Fejér-Type Inequalities for Some Classes of Differentiable Functions
Abstract
:1. Introduction
- : open interval of ;
- : the space of (real-valued) continuous functions on ;
- : the space of continuously differentiable functions on ;
- : the space of twice continuously differentiable functions on ;
- : open subset of ;
- : the space of twice continuously differentiable functions on ;
- : the Laplacian operator in ;
- ∇: the gradient operator in ;
- : the inner product in ;
- : the Euclidean norm in ;
- , : see (5);
- , : see (7).
2. Fejér-Type Inequalities on an Interval
2.1. The Set of Functions
- (i)
- ;
- (ii)
- for all with , we have
- (i)
- ,
- (ii)
- is a decreasing function in ,(12) holds.
2.2. The Set of Functions
- (i)
- ;
- (ii)
- for all with , we have
2.3. The Set of Functions
- (i)
- ;
- (ii)
- for all with , we have
- (i)
- ;
- (ii)
- for all with , we have
3. Fejér-Type Inequalities on a Disk
- (i)
- ;
- (ii)
- for all , we have
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fejér, L. Über die Fourierreihen, II. Math. Naturwiss. Anz. Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale défine. Mathesis 1883, 3, 1–82. [Google Scholar]
- Dragomir, S.S.; Pearce, C. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs: Melbourne, Australia, 2000. [Google Scholar]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach; Springer Science + Business Media, Inc.: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Abramovich, S.; Persson, L.E. Fejér and Hermite-Hadamard type inequalities for N-quasiconvex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef]
- Bombardelli, M.; Varošanec, S. Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef]
- Rostamian Delavar, M. On Fejér’s inequality: Generalizations and applications. J. Inequal. Appl. 2023, 1, 42. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Cho, Y.J.; Kim, S.S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 2000, 245, 489–501. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Torebek, B.T. Some Hermite-Hadamard type inequalities in the class of hyperbolic p-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3413–3423. [Google Scholar] [CrossRef]
- Hsu, K.C. Fejér-type inequalities for Lipschizian functions and their applications. Filomat 2017, 31, 4531–4542. [Google Scholar] [CrossRef]
- Hwang, D.Y. Some inequalities for differentiable convex mapping with applications to weighted midpoint formula and higher moments of random variables. Appl. Math. Comput. 2014, 232, 68–75. [Google Scholar] [CrossRef]
- Jaǩsić, R.; Kvesić, L.; Pečarić, J.E. On weighted generalization of the Hermite-Hadamard inequality. Math. Inequal. Appl. 2015, 18, 649–665. [Google Scholar]
- Niculescu, C.P.; Persson, L.-E. Old and new on the Hermite-Hadamard inequality. Real Anal. Exch. 2003, 29, 663–685. [Google Scholar] [CrossRef]
- Obeidat, S.; Latif, M.A.; Dragomir, S.S. Fejeŕ and Hermite-Hadamard type inequalities for differentiable h-convex and quasi convex functions with applications. Miskolc Math. Notes 2022, 23, 401–415. [Google Scholar] [CrossRef]
- Samet, B. A convexity concept with respect to a pair of functions. Numer. Funct. Anal. Optim. 2022, 43, 522–540. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. On new Hermite Hadamard Fejér type integral inequalities. Stud. Univ. Babeş Bolyai. Math. 2012, 57, 377–386. [Google Scholar]
- de la Cal, J.; Cárcamo, J. Multidimensional Hermite-Hadamard inequalities and the convex order. J. Math. Anal. Appl. 2006, 324, 248–261. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Hadamard’s inequality on a disk. J. Inequal. Pure Appl. Math. 2000, 1, 2. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Ineq. Appl. 2000, 3, 177–187. [Google Scholar] [CrossRef]
- Guessab, A.; Semisalov, B. Optimal general Hermite-Hadamard-type inequalities in a ball and their applications in multidimensional numerical integration. Appl. Numer. Math. 2021, 170, 83–108. [Google Scholar] [CrossRef]
- Mihǎilescu, M.; Niculescu, C.P. An extension of the Hermite-Hadamard inequality through subharmonic functions. Glasg. Math. J. 2007, 49, 509–514. [Google Scholar] [CrossRef]
- Lu, J.-F.; Steinerberger, S. A dimension-free Hermite-Hadamard inequality via gradient estimates for the torsion function. Proc. Am. Math. Soc. 2020, 148, 673–679. [Google Scholar] [CrossRef]
- Steinerberger, S. The Hermite-Hadamard inequality in higher dimensions. J. Geom. Anal. 2020, 30, 466–483. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samet, B. Fejér-Type Inequalities for Some Classes of Differentiable Functions. Mathematics 2023, 11, 3764. https://doi.org/10.3390/math11173764
Samet B. Fejér-Type Inequalities for Some Classes of Differentiable Functions. Mathematics. 2023; 11(17):3764. https://doi.org/10.3390/math11173764
Chicago/Turabian StyleSamet, Bessem. 2023. "Fejér-Type Inequalities for Some Classes of Differentiable Functions" Mathematics 11, no. 17: 3764. https://doi.org/10.3390/math11173764
APA StyleSamet, B. (2023). Fejér-Type Inequalities for Some Classes of Differentiable Functions. Mathematics, 11(17), 3764. https://doi.org/10.3390/math11173764