∥∥∥∇rn−1/2
3

∥∥∥2

Ω f
+ εµ

∥∥∥∇θn−1/2
u

∥∥∥2

Ω f
.
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By taking into account the obtained inequalities and approximation properties (28),
we obtain after elementary transformations that

τ−α
1

∥∥∥θ1
u

∥∥∥2

Ω f
+ τ

−β
1

∥∥∥θ1
φ

∥∥∥2

Ωp
+
∥∥∥∇θ1/2

u

∥∥∥2

Ω f
+
∥∥∥∇θ1/2

φ

∥∥∥2

Ωp

≤ Cα,β

(
τ−α

1 h2l+2 + τ
−β
1 h2m+2 + h2l+1 + h2m+1 + τ4−2α

1 + τ
4−2β
1

)
(60)

and
τ−α

1

∥∥∥θ2
u

∥∥∥2

Ω f
+ τ

−β
1

∥∥∥θ2
φ

∥∥∥2

Ωp
+
∥∥∥∇θ3/2

u

∥∥∥2

Ω f
+
∥∥∥∇θ3/2

φ

∥∥∥2

Ωp

≤ Cα,β

(
τ−α

1

∥∥∥θ1
u

∥∥∥2

Ω f
+ τ

−β
1

∥∥∥θ1
φ

∥∥∥2

Ωp
+ h2m+1 + h2l+1 + τ−α

1 h2l+2
)

+Cα,β

(
τ
−β
1 h2m+2 + τ4−2α

1 + τ
4−2β
1

)
. (61)

Combining the estimates (60) and (61) yields

‖θn
u‖

2
Ω f

+
∥∥∥θn

φ

∥∥∥
Ωp

+ τν1
1

(∥∥∥∇θn−1/2
u

∥∥∥2

Ω f
+
∥∥∥∇θn−1/2

φ

∥∥∥2

Ωp

)

≤ Cα,β

(
τν1

1

(
h2l+1 + h2m+1

)
+ h2l+2 + h2m+2 + τ4−ν1

1

)
,

where ν1 = max{α, β}. Finally, taking into account the relation (58), we obtain the assertion
of the lemma.

We now prove the main result of this section.

Theorem 2. Suppose that 0 < α ≤ β < 1 and denote ν = β − α. Let
(

un
ω,h, pn

ω,h, φn
ω,h

)
∈

X f h×Q f h×Qph be the solution of Problem 4, and (un
ω, pn

ω, φn
ω) ∈ X f ×Q f ×Qp be the solution

of Problem 3, n ≥ 1. Then, the following estimate is valid under Assumptions 1 and 2:

τν
∥∥∥un

ω − un
ω,h

∥∥∥2

Ω f
+
∥∥∥φn

ω − φn
ω,h

∥∥∥2

Ωp
+ τβ

∥∥∥∇(un−1/2
ω − un−1/2

ω,h

)∥∥∥2

Ω f

+τβ
∥∥∥∇(φn−1/2

ω − φn−1/2
ω,h

)∥∥∥2

Ωp
≤ Cα,β

(
τ

2β(5−2β)
4−β

(
h2m+1 + h2l+1

)
+ τν−1h2l+2

)
+Cα,β

(
τ−1h2m+2 + τβh2l + τβh2m + τ6−2α+β + τ6−β

)
, (62)

which implies the convergence of the approximate solution to the solution of the differential problem,
where l and m are defined in (28). In the case of 0 < β ≤ α < 1 and ν1 = α− β:∥∥∥un

ω − un
ω,h

∥∥∥2

Ω f
+ τν1

∥∥∥φn
ω − φn

ω,h

∥∥∥2

Ωp
+ τα

∥∥∥∇(un−1/2
ω − un−1/2

ω,h

)∥∥∥2

Ω f

+τα
∥∥∥∇(φn−1/2

ω − φn−1/2
ω,h

)∥∥∥2

Ωp
≤ Cα,β

(
τ

2α(5−2α)
4−α

(
h2m+1 + h2l+1

)
+ τν1−1h2l+2

)
+Cα,β

(
τ−1h2m+2 + ταh2l + ταh2m + τ6+α−2β + τ6−α

)
. (63)

Proof. Subtract (30) from (27), use the notation (57), then take (vh, qh, ψh) =
(

θn
u, θn

p , θn
φ

)
to

obtain

(∆α
τθn

u, θn
u)Ω f

+ g
(

S∆β
τθn

φ, θn
φ

)
Ωp

+ (µ∇θn
u,∇θn

u)Ω f
+ g
(
K∇θn

φ,∇θn
φ

)
Ωp
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+ µ
d−1

∑
i=1

∫
I

γi(θ
n
u ·mi)(θ

n
u ·mi)ds

+HI

(
θn

u, 3θn−1
φ − 3θn−2

φ + θn−3
φ

)
−HI

(
3θn−1

u − 3θn−2
u + θn−3

u , θn
φ

)
+ µ

d−1

∑
i=1

∫
I
(γi,ω − γi)

((
3θn−1

u − 3θn−2
u + θn−3

u

)
·mi

)
(θn

u ·mi)ds

+ g
((

Kω −K
)
∇
(

3θn−1
φ − 3θn−2

φ + θn−3
φ

)
,∇θn

φ

)
Ωp

= −(∆α
τξn

u, θn
u)Ω f

− g
(

S∆β
τξn

φ, θn
φ

)
Ωp

+HI

(
3ξn−1

u − 3ξn−2
u + ξn−3

u , θn
φ

)
−HI

(
θn

u, 3ξn−1
φ − 3ξn−2

φ + ξn−3
φ

)
+ µ

d−1

∑
i=1

∫
I
(γi,ω − γi)

((
3ξn−1

u − 3ξn−2
u + ξn−3

u

)
·mi

)
(θn

u ·mi)ds

− g
((

Kω −K
)
∇
(

3ξn−1
φ − 3ξn−2

φ + ξn−3
φ

)
,∇θn

φ

)
Ωp

− µ
d−1

∑
i=1

∫
I

γi(ξ
n
u ·mi)(θ

n
u ·mi)ds

+
(

rn
12, θn

φ

)
Ωp

+HI

(
rn

4 , θn
φ

)
+HI(θ

n
u, rn

2 ) + g
((

Kω −K
)
∇rn

5 ,∇θn
φ

)
Ωp

+ (rn
11, θn

u)Ω f
+ µ

d−1

∑
i=1

∫
I
(γi,ω − γi)(r

n
3 ·mi)(θ

n
u ·mi)ds. (64)

Let us estimate the terms in (64). By using the technique applied in Lemma 7, one
obtains

τ−α(1− ε)‖θn
u‖

2
Ω f

+ τ−β(1− ε)
∥∥∥θn

φ

∥∥∥2

Ωp

+µ
(

1− ηmaxCtrCP, f − 7ε
)
‖∇θn

u‖
2
Ω f

+ gkmin(1− 7ε)
∥∥∥∇θn

φ

∥∥∥2

Ωp

≤ τ−αχα

n

∑
s=1

∣∣∣δ(α)n,n−s

∣∣∣∥∥θn−s
u
∥∥2

Ω f
+ τ−βχβ

n

∑
s=1

∣∣∣δ(β)
n,n−s

∣∣∣∥∥∥θn−s
φ

∥∥∥2

Ωp

+C
n−1

∑
s=n−3

(
‖∇θs

u‖
2
Ω f

+
∥∥∥∇θs

φ

∥∥∥2

Ωp

)
+ Cατ−α

n

∑
s=0
‖ξs

u‖
2
Ω f

+ Cβτ−β
n

∑
s=0

∥∥∥ξs
φ

∥∥∥2

Ωp

+C
n−1

∑
s=n−3

‖∇ξs
u‖

2
Ω f

+ C
n−1

∑
s=n−3

∥∥∥∇ξs
φ

∥∥∥2

Ωp
+ C‖ξn

u‖Ω f
‖∇ξn

u‖Ω f

+C
(
‖rn

11‖
2
Ω f

+ ‖rn
12‖

2
Ωp

+ ‖∇rn
2‖

2
Ωp

+ ‖∇rn
3‖

2
Ω f

+ ‖∇rn
4‖

2
Ω f

+ ‖∇rn
5‖

2
Ωp

)
.

Applying Assumption (40) and using the technique similarly to obtaining inequality (53),
we arrive at the inequality

τ−α‖θn
u‖

2
Ω f

+ τ−β
∥∥∥θn

φ

∥∥∥2

Ωp
+ ‖∇θn

u‖
2
Ω f

+
∥∥∥∇θn

φ

∥∥∥2

Ωp

≤ Cα,β

2

∑
s=0

∣∣∣δ(α)n,s

∣∣∣(τ−α‖θs
u‖

2
Ω f

+ τ−β
∥∥∥θs

φ

∥∥∥2

Ωp

)

+C′α,β

n−1

∑
s=3

∣∣∣δ(α)n,s

∣∣∣(τ−α‖θs
u‖

2
Ω f

+ τ−β
∥∥∥θs

φ

∥∥∥2

Ωp
+ ‖∇θs

u‖
2
Ω f

+
∥∥∥∇θs

φ

∥∥∥2

Ωp

)
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+Cα,β

(
τ−α−1h2l+2 + τ−β−1h2m+2 + h2l + h2m + τ6−2α + τ6−2β

)
.

By utilizing the result of Lemma 7 and taking into account the fact that α ≤ β, we
obtain

τ−α‖θn
u‖

2
Ω f

+ τ−β
∥∥∥θn

φ

∥∥∥2

Ωp
+ ‖∇θn

u‖
2
Ω f

+
∥∥∥∇θn

φ

∥∥∥2

Ωp

≤ Cα,β

n−1

∑
s=3

∣∣∣δ(α)n,s

∣∣∣(τ−α‖θs
u‖

2
Ω f

+ τ−β
∥∥∥θs

φ

∥∥∥2

Ωp
+ ‖∇θs

u‖
2
Ω f

+
∥∥∥∇θs

φ

∥∥∥2

Ωp

)

+Cα,β

(
τ

6β−β2
4−β

(
h2m+1 + h2l+1

)
+ τ−α−1h2l+2 + τ−β−1h2m+2 + h2l + h2m + τ6−2α + τ6−2β

)
.

Finally, applying Lemma 4, we obtain

τ−α‖θn
u‖

2
Ω f

+ τ−β
∥∥∥θn

φ

∥∥∥2

Ωp
+ ‖∇θn

u‖
2
Ω f

+
∥∥∥∇θn

φ

∥∥∥2

Ωp

≤ Cα,β

(
τ

6β−β2
4−β

(
h2m+1 + h2l+1

)
+ τ−α−1h2l+2 + τ−β−1h2m+2 + h2l + h2m + τ6−2α + τ6−2β

)
,

which implies the estimate (62). Inequality (63) is proved in a similar way.

2.4. Implementation of the Discrete Scheme

Assume that the permeability tensor Kω, fractional derivative orders α, β, initial
data u0,ω, φ0,ω, functions S, f f ,ω, fp,ω, constants µ, αBJS, and discretization parameter τ are
known. Let us present the following Algorithm 1 for solving the ωth realization of the
discrete scheme (29) and (30).

Algorithm 1 Implementation of the ωth realization

1. For the first (n = 1) and second (n = 2) time layers:
1.1. Introduce subtime layers

{
tn,k = nτ + kτ1, k = 0, 1, . . . , L, n = 0, 1

}
within the time

intervals [0, t1] and [t1, t2] according to (58).

1.2. Calculate the coefficients δ
(ν)
n,s , ν ∈ {α, β}, s = 1, 2, . . . , n for the current n.

1.3. Find velocity un
ω,h ∈ X f and pressure pn

ω,h ∈ Q f in Ω f according to (29) with

v̂h = [vh, 0]>, or equivalently,

τ−αδ
α
n,n

ς
(α)
0

(
un

ω,h, vh

)
Ω f

+
(

µ∇un
ω,h,∇vh

)
Ω f

+ cI

(
vh, φn

ω,h

)
− µ

d−1

∑
i=1

∫
I

ηi,ω

(
un

ω,h ·mi

)
(vh ·mi)ds−

(
pn

ω,h,∇ · vh

)
Ω f

−
τ−αδ

α
n,n

ς
(α)
0

(
un−1

ω,h , vh

)
Ω f

+
τ−α

ς
(α)
0

n−1

∑
s=1

(
δ

α
n,s + δ

α
n,s+1

)(
us

ω,h − us−1
ω,h , vh

)
Ω f

(65)

+
(

µ∇un−1
ω,h ,∇vh

)
Ω f

+ cI

(
vh, φn−1

ω,h

)
−
(

pn−1
ω,h ,∇ · vh

)
Ω f

− µ
d−1

∑
i=1

∫
I

ηi,ω

(
un−1

ω,h ·mi

)
(vh ·mi)ds =

(
2fn−1/2

f ,ω , vh

)
Ω f

,(
qh,∇ · un

ω,h

)
Ω f

+
(

qh,∇ · un−1
ω,h

)
Ω f

= 0

for all (vh, qh) ∈ X f ×Q f .
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Algorithm 1 Cont.

1.4. Find piezometric head φn
ω,h ∈ Qp in Ωp according to (29) with v̂h = [0, ψh]

> and
qh = 0, or equivalently,

gτ−βδ
(β)
n,n

ς
(β)
0

(
Sφn

ω,h, ψh

)
Ωp

+ g
(
Kω∇φn

ω,h,∇ψh

)
Ωp
− cI

(
un

ω,h, ψh

)

+ g
(
Kω∇φn−1

ω,h ,∇ψh

)
Ωp
−

gτ−βδ
(β)
n,n

ς
(β)
0

(
Sφn−1

ω,h , ψh

)
Ωp
− cI

(
un−1

ω,h , ψh

)
(66)

+
gτ−β

ς
(β)
0

n−1

∑
s=1

(
δ
(β)
n,s + δ

(β)
n,s+1

)(
φs

ω,h − φs−1
ω,h , Sψh

)
Ωp

= 2g
(

f n−1/2
p,ω , ψh

)
Ωp

for all ψh ∈ Qp.
2. For the other time layers (n = 3, 4, . . . , N):
2.1. Calculate the coefficients δ

(ν)
n,s , s = 0, 1, . . . , n, ν ∈ {α, β}, the sums

n

∑
s=1

δ
(α)
n,n−s

(
un−s

ω,h , vh

)
Ω f

and
n

∑
s=1

δ
(β)
n,n−s

(
Sφn−s

ω,h , ψh

)
Ωp

(67)

entering (68) and (69) below, as well as finite element functions σun−1
ω,h , σφn−1

ω,h .

2.2. Find un
ω,h ∈ X f and pn

ω,h ∈ Q f in Ω f according to (30) with v̂h = [vh, 0]>, or
equivalently,

λ
(α)
0 τ−α

ς
(α)
0

(
un

ω,h, vh

)
Ω f

+
(

µ∇un
ω,h,∇vh

)
Ω f
− µ

d−1

∑
i=1

∫
Γ

ηi

(
un

ω,h ·mi

)
(vh ·mi)ds

+ cI

(
vh, σφn−1

ω,h

)
−

λ
(α)
0 τ−α

ς
(α)
0

n

∑
s=1

δ
(α)
n,n−s

(
un−s

ω,h , vh

)
Ω f
−
(

pn
ω,h,∇ · vh

)
Ω f

(68)

− µ
d−1

∑
i=1

∫
Γ
(ηi,ω − ηi)

(
σun−1

ω,h ·mi

)
(vh ·mi)ds =

(
fn

f ,ω, vh

)
Ω f

,(
qh,∇ · un

ω,h

)
Ω f

= 0

for all (vh, qh) ∈ X f ×Q f .

2.3. Find φn
ω,h ∈ Qp in Ωp according to (30) with v̂h = [0, ψh]

> and qh = 0, or equivalently,

g
λ
(β)
0 τ−β

ς
(β)
0

(
Sφn

ω,h, ψh

)
Ωp

+ g
(
K∇φn

ω,h,∇ψh

)
Ωp

− g
λ
(β)
0 τ−β

ς
(β)
0

n

∑
s=1

δ
(β)
n,n−s

(
Sφn−s

ω,h , ψh

)
Ωp
− cI

(
σun−1

ω,h , ψh

)
(69)

+ g
((

Kω −K
)
∇
(

σφn−1
ω,h

)
,∇ψh

)
Ωp

= g
(

f n
p,ω, ψh

)
Ωp

for all ψh ∈ Qp.

Further implementation of the finite element method is well known (see, for example, [44]).
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3. Results
3.1. Verification of the Convergence Order

In this section, we present the results of numerical experiments to illustrate their agree-
ment with theoretical studies. The aim of the first numerical tests is to determine the relation
between the empirical convergence order and the orders of fractional derivatives, as well as
to compare the empirical convergence order with the theoretical convergence order obtained
in Theorem 2. Consider the domains Ω f =

{
(x1, x2) ∈ R2 : 0 < x1 < π, −1 < x2 < 0

}
and Ωp =

{
(x1, x2) ∈ R2 : 0 < x1 < π, 0 < x2 < 1

}
. Consider Problem 1 in Ω = Ω f ∪Ωp

with the input data: αBJS = 10−4, µ = 10−6, g = S = 0.01, K = diag(k11, k22), where
the right-hand sides of the equations and the initial conditions are determined from the
following exact solution:

u = [u1, u2]
>,

u1 = k22t6
((

x2
1 − πx1 − 2

)
sin x1 + (2x1 − π) cos x1 + π

)
×
((
−π2

(
x2

2 − 1
)2

+ 12x2
2 − 4

)
sin(πx2) + 8πx2

(
x2

2 − 1
)

cos(πx2)

)
,

u2 = −t6k22x1(x1 − π)
(

x2
2 − 1

)
cos x1

(
4x2 sin(πx2) + π

(
x2

2 − 1
)

cos(πx2)
)

,

p = t6x1(x1 − π) cos x1

(((
g + µk22π2

)(
x2

2 − 1
)2
− 4µk22

(
3x2

2 − 1
))

sin(πx2)

−8πµk22x2

(
x2

2 − 1
)

cos(πx2)
)

,

φ = t6x1(x1 − π) cos x1

(
x2

2 − 1
)2

sin(πx2).

Let us describe the procedure for finding the empirical convergence order of the
numerical scheme. We consider a set of time discretization parameters τi, i = 1, 2, . . . shown
in the first column of Table 1 and generate a finite element mesh with a diameter hi such
that hi ≈ τi. Further, we solve Problem 1 several times with the specified discretization
parameters and evaluate the corresponding errors Ei. The empirical convergence orders
are then calculated using the formula

Θi =
log(Ei/Ei−1)

log(hi/hi−1)
, i = 2, 3, . . .

We employ Taylor–Hood elements in all numerical tests, which are known to satisfy
the LBB condition.

The stochastic nature of the problem requires that it be solved multiple times with
different input data. However, we confine ourselves to two simple cases in this section.
The first case assumes that only the components of the hydraulic conductivity tensor K
are random parameters. To be precise, consider a set of tensors {Kω}Nω

ω=1 with constant
diagonal components k11 = k22 = k, then solve Problem 1 Nω times for each Kω. The
results of calculating the errors for Nω = 3, as well as the empirical order of convergence,
are shown in Table 1.

It is assumed throughout the section that the orders of the fractional derivatives satisfy
the relation β ≤ α. This is due to the fact that the influence of memory effects is usually
insignificant in the domain of free fluid flow; therefore, α should be taken close to 1. A
completely different situation is usually observed in a porous medium, since its properties
change with time, which can significantly affect the nature of the flow in this medium [45].
Thus, we consider the case α = 0.98 and β = 0.6 for definiteness in this numerical test. For
convenience, the theoretical orders of convergence predicted in Theorem 2 are given in
parentheses for this choice of the parameters.
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Table 1. L2 errors and convergence orders obtained for random tensors Kω when α = 0.98 and
β = 0.6.

τ ≈ h
k11 = k22 = 0.05 k11 = k22 = 0.01 k11 = k22 = 0.005∥∥u1 − u1,h
∥∥

Ω f
Order

∥∥u2 − u2,h
∥∥

Ω f
Order

∥∥u3 − u3,h
∥∥

Ω f
Order

1/5 9.4221× 10−2 – 2.0260× 10−2 – 1.1025× 10−2 –
1/10 1.8790× 10−2 2.33 (' 2.30) 4.0021× 10−3 2.34 (' 2.30) 2.1937× 10−3 2.33 (' 2.30)
1/20 3.7822× 10−3 2.31 (' 2.30) 7.9993× 10−4 2.32 (' 2.30) 4.3934× 10−4 2.32 (' 2.30)
1/40 7.6509× 10−4 2.31 (' 2.30) 1.6205× 10−4 2.30 (' 2.30) 8.9009× 10−5 2.30 (' 2.30)

τ ≈ h
∥∥φ1 − φ1,h

∥∥
Ωp

Order
∥∥φ2 − φ2,h

∥∥
Ωp

Order
∥∥φ3 − φ3,h

∥∥
Ωp

Order

1/5 4.9494× 10−1 – 3.9874× 10−1 – 3.4272× 10−1 –
1/10 8.6492× 10−2 2.52 (' 2.49) 7.0000× 10−2 2.51 (' 2.49) 5.9839× 10−2 2.52 (' 2.49)
1/20 1.5203× 10−2 2.51 (' 2.49) 1.2358× 10−2 2.50 (' 2.49) 1.0553× 10−2 2.50 (' 2.49)
1/40 2.6973× 10−3 2.49 (' 2.49) 2.1954× 10−3 2.49 (' 2.49) 1.8773× 10−3 2.49 (' 2.49)

The second case assumes that only orders of fractional derivatives are random param-
eters. This assumption is due to the fact that the properties of media can be uncertain. More
precisely, the degree of influence of memory on the process of flow cannot be determined
unambiguously. Therefore, the study considers the simplest case, when the parameter
α = 0.98 is fixed, and the parameter β takes on different values βω, ω = 1, 2, . . . , Nω. The
corresponding calculation results are shown in Table 2.

Table 2. L2 errors and convergence orders obtained for a fixed α = 0.98, random parameters βω , and
k11 = k22 = 0.01.

τ ≈ h
β1 = 0.55 β2 = 0.60 β3 = 0.65∥∥u1 − u1,h
∥∥

Ω f
Order

∥∥u2 − u2,h
∥∥

Ω f
Order

∥∥u3 − u3,h
∥∥

Ω f
Order

1/5 1.8414× 10−2 – 2.0260× 10−2 – 2.2289× 10−2 –
1/10 3.6877× 10−3 2.32 (' 2.28) 4.0021× 10−3 2.34 (' 2.30) 4.3719× 10−3 2.35 (' 2.33)
1/20 7.4884× 10−4 2.30 (' 2.28) 7.9993× 10−4 2.32 (' 2.30) 8.6350× 10−4 2.34 (' 2.33)
1/40 1.5442× 10−4 2.28 (' 2.28) 1.6205× 10−4 2.30 (' 2.30) 1.7174× 10−4 2.33 (' 2.33)

τ ≈ h
∥∥φ1 − φ1,h

∥∥
Ωp

Order
∥∥φ2 − φ2,h

∥∥
Ωp

Order
∥∥φ3 − φ3,h

∥∥
Ωp

Order

1/5 4.0568× 10−1 – 3.9874× 10−1 – 3.9081× 10−1 –
1/10 7.1219× 10−2 2.51 (' 2.49) 7.0000× 10−2 2.51 (' 2.49) 6.8609× 10−2 2.51 (' 2.49)
1/20 1.2590× 10−2 2.50 (' 2.49) 1.2358× 10−2 2.50 (' 2.49) 1.2128× 10−2 2.50 (' 2.49)
1/40 2.2411× 10−3 2.49 (' 2.49) 2.1954× 10−3 2.49 (' 2.49) 2.1589× 10−3 2.49 (' 2.49)

It follows from the results of both computational experiments that the empirical
convergence order is in complete agreement with the theoretical order of convergence
predicted in Theorem 2.

3.2. Application of the Numerical Method to the Implementation of the Fractional-Order Stochastic
Stokes–Darcy Model

In the case of the stochastic Stokes–Darcy model with integer time derivatives, it
is known [3] that the assembly of the stiffness matrix is the main bottleneck of the com-
putational process due to the need to solve the problem multiple times with random
input parameters. Therefore, the well-known ensemble method significantly reduces the
computational complexity of the problem, since the same stiffness matrix is used for all
implementations of the ensemble.

As applied to the fractional-order generalization of the stochastic Stokes–Darcy model,
this statement is not entirely valid. This is due to the fact that the evaluation of the
discrete fractional derivatives (18) and (19) has a greater computational complexity than the
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assembly of the stiffness matrix. This complexity increases significantly with an increasing
time layer number. Let us demonstrate this statement with a simple example.

Consider a set of time discretization parameters τi equal to 1/10, 1/20, 1/40, 1/80,
and 1/160, generate finite element meshes such that τi ≈ hi, then solve the problem studied
in Section 3.1 with random hydraulic conductivity tensors Kω , ω = 1, 2, . . . , Nω . Note that
the time required for evaluation of the discrete fractional derivatives by (18) and (19), as
well as the construction of finite element functions for the terms σun

h and σφn
h , took nearly

10.9 milliseconds for h ≈ τ = 1/10 (Table 3), which is less than 0.2% of the total CPU time.
However, the calculation of the specified data on a finer grid, h ≈ τ = 1/160, required
approximately 76% of the total CPU time.

Table 3. Evaluation timings of discrete fractional derivatives in the case of Nω = 10.

τ ≈ h Degrees of Freedom
in
(
un

h; φn
h
) Evaluation of δ

(ν)
n,s

and δ
(ν)
n,s

Construction of FE
Functions σun

h and σφn
h

Construction of FE
Functions with Discrete
Fractional Derivatives

by (18) and (19)

Total

1/10 (2524; 1262) 48.1 µs 3.78 ms 6.98 ms 10.9 ms
1/20 (10, 004; 5002) 218 µs 19.5 ms 618 ms 638 ms
1/40 (40, 164; 20, 082) 599 µs 84.4 ms 7.23 s 7.32 s
1/80 (160, 964; 80, 482) 2 ms 2.71 s 111 s 114 s

1/160 (643, 204; 321, 602) 7.55 ms 37.1 s 1902 s 1939 s

Therefore, we extend Algorithm 1 such that the calculation of the discrete fractional
derivatives is performed simultaneously for all implementations of the ensemble before the
implementation of each time layer along with the ensemble algorithm proposed in [3,17].
The extended algorithm is presented in Algorithm 2.

Algorithm 2 Implementation of the stochastic problem

1. Set the deterministic input data of the problem
(
µ, S, αBJS

)
, the number of random

samples Nω, as well as the mean and variance of random parameters used to generate
random physical data.
2. Generate random parameters such as Kω , u0,ω , φ0,ω , f f ,ω , and fp,ω for ω = 1, 2, . . . , Nω .
3. For each sample number ω, find un

ω,h, pn
ω,h, and φn

ω,h at the first two time layers
according to Steps 1.1–1.4 of Algorithm 1.
4. For the other time layers (n = 3, 4, . . . , N):
4.1. Calculate in parallel the coefficients δ

(ν)
n,s , s = 0, 1, . . . , n, ν ∈ {α, β}, the sums (67), as

well as finite element functions σun−1
ω,h , σφn−1

ω,h for all ω = 1, 2, . . . , Nω.
4.2. Compute the entries of the stiffness matrix and right-hand side for ω = 1 according
to (68). Evaluate the right-hand side entries for the rest sample numbers ω = 2, 3, . . . , Nω .
Then solve the resulting Nω systems of equations with identical matrices.
4.3. Compute the entries of the stiffness matrix and right-hand side for ω = 1 according to
(69). Evaluate the right-hand side entries for the other sample numbers ω = 2, 3, . . . , Nω .
Then solve the resulting Nω systems of equations with identical matrices.
As a result of Steps 4.2 and 4.3, the solution on the nth time layer is obtained for all
realizations ω = 1, 2, . . . , Nω.
5. Based on the obtained Nω solutions of the stochastic problem, evaluate statistical
moments.

Note that Steps 4.2 and 4.3 in Algorithm 2 are also executed in parallel, since the
corresponding integral identities do not depend on each other.

Now let us analyze the results of some numerical tests conducted using the presented
algorithm. The numerical tests were carried out on a workstation with a 24-core Intel(R)
Xeon(R) E5-2650 processor with a clock speed of 2.20 GHz and 64 GB of RAM.
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We considered Nω = 1, 2, 5, 10, 50, 100, 500, and 1000 samples of random permeability
tensors. The discretization step was chosen to be τ = 0.1 and triangulation was generated
as in Section 3.1. Firstly, the problem was solved individually for all samples without
using the ensemble approach. The results of measuring the total time required to solve
the problems are given in the column “Serial Algorithm” of Table 4. It can be seen that the
implementation of the fractional-order stochastic Stokes–Darcy model took around 47 min
for 1000 random samples.

Then, we combined the ensemble approach and the technique of parallel evaluation
of the discrete fractional derivatives. It is evident from the results presented in the column
“Parallel Ensemble Algorithm” of Table 4 that the calculation time reduced to nearly 7 min
for the same number of samples. Thus, an almost seven-fold acceleration was achieved.

Table 4. Discrete fractional derivative evaluation timing (in seconds) in the case of τ = 1/10.

Nω Serial Algorithm Parallel Ensemble Algorithm Acceleration Rate

1 2.68 – –
2 6.81 3.71 1.83
5 13.45 5.15 2.61

10 24.52 6.51 3.76
50 120.15 28.04 4.28
100 276.73 53.45 5.18
500 1470.68 223.14 6.59

1000 2823.43 419.69 6.73

4. Discussion

Now let us make a few comments on the results obtained and outline future research
directions. As far as we know, a fractional-order stochastic generalization of the Stokes–
Darcy model is considered for the first time in our paper. Therefore, in the current work,
the main emphasis is on the construction of an efficient finite element method for the
implementation of this model. Note that the constructed method has a higher convergence
order in time than in original papers [3,6] due to the use of a special approximation of
fractional derivatives and some of the terms in a weak formulation. This was demonstrated
on a test problem with a known exact solution. The use of the approximation formula for the
fractional derivative presented in Lemma 1 did not allow achieving a higher convergence
order, unlike [29,31], where the equations contained integer time derivatives. This limitation
can be removed by utilizing higher-order approximations of fractional derivatives (see, for
example [46]). The authors believe that this study deserves a separate paper.

Since a significant part of the paper is devoted to a theoretical study of the constructed
method, little attention has been paid to the features of the fractional-order stochastic
Stokes–Darcy model. In particular, in subsequent works, the authors intend to study the
influence of the orders of fractional derivatives on the fluid flow pattern. In addition, it
will be interesting to study the influence of the spatial fractional derivative orders on the
fluid flow in fractal porous media. In a previous study [47], the authors constructed a
numerical method for a model space-fractional partial differential equation and proposed a
parallel algorithm for its implementation. In future papers, the authors intend to conduct a
comprehensive analysis of the time–space fractional generalization of the Stokes–Darcy
model and address its parallel implementation.

When implementing a parallel ensemble approach on a test example, an almost seven-
fold acceleration of the calculation was obtained. This result is close to the result obtained
in [3], where the ensemble approach saved a massive 88% of CPU time in a stochastic
problem with integer time derivatives. In contrast to the above work, in our problem most
of the CPU time is spent on calculating the discrete fractional derivative with an increase in
the number of time layers and the number of degrees of freedom. In subsequent papers,
parallelization issues using other parallel architectures will be considered in more detail.
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This will make it possible to apply the proposed numerical method to model more realistic
fluid flows in the case of uncertainties based on the fractional-order stochastic model.
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