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Abstract: As the main methods of the coronavirus disease (COVID-19) transmission are air and
physical contact, actions to mitigate and suppress its spread must be developed in order to change
population dynamics and provide efficient control strategies. Here, these actions are described as a
simple heuristic framework to establish public policies. Two control systems were studied: the first
organized in the form of an algorithm stratified into three levels and the second as a minimization
problem similar to optimal control strategies, applied to both social distancing and vaccination. The
possible effects of these actions are modeled and applied to an extension of the Susceptible - Infected -
Removed (SIR) compartmental model. The control system is developed, which is organized in the
form of an algorithm stratified into three levels. These levels intend to represent social distancing
strategies implemented by sanitary authorities around the globe, representing stronger or weaker
grades of isolation intensity according to the ability of the healthcare system to cope with symptomatic
individuals. The algorithm control is applied in a simulation, and the results give evidence of the
effectiveness of the procedures adopted against the coronavirus. The model dynamics are analyzed
and validated with simulations considering parameters obtained from epidemiological data from
Brazil and Uruguay and in a more detailed way for three Brazilian states: São Paulo, Minas Gerais
and Rio de Janeiro. The model was validated using cumulative data on cases and deaths. For cases of
death, the results were satisfactory, while for case data, the response was reasonable, considering
the possibility of adding delays or variations in parameters in the model. In addition, the effective
reproduction number was proposed for the cities studied in Brazil, the result being relevant because
it has a qualitative behavior similar to that published by official centers. This paper also discusses the
implementation and optimization of social distancing and vaccination control strategies, considering
different parameters and their effects on reducing the number of cases and deaths. Model simulations
present promising results for developing strategies to attack COVID-19 dissemination.
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1. Introduction

At the beginning of 2020, the epidemic of a new disease changed the history of
humanity; it was responsible for a global health and economic crisis. COVID-19 is a
new coronavirus progeny, SARS-CoV-2, first reported in Wuhan, China, on 31 December
2019 [1,2]. A few months later, a report published by the World Health Organization
qualified the disease as a pandemic due to its prevalence worldwide [3].

Transmission of SARS-CoV-2 occurs predominantly through the physical transporta-
tion of contaminated droplets of secretions from an infected individual to an uninfected
person, although the role of aerosol transmission and contaminated surface contact is
currently unknown [4]. It is a disease with lower lethality when compared with its high
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transmission capacity, with the spreading aggravated by the average incubation time and
due to both symptomatic and asymptomatic people being able to transmit the disease [5].

The disease has several forms of manifestation, and most patients have rapid resolu-
tion, many of whom are asymptomatic. The initial symptoms are fever, cough and breathing
difficulties. However, some patients with comorbidities may develop complications [6],
requiring hospitalization, intensive treatment and mechanical respiratory ventilators, pro-
voking a severe crisis in the healthcare system caused by excessive hospitalizations.

Different interventions aimed to slow the rapid evolution of the pandemic were
adopted by many countries to avoid overcrowded hospitals. Strategies such as isolation of
infected patients, mask-wearing, regular hand hygiene, social distancing, quarantine and
total blocking of areas [7–10] were adopted worldwide.

Another public strategy may be associated with the impact of advertisements on
social networks in combating the pandemic, in which it can be assumed that awareness
among susceptible individuals alters collective behaviors, resulting in a reduction in the
transmission of this infectious agent [11] or community awareness and global information
campaigns [12].

Mathematical models are used to simulate the transmission of coronavirus and are
helpful to understanding the dynamical behavior of an infection, providing tools to
estimate the duration and peaks of infection outbreaks and designing efficient control
strategies [13–15]. Epidemic mathematical models are present in public health literature [16,17]
related to several diseases [18–26].

Macroscopic compartmental models for disease spreading that have been a field of
research since the Kermack and McKendrick proposition [27–29], with a dynamic model
that classifies population individuals into groups such as Susceptible - Infected - Removed
(SIR) or Susceptible - Exposed - Infected - Removed (SEIR) models, could be refined by con-
tact tracing and hospitalization strategies to explain the COVID-19 outbreak [30]. Several
modifications of the SIR model [31–33] have been proposed for epidemic modeling [34–37],
which have been useful to public health policy makers [38].

More complex mathematical models using the stochastic approach and estimating data
based on outbreak probability have been studied for cases in Wuhan and other [39] locations.
Another compartmental model proposed for case studies in India studied the dynamics of
disease propagation and predicts [40] outbreaks, yet for that country, the control theory
provides ideal strategies to maintain the disease outbreak [41]. Compartmental models that
address mitigation strategies for the transmission of COVID-19 beyond social distancing,
including blocking and closing educational institutions, are also studied in countries such as
Italy [42]. There are still models that consider the influence of environmental contamination
to investigate the dynamics of viral propagation [43].

Due to the urgency of COVID-19, researchers worldwide accepted the challenge
of outlining mathematical models for this new epidemic. Several mathematical mod-
els have already been formulated for the population dynamics of COVID-19 in several
countries [10,44–51], and pioneer methods are structured upon machine learning and sta-
tistical models, such as decision trees and linear regression [52] or even more powerful ones
like artificial neural networks [53,54], showing promising results. Machine learning has
also been used to assist in early detection [55] and prediction of severity [56] of COVID-19.

However, this paper considers a more classical and established approach, using the
adjustment of social contact rate characterized by the control of the parameter β to mitigate
COVID-19 spread. For this, a three-level controller is implemented and its relationship
to social distance validated. An extension of the compartmental SIR model is considered,
the Susceptible–Infected–Removed–Dead (SIRD) model, and the method is inspired by
how control theory can help us reduce COVID-19 propagation [57].

This article’s main motivation is the study of strategies to control the spread of the
SARS-CoV-2 virus and, for that, it considers public policies based on social distancing and
vaccination. This work is validated with cumulative data on cases and deaths from some
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regions. In addition, the basal reproduction number and the effective reproduction number
are calculated and compared with data from the COVID-19 observatory.

Finally, the implementation and optimization of these strategies is discussed, consid-
ering different parameters and their effects in reducing the number of cases and deaths
to indicate public policies concerning the health system.

The remainder of this paper is ordered as follows: In Section 2, the equations and
hypothesis of the model are presented. In Section 3, the analysis of model dynamics is
exhibited, the equilibrium points are determined, and the basic reproduction rate R0 for the
SIRD model is defined and analyzed with two simulations. Then, in Section 4, the model is
studied for the sake of establishing a baseline for the controller, with parameters derived
from Brazil and Uruguay. Section 5 presents the validation for the proposed model with
more detailed data for three Brazilian states. Finally, Section 6 outlines the controller, and
its effectiveness is investigated for a hypothetical scenario, followed by the control strategy
results in Section 7 and the more detailed control analysis for the states of São Paulo, Minas
Gerais and Riode Janeiro in Section 8. The conclusions are shown at the end, in Section 9.
All simulations are performed with MATLAB Simulink [58].

2. Model Formulation

The proposed model is a modification of the original SIR compartmental model [59],
including a dead population compartment, here called the Susceptible - Infected - Removed
- Dead (SIRD) model, shown in Figure 1. The model does not account for natural births and
deaths, as the Dead are only due to complications caused by coronavirus infection.

S I R

D

β γ

Ω

Figure 1. SIRD model.

Model parameters are described in Table 1. β is the average number of contacts that
result in contamination, per unit of time; γ is the recovery rate, i.e., the rate at which
individuals leave the infected compartment after recovering. Consequently, γ−1 represents
the recovery time [60]. Additionally, Ω is the fraction of the infected population that dies
per unit of time (mortality rate).

Table 1. Model parameters.

Parameter Parameter Description

β Average contact rate.
γ−1 Mean infectious period.
Ω Mortality rate.

As can be observed, the model presents some simplifications:

• A recovered individual should acquire immunity and does not return to the susceptible
compartment. Hence, they become “Removed” (“R” from SIRD);

• Parameters β, γ and Ω are considered to be constants, despite depending on individual
behavior, healthcare availability and age.
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Under the described conditions, the model dynamics can be written as

Ṡ = − βSI
N

,

İ =
βSI
N
− (γ + Ω)I,

Ṙ = γI,
Ḋ = ΩI.

(1)

with N = S(t) + I(t) + R(t) + D(t) and Ṡ(t) + İ(t) + Ṙ(t) + Ḋ(t) = 0.
As natural births and deaths are not taken into account, the total number of individuals

in the population is considered to be constant, and the dynamics of the dead compartment
can be written as a function of the other compartments:{

D = N − S− I − R,
Ḋ = −(Ṡ + İ + Ṙ).

(2)

Furthermore, the recovered compartment is dependent on the susceptible and infected
populations:

Ṙ = − γ

γ + Ω
(Ṡ + İ). (3)

Therefore, the system dynamics can be rewritten without the removed and dead
variables, without any loss of generality:

Ṡ = − βSI
N

,

İ =
βSI
N
− (γ + Ω)I.

(4)

3. System Dynamics Analysis
3.1. Equilibrium Conditions

For the proposed SIRD model, equilibrium points can be obtained by applying the
conditions Ṡ = 0 and İ = 0. By doing so, it can be concluded that every point of the form
(S∗, 0) is an equilibrium point.

Equilibria at I = 0 are called disease-free, as opposed to equilibria at I 6= 0, which are
called endemic [61].

3.2. Equilibrium Points Classification

In order to analyze the local stability of these points, the Hartman–Grobman theorem
is applied [62], and the general Jacobian (J) is constructed.

For (S, I) = (S∗, 0), the Jacobian is reduced to

J(S∗, 0) =

0 − βS∗

N

0
βS∗

N
− (γ + Ω)

. (5)

Hence, the eigenvalue set for the equilibrium points can be found by

λ(λ− βS∗

N
+ γ + Ω) = 0, (6)

Which gives

(0,
βS∗

N
− (γ + Ω)); (7)
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as the eigenvalue set. Considering that one of the eigenvalues is equal to zero, it is worth
noticing that the eigenvalue set obtained from the equilibrium points allows a local stability
analysis with three possibilities:

• If
βS∗

N
− (γ + Ω) > 0⇒ these fixed points are unstable [62]; so, there will be a growth

in cases for a small perturbation.

• If
βS∗

N
− (γ + Ω) < 0 ⇒ the center manifold theorem must be applied in order to

classify the stability condition.

Consequently, to proceed with the equilibrium stability analysis, all points satisfying
βS∗

N
− (γ + Ω) < 0 and S∗ > 0 are studied by applying the center manifold theorem.
Considering S∗ > 0, a new parameter τ > 0 is introduced in order to translate the

system so that the point (S* = τ,0) is the origin (0,0) of the new system. This is performed
because the center manifold theorem only refers to neighborhoods of the origin of the
corresponding analyzed system. Consequently, the rewritten system, with Z = S− S∗, can
be written as follows: 

Ż = − β(Z + τ)I
N

,

İ =
β(Z + τ)I

N
− (γ + Ω)I.

(8)

That is, studying the system (4) around (τ,0) is the same as studying the new system (8)
around (0,0). Nevertheless, the rewritten system does not possess the same physical
interpretation as the SIRD model. In addition, substitute parameters are introduced,φ =

β

N
,

α = γ + Ω,
(9)

in order to remove nonessential parameters regarding the interpretation of the stability
condition. Then, Ż = −φ(Z + τ)I,

İ = φ(Z + τ)I − αI.
(10)

Additionally, it is necessary to transform (10) into the form (A1), as shown in Appendix A,
by changing the basis into a basis of eigenvectors. Consequently,

u̇ = −( φ3τ2

(α− φτ)2 −
φ2τ

α− φτ
)v2 − (φ +

φ2τ

α− φτ
)uv,

v̇ = (φτ − α)v + φuv +
φ2τ

α− φτ
v2.

(11)

Therefore,

A = [0],
B = [φτ − α],

f (u, v) = −( φ3τ2

(α− φτ)2 −
φ2τ

α− φτ
)v2 − (φ +

φ2τ

α− φτ
)uv,

g(u, v) = φuv +
φ2τ

α− φτ
v2.

(12)
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To find h(u), as Appendix A shows, it is necessary to consider that the coordinates of
any point in the center manifold must satisfy the conditions

y = h(x),
|x| < δ,
h(0) = 0,
Dh(0) = ḣ(0) = 0,

(13)

from (A2), which substituting on (A1), gives{
ḣ(u)[Au + f (u, h(u))] = Bh(u) + g(u, h(u)) ⇐⇒
ḣ(u)[Au + f (u, h(u))]− Bh(u)− g(u, h(u)) = 0.

(14)

Now, after substituting (12) (with v = h(u)) into (14), it can be seen that h(u) = 0 is
a solution to the partial differential Equation (14). Then, the vector field restricted to the
center manifold is given by

u̇ = 0. (15)

Therefore, u = 0 is stable in (15). Thus, Theorem A2 from Appendix A guarantees that

(Z, I) = (0, 0) is stable for any parameter 0 ≤ τ <
N(γ + Ω)

β
) and, consequently, (S∗, 0) is

stable for the same set.

To complete the stability analysis, the case with S∗ =
N(γ + Ω)

β
is considered, i.e., the

center manifold theorem [62] is applied for:

•
βS∗

N
− (γ + Ω) = 0.

The point (S∗ =
N(γ + Ω)

β
,0) is the origin of the system (10) with parameter τ =

α

φ
.

In order to assess stability, a simulation is presented in Figure 2.

-6 -5 -4 -3 -2 -1 0 1 2 3

Susceptible

-0.6
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0.1553

Figure 2. Simulation around the origin for τ =
α

φ
.
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As can be seen, neighborhoods close to the origin with initial values I∗ < 0 are
unstable, as the trajectories point towards negative infinite. However, the system is only
defined for I∗ > 0, considering that there can be no negative infected, although Z can be
negative (as we translated the original system), and even a small disturbance would never
take it to a point with I∗ < 0. Consequently, it is a degenerated equilibrium [63].

3.3. Basic Reproduction Rate

The basic reproduction rate or R0 is defined as the average number of secondary
infections produced when one infected individual is introduced into a host population,
where almost everyone is susceptible (S ≈ N) [15,64]. For example, if the R0 for COVID-19
in a population is 5, then each new case is expected to produce 5 secondary infections,
assuming everyone around is susceptible.

Mathematically, R0 is a threshold for stability of a disease-free equilibrium and is
related to epidemic’s peak and final size [61].

Looking at the equation İ from (4) it can observed that, when S ≈ N, the signal of İ is
defined by β− (γ + Ω).

Therefore, for the SIRD model, R0 can be defined as

R0 =
β

γ + Ω
, (16)

such that, when R0 > 1, the equilibrium is locally unstable ( İ > 0) but stable if R0 < 1,
implying İ < 0.

3.4. Phase Portrait for Different Values of R0

Figures 3 and 4 show the phase portrait of the system for different values of R0,
specifically chosen to portray the only two possible outcomes.

Figure 3. Phase portrait for R0 = 3 (> 1).

In Figure 3, it is shown that, for R0 > 1, the number of infected initially grows, but,

as Ṡ < 0 in that situation, at some point
S∗

N
eventually becomes <

1
R0

, which implies İ < 0,

and the trajectory always ends up on the horizontal axis (I = 0). This result is known as the
herd immunity value.
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The interception point depends on the initial conditions. Therefore, there can be more
or fewer individuals that will never become infected in the course of the epidemic (final
number of susceptible at disease-free equilibrium).

Figure 4. Phase portrait for R0 = 0.5 < 1.

In Figure 4, with R0 < 1, the system points toward the horizontal axis much faster,
with the number of infected decreasing steeply at all times. This result is expected, as İ < 0
for R0 < 1.

4. Case Studies and Numerical Simulations

This section presents two case studies, first with parameters derived from Brazil,
followed by Uruguay. These two countries were chosen because of their different basic
reproduction number, as a result of particular population dynamics concerning the con-
tact rate β. For Brazil, R0 is estimated to be close to 2.82 [60], and for Uruguay, R0 is
close to 1.13 [65]. These values were obtained using early infections data, as shown in
Figures 5 and 6, and they are believed to present a scenario where there is no response to
the pandemic, both individually or systemically.

Figures 5 and 6 show how the SIRD model compares with real data from Brazil and
Uruguay in the early days of disease spread, with [66] as the data source.

The choice for the short time interval and period adopted is due to the emergence
of the public strategy of social distancing, which was implemented at the beginning
of the pandemic. In Figure 5, a smaller interval was also considered, since the data
collected for Brazil are data for the country as a whole. As regions have socioeconomic
and educational distinctions, they have different propagation dynamics and responses to
mitigation strategies.

Both graphs display a good fitting for initial data, with subsequent detachment be-
tween model and data, which suggests there is a change in behavior due to the implemen-
tation and effectiveness of isolation policies or individual confinement. In Section 4.1, we
use this set of parameters to simulate longer-term scenarios with no isolation that serve as
a reference for evaluating the control algorithm.
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Figure 5. SIRD model validation with real data from Brazil. R0 = 2.82, γ = 0.1508, Ω = 0.0045.

Figure 6. SIRD model validation with real data from Uruguay. R0 = 1.13, γ = 0.1508, Ω = 0.0045. The
date 2020-04-12 presents an anomaly in the dataset, with negative new cases.

4.1. Simulation for Brazil

First, the model was simulated considering the parameters for Brazil, i.e., N = 209.5 million
inhabitants, and I0 = 10 individuals are considered, with the results shown in Figure 7.

The chosen parameters conduct a simulation for a full-blown pandemic outbreak.
The last case ended about 120 days after the disease had begun being disseminated, as we
can see in Figure 7B,D, which shows a high number of dead at the end, about 2.71% of the
total population before the pandemic.

Figure 8 clearly shows the large proportion of the population that became infected at
some point. At the end, less than 10% never became infected.
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Figure 7. Brazilian case study with R0 = 2.82, γ = 0.1508, Ω = 0.0045. Considering: (A) Susceptible
population; (B) Infected population; (C) Recovered population and (D) Deceased population.
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Figure 8. Phase portrait for Brazil, R0 = 2.82—axis in million.

4.2. Simulation for Uruguay

The model was also simulated with parameters from Uruguay, i.e., N = 3.45 million
inhabitants, considering I0 = 10 individuals, and the results are shown in Figure 9.

As the R0 for Uruguay is lower than Brazil’s, there is a significant difference concerning
the dissemination of the virus. Figure 9 shows that the pandemic lasted much longer in
Uruguay than in Brazil. However, Uruguay had much fewer dead individuals in the end,
only about 0.64% of the total population before the pandemic.

The low amount of individuals that ever became infected in Uruguay is highlighted in
Figure 10, which is about 24% of the total population before the pandemic. Additionally,
the lower number of infected individuals suggests that having a lower R0 due to lower β
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(contact rate) is a good indicator of what proportion the virus spread will achieve. This fact
inspires the control algorithm used as reference for public employment polices, and it is
studied in the next section.
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Figure 9. Uruguay case study with R0 = 1.13, γ = 0.1508, Ω = 0.0045. Considering: (A) Susceptible
population; (B) Infected population; (C) Recovered population and (D) Deceased population.
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Figure 10. Phase portrait—Uruguay. I0 = 10 individuals.

5. Validation for the SIRD Model

In this study, we used one year of epidemiological data from the states of São Paulo,
Minas Gerais and Rio de Janeiro, starting on each state’s first day of infection, to validate
the SIRD model.
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First, the fitting process using the parameters that generate the curve that best fits the
data from the model was made using daily data. However, for this large volume of data,
the minimization algorithm produced a lot of noise, or overfitting, in addition to having
weekly seasonality due to irregular notification dynamics. Thus, the use of weekly data
was considered more suitable.

The procedure was performed to try to minimize the functional given by Equation (17).
The adopted SIRD model assumes that the parameters γ and Ω are invariant in time, while
the parameter β is variable in time. So, for 52 weeks, there are 54 parameters to be
estimated. The process was carried out in successive steps and, instead of performing only
one minimization for the 52 weeks, minimization was performed every 15 weeks, with each
step accumulating the values obtained for the previous set of weeks and calculating the
values of β only for the following weeks while adjusting the values of γ and Ω. Furthermore,
a regularization term was inserted in the Tiknovov regularization structure, penalizing
sudden variations to produce a smoother curve.

min θ = τ1 ‖ (Icum
t − Dt)− ( Ît − R̂t) ‖2 +τ2 ‖ Dt − D̂t ‖2 +τ3 ‖ ΓB ‖2 . (17)

The first term of the functional θ represents the total number of infected people since
the beginning of the count, while the second term represents the total number of deaths
that occurred due to the disease. Finally, the last term represents a regularization which
penalizes the differences between the successive terms of β, represented by the matrix B
(19), whose differences are calculated by the matrix Γ (18):

Γ =



1 −1 0 · · · 0

0 1 −1 · · · 0

...
. . .

...

0 · · · 1 −1


(18)

B = [ βt=0 βt=1 · · · βt=T ] T . (19)

In this way, better results could be obtained, as can be seen in the validations made
for the states of São Paulo, Rio de Janeiro and Minas Gerais. In them, the value of Re was
calculated as described by Equation (20):

Re(t) =
β(t)

γ + Ω
S(t)
N(t)

. (20)

The effective reproduction number is the average number of infected individuals per
infected person under existing conditions at a given time. The effective number, Re, is
the basal reproduction number, R0 exposed to the real conditions of disease evolution.
Consequently, it constantly changes, reflecting interaction between the population and the
infectious agent [67,68].

The effective reproduction number Re was estimated by finding the values that mini-
mize the function described by Equation (18). For Equation (21), β(t) is considered variable
over time, because, due to restriction measures imposed by public policies, the transmission
or contagion rate is altered, and, consequently, the key number S(t) also varies according to
this rate. Although N(t) represents the total population and it is variable over time, for the
considered interval, this constant value can be adopted.

5.1. Validation for São Paulo

For the state of São Paulo, the time-invariant parameters obtained and used can be
seen in Table 2.
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Table 2. Model parameters for São Paulo.

Parameter Parameter Description Value

γ recovery rate 1.071
Ω lethality of virus (mortality rate) 0.0285
N population size 46,289,333

Where a value of 1.0701 for γ means that the average recovery period is 1.0701 weeks,
and a value of 2.85% for Ω means 2.85% of infected people are killed by the virus per week.

As can be seen in Figures 11 and 12, the fit for the values of the new weekly deaths
and new accumulated deaths performed well, as these were privileged through the ma-
nipulation of parameters τ1, τ2 and τ3. We see that the fit for the value of new cases
in Figures 13 and 14 was not as accurate as the previous fit, practically maintaining qualita-
tive behavior.
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Figure 11. New weekly deaths for São Paulo.

0 10 20 30 40 50 60

weeks since first infection

0

1

2

3

4

5

6
10

4

D(t) estimated

D[n] from data

Figure 12. Accumulated deaths for São Paulo.
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Figure 13. New cases for São Paulo.
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Figure 14. Accumulated cases for São Paulo.

For the graph of the effective reproduction number Re Figure 15, it can be noted
that the values were close to those obtained by the COVID-19 observatory [69], which
is an independent initiative resulting from the collaboration between researchers who
performed this measurement using their own methodology. There is a large divergence
around 35 weeks. For the model developed in this report, the value obtained from Re makes
sense, since there was a very sharp decrease in new cases and deaths in this period.
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Figure 15. Comparison of effective reproduction number value for São Paulo.

5.2. Validation for Minas Gerais

The time-invariant parameters for the state of Minas Gerais can be seen in the Table 3:

Table 3. Model parameters for Minas Gerais.

Parameter Parameter Description Value

γ recovery rate 0.9973
Ω lethality of virus (mortality rate) 0.0258
N population size 21,292,666

Here, it can be noted that the values of γ and Ω were quite close to the values obtained
for São Paulo. Observing the graphs of new weekly deaths in Figure 16 and accumulated
deaths in Figure 17, it can be seen that the model fit for these data had good performance,
as well as for São Paulo.
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Figure 16. New weekly deaths for Minas Gerais.
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Figure 17. Accumulated deaths for Minas Gerais.

For the data of new cases in Figure 18 and accumulated cases in Figure 19, the model
performed very well until around the 35th week, when it started to present a slight differ-
ence, maintaining qualitative behavior.
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Figure 18. New cases for Minas Gerais.

For the data of Re, it is possible to notice that there is possibly a delayed relationship
between the values obtained by the model and the values obtained by the COVID-19
observatory [69], as can be seen in Figure 20.
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Figure 19. Accumulated cases for Minas Gerais.
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Figure 20. Comparison of effective reproduction number value for Minas Gerais.

5.3. Validation for Rio de Janeiro

For the state of Rio de Janeiro, the time-invariant parameters can be seen in Table 4.

Table 4. Model parameters for Rio de Janeiro.

Parameter Parameter Description Value

γ recovery rate 0.9431
Ω lethality of virus (mortality rate) 0.0500
N population size 17,366,189
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For the state of Rio de Janeiro, the value of Ω appears to be higher than for the other
two states, while γ was close to the values found for São Paulo and Minas Gerais.

The analysis of Figures 21 and 22 shows that the fit of the model for the data of new
weekly deaths and deaths accumulated in weekly reports performed well.
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Figure 21. New weekly deaths for Rio de Janeiro.
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Figure 22. Accumulated deaths for Rio de Janeiro.

For the state of Rio de Janeiro, the fit for the data of new weekly cases and accumu-
lated deaths is similar to the São Paulo fit, indicating a possible under-reporting of cases
throughout the period, as shown in Figures 23 and 24.
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Figure 23. New cases for Rio de Janeiro.
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Figure 24. Accumulated cases for Rio de Janeiro.

As for both other states, the effective reproduction number appears to have some
delay with respect to the number obtained by the COVID-19 observatory [69], as shown in
Figure 25.
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Figure 25. Comparison of effective reproduction number value for Rio de Janeiro.

6. Spread Control

Applications of control theory for epidemic diseases, including COVID-19, range
from optimal control, which can be used for social distancing [70], vaccine deployment
policy [71] or even a mix of isolation and a vaccination program [72], to model predictive
control (MPC), which is also used for the development of social distancing [73,74] and
vaccination policies [75]. However, the approach to be followed here is simpler and aims to
build an algorithm explicitly programmed through feedback of state variables, similar to
other heuristics [76,77] already studied.

Practical usage of the control algorithm proposed should consider the availability and
uncertainty of current infection data, which are usually embedded with under-reporting
and significant delays when compared with reality, especially in countries which do not
have a thorough testing program organized. It should review the simplifications assumed
in the model formulation in Section 2 as well, addressing the peculiarities of the disease
being analyzed.

Looking forward to the future, the algorithm should address any disease that follows
the same pattern of transmission of the coronavirus, that is, infections resulting from
the transportation of contaminated droplets of secretions from infected individuals to
susceptible ones and that suggests isolation is effective. The main difference will be
the difficulty imposed by a new virus concerning the imposition of lower values of Re,
a parameter which is described in the next section. Viruses that are transmitted more
easily impose a bigger challenge, as fewer contacts are needed to effectively pass the
disease ahead.

Algorithm Implementation

Here, the implementation of a three-level stratified controller is studied, mitigating
disease spread, aiming to maintain the demand of intensive care units (ICUs) lower than
those available at all times until a vaccine is available.
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As was shown, R0 measures how the disease propagates when there are almost no
infected individuals present (S ≈ N). While R0 provides valuable information on the
viral dissemination dynamics when there is no developed immunity and information on
the epidemic available, other factors begin to influence its dynamics during the course of
spreading.

Therefore, the effective reproduction number Re, which describes the average value
of secondary infections as a time-dependent function, is a more appropriate parameter to
be analyzed amidst an epidemic outbreak [78]. In a homogeneous population, it is simple
to obtain Re by multiplying R0 and the susceptible proportion of the population at some
instant t [79].

The idea to be developed here is to regulate Re in order to maintain the healthcare
resources at an acceptable level. The underlying mechanism is the manipulation of the
contact rate of individuals β by cycling the imposition and relaxation of social distancing
measures [57] as well as awareness campaigns to stimulate the adoption of individual
protection procedures.

Therefore, β is no longer considered fixed but time-dependent β(t). Contrarily, γ and
Ω are still considered invariable, as treatments such as the use of remdesivir or monoclonal
antibodies, both approved by the American Federal Drug Administration (FDA), are
prescribed only to severe cases whereupon the patient is already hospitalized and therefore
isolated [80,81] in the first case, while, in the latter, it took almost a year to be approved for
emergency use [82].

Levels of the controller are decided based on the current number of patients needing an
ICU. This number is defined as 5% of the current number of infected individuals, assumed
as the probability of someone who becomes infected needing intensive care [83].

Each level is composed of an interval from which Re can randomly assume any value.
The interval is constructed with limits equal to ±10% of the measured mean value. This
is performed to mimic the difficulty of imposing and tracking a precise value for Re for
diseases with only a few epidemic studies.

The stratified controller model was chosen due to being easier to implement than other
forms of modeling social distancing, generally based on continuous values for Re, which
are very hard to track and impose precisely. The algorithm is also adaptable structurally
speaking, as the Re should necessarily guarantee the desired behavior according to the
model. The most significant difficulties rest in creating the appropriate public policies to
reach the desired Re level.

Estimations of the economic impact of the COVID-19 pandemic are situated close to
the trillion dollars figure globally [84–86], with devastating shocks on various industries,
and the imposition of social distancing policies should have been, theoretically, a big part of
this loss. However, there is significant evidence that quarantine is effective against not im-
plementing containment mechanisms [87], more effective when applied early [88] and that
deterioration of economic conditions preceded the introduction of isolation policies [89]
or that the culprit of the COVID-19 recession is COVID-19 itself [90]. Therefore, practical
usage of the three-level controller should lead to economic benefits, not to mention that
saving lives should be worth the cost nevertheless.

The three-level controller is described in Table 5, with the calibration level (mitigation
or suppression) related to the value of the reproduction number associated. Mitigation and
suppression measures differ in whether they aim to reduce the reproduction number, Re,
to less than 1 (suppression) or to merely slow spread by reducing Re but not to less than 1
(mitigation) [91]. Therefore, Level A can be described as mitigation strategy and Level C as
a suppression one, generally called a lockdown, while Level B is situated between both.

All the actions taken at a certain point will last for a regularly chosen duration dur-
ing the course of the pandemic. This is performed to reduce social and economic uncertainty
as the population has time to comply.
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Table 5. Description of the three-level controller.

Level E[Re] Measures Taken Value Source When

A 2

Self-imposed measures are
stimulated in order to accelerate
awareness spread. Prevention
measures such as mask wearing,
hand washing and self-imposed
social distancing can be described
as reductions in infectious output,
susceptibility and contact rate,
respectively [92].

As such measures stack up
additively [92], a 10% efficacy for
each one reduces the effective
contact rate by 30%.

Intensive care unit demand is lower
than 10% of the total amount
available.
5I

100
< 5

B 1.1

Government implements social
distancing measures such as
reduced business hours and
occupation or public spaces
restrictions.

A similar Re is obtained for the
state of Sao Paulo in March 2021,
when such measures where
adopted [93].

Intensive care unit demand is
between 10–80% of the total
amount available.
5 <

5I
100

< 40

C 0.5 Mandatory home confinement
except for vital sectors workers.

Very close to the Re obtained by
Spain during adoption of lock
down [94].

Intensive care unit demand is
higher than 80% of the total
amount available.
5I

100
> 40

7. Control Strategy Results

In this section, the three-level control strategy described in the former section is
simulated assuming a hypothetical scenario for an isolated city in Brazil with 10 infected
initial cases, a population of 100,000 inhabitants and an R0 the same as the country’s,
i.e., 2.82. This number is maintained for the first 15 days to replicate initial unawareness.
Brazil was chosen due to its high baseline contact rate, represented by the high value of R0,
as opposed to Uruguay. Therefore, as the number of cases and individuals in need of ICUs
grow faster than the system can adapt, it represents a need for establishing isolation policies.

The number of ICUs available is considered to be 50, very close to the proportion of
beds/individuals obtained for the state of São Paulo before the pandemic in 2018 [95].

The total period analyzed is one year, because this is the period assumed for the devel-
opment of a vaccine, with reference to the Pfizer vaccine, which started being developed in
January 2020 with the release of the SARS-CoV-2 genome [96] and initially applied in the
UK at the beginning of December 2020 [97].

Three different strategies were considered: no attempt to control the disease spread;
updating Re every 30 days; and updating Re every 21 days.

7.1. No Attempt to Control the Spread of the Disease

As expected, Figure 26 shows the potential of COVID-19 to quickly overwhelm the
healthcare system, with ICU demand surpassing the availability of beds less than two
months after the beginning of the pandemic. The randomness added did not result in
significant differences with respect to the baseline established in Section 4.

The dynamics of free dissemination can be seen for all the compartments in the SIRD
model used in Figure 27.
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Figure 26. No control applied: (A) ICU demand and (B) R(t).
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Figure 27. State variables evolution when no control is applied, considering: (A) Susceptible popula-
tion; (B) Infected population; (C) Recovered population and (D) Deceased population.

7.2. Updating Re Every 30 Days

Figure 28 displays the algorithm’s performance for a 30-day interval between updates
regarding the demand for ICU and shows the controlled reproductive number Re for each
cycle. It can be seen that after periods of Level C (lock-down), ICU demand went below
10% of the total number of intensive care beds available, which made the algorithm choose
Level A for the following cycle.

Every time this happened, the control failed to prevent healthcare collapse, as 30 days
proved to be enough time for Level A to allow a large increase in demand for ICU due to
the exponential growth nature of the spread.
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The improvement over the baseline was very small, as can be seen in Figure 27D,
with the number of deceased at the end of the period being very close to the number of
deceased at the end of the baseline.
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Figure 28. Re control as measure of reducing COVID-19 spread for every 30 days, considering time
evolution (A) ICU demand and (B) R(t).

Figure 29 supports the effectiveness of the algorithm wiyh a 30-day cycle. Therefore,
in order to prevent the ICU demand from surpassing the supply of intensive care beds,
the period between updates of the algorithm is reduced, and results are shown in Section 7.3.
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Figure 29. System state variables for algorithm with a 30-days cycle for (A) Susceptible population;
(B) Infected population; (C) Recovered population and (D) Deceased population.
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7.3. Updating Re Every 21 Days

For a 21-day interval between updates, the main goal of guaranteeing appropriate care
for COVID-19 patients is attained. During the 360 days of simulation, there was no instant
at which the demand for intensive care units was greater than the supply, as shown in
Figure 30, and there were only three periods of Level C (lock-down), allowing individuals
to have greater freedom without sacrificing effectiveness.
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Figure 30. Re control as measure of reducing COVID-19 spread for every 21 days considering: (A) ICU
demand and (B) R(t).

Figure 31 supports the effectiveness of the algorithm with a 21-day cycle, showing
much fewer deaths at the end of the simulation than in simulations I (baseline) and II
(30-day cycle).
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Figure 31. System state variables for algorithm with a 21-days cycle: (A) Susceptible population;
(B) Infected population; (C) Recovered population and (D) Deceased population.
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8. Epidemic Control

In this section, two ways of controlling the spread of the coronavirus pandemic are
studied. First, a social distancing policy is applied, followed by a vaccination campaign.

8.1. Control by Social Distancing

The simulation of control by social distancing was carried out in the context described
in Table 6.

Table 6. Simulation parameters for the study of epidemic control by social distancing.

Parameter Parameter Description Value

γ recovery rate 1
Ω lethality of virus (mortality rate) 0.03
N population size 10,000,000
L number of hospital beds available 5000
T simulation period 52 weeks
I0 initial number of infected 5000

Rmin minimum value for effective reproduction number 0.5

The values of γ and Ω adopted were based on the values obtained in the validation for
São Paulo and Minas Gerais. We simulated 52 weeks, which is the amount of time it takes
to develop a vaccine for the virus, with reference to the Pfizer vaccine, whose development
started in January 2020 and was released in December 2020.

The initial number of infected is reasonably high to simulate a situation in which there
is little information about the spread of the virus in the population studied. Additionally,
a minimum value for the effective reproduction number is implemented, reflecting the
highest capacity possible for public authorities to implement isolation measures in the
population. This value is 0.5 and is close to the value obtained for Spain in its lockdown in
2020 [94].

The application of social distancing control was carried out by manipulating the
parameter β(t) so that the value of the effective reproduction number Re was sufficiently
low to bring about a reduction in the number of new cases and weekly deaths.

The applied control was found from the formulation of a minimization problem to
find a sequence of controls represented by (22):

u[k] = [u(0) u(1) u(2) . . . u(K− 1)], (21)

with the objective of minimizing the functional J (22):

J = τ1D(t = Tf ) − τ2 ‖ u[k] ‖2 + τ3 ‖ u[k]− u[k− 1] ‖2 . (22)

The first term of Equation (22) represents the number of accumulated deaths at the
end of the period (in t = Tf ); the second term, u[k] = β[k], represents the control applied
at instant k; and the last term represents the control differential between instant k and
k− 1. The intention behind the first term is self-explanatory: the aim is to minimize the
total number of deaths at the end of the period. In contrast, a very low level of isolation
has severe social and economic consequences, which is why the second term is used,
which penalizes a very intense control. Finally, it is desirable that the control signal, social
distancing, does not vary much from week to week to reduce future uncertainties for
the population.

In addition, the restriction was imposed that at no time did the number of people in
need of medical treatment exceed the number of available hospital beds, as proposed in
Equation (23):

0.2 ∗ I(t) ≤ L , ∀t (23)
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The definition of 20% as the percentage of infected people who need hospital treatment
was obtained by observing the figure and information available at the São Paulo State
Health Department (https://www.saopaulo.sp.gov.br/planosp/simi/leitos/) (acessed on
20 June 2020).

Results for Social Distancing Control

As this is an optimization problem, an important factor is the choice of parameters τ1,
τ2 and τ3 that will drive the functional J. Variations in these parameters are related to the
prioritization or penalty that gives the terms referring to the number of deaths, minimiza-
tion of social distance and distance differential. Therefore, five different combinations were
studied for the set (τ1, τ2, τ3), with the results summarized in Table 7 and in Figure 32.

Table 7. Results obtained for the control by social distancing.

Simulation τ1 τ2 τ3 D(t = Tf ) ‖ β[k] ‖2 ‖ u[k]− u[k− 1] ‖2

(I) 1 1 1 291.3530 6.2783 0.5796
(II) 1 10 1 298.4825 7.1895 2.0587
(III) 1 10 10 292.4858 6.6241 1.0437
(IV) 1 50 10 300.9959 7.0514 1.1845
(V) 1 50 50 300.4231 6.4384 0.5781
(VI) 1 100 50 319.1812 6.6833 0.9307
(VII) 1 100 100 309.0499 6.6805 0.9949
(VIII) 1 250 100 390.8686 6.9906 0.8825
(IX) 1 250 150 336.0118 6.6467 0.6248
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Figure 32. Comparison of the number of accumulated controller deaths due to social distancing.
The first few weeks are omitted for better viewing.

It can be noted that an increase in τ2, which is a greater prioritization of maximizing
the norm of β, resulted in an increase in the number of deaths at the end of the period.
Meanwhile, increases in τ3 generally had the effect of reducing the norm of the applied
controls differential, as was desired, and a reduction in the variability of Re can be seen
in the graphs below. At the same time, it produced a reduction in the number of deaths,
which was unexpected.

https://www.saopaulo.sp.gov.br/planosp/simi/leitos/
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By analyzing the graph, it is possible to notice the increase in the number of deaths
accumulated in time when the value of τ2 is increased. The effective reproduction number
graphs were divided into two parts, because those in Figure 32 were very noisy, making
visualization difficult. This more intense noise occurred precisely in the graphs that were
associated with an increase in τ2 without an increase in τ3 associated.

The qualitative analysis of Figures 33 and 34 shows that there is a very intense control
in the first weeks, in order to quickly reduce the number of cases to zero, as shown in
Figure 35. After this period, there is a gradual release of distancing, implying a gradual
increase in Re, followed by a new constraint near the end of the period.
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Figure 33. Comparison of the effective reproduction number of the social distancing controller for
the less noisy signals.
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Figure 34. Comparison of the effective reproduction number of the social distancing controller for
the noisier signals.



Mathematics 2023, 11, 3766 29 of 39

5 10 15 20 25 30 35 40 45 50

weeks since control start

0

50

100

150

200

(I)

(II)

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)

Figure 35. Number of new weekly cases for social distancing control.

A more detailed study considering social distancing as a strategy to control the spread
of COVID-19 was performed in [50]. The proposed model, which consists of an alteration
of the SIR model, considers the infected in two compartments: the infected being reported
and the infected not reported or asymptomatic. The validation of the model is carried out
for different cities in the state of São Paulo and allows the evaluation of the dynamics of
disease reinfection and the relevance of social distancing as cities adhere to social isolation
at different times.

8.2. Vaccination Control

To implement the vaccination control, a new term v(t) was introduced in the equations
that describe the system, now formulated by the set of Equation (24).

dS(t)
dt

= − βS(t)I(t)
N

− v(t)

dI(t)
dt

=
βS(t)I(t)

N
− (γ + Ω)I(t)

dR(t)
dt

= γI(t) + v(t)

(24)

The term v(t) represents the number of individuals vaccinated at time t, and all
parameters, β, γ and Ω, are considered constant, representing a situation in which there is
no change in the behavior of the population regarding the contact rate between individuals,
that is, there is no social distancing. Again, the solution to this problem is given by
minimizing a functional, described by Equation (25), where we want to minimize the
number of deaths while also minimizing the cost of vaccination.

Jvac = τ1D(t = Tf ) + τ2 ‖ v[k] ‖2 + τ3 ‖ v[k]− v[k− 1] ‖2 (25)

In addition, it is desirable to minimize the vaccine immunization differential, repre-
sented by the last term of the functional, so that there is not a very sudden variation in the
number of vaccines given from one week to the next.
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8.2.1. Results for Vaccination Control

The simulation parameters for vaccination control can be seen in Table 8:

Table 8. Parameters for vaccination control.

Parameter Parameter Description Value

β average number of contacts 2.06
γ recovery rate 1
Ω lethality of virus (mortality rate) 0.03
N population size 10,000,000
L number of hospital beds available 5000
T simulation period 52 weeks
I0 initial number of infected 1

vmax Maximum vaccination value per instant of time variable

Regarding the simulation for vaccination control, the number of initial infected people
was reduced to simulate a condition that is still at the beginning of the spread of the disease.
Also, there is no longer a minimum value for the effective reproduction number, since the
value of the contact rate between individuals β is considered fixed. The value of β is fixed
at 2(γ + Ω), representing a base reproduction number value R0 equal to 2.

A maximum value of vaccinated per time instant is established to represent scenarios
in which there are limited availability of vaccines to be applied. The results obtained are
compiled in Table 9.

Table 9. Results obtained for vaccination control.

Simulation vmax τ1 τ2 τ3 D(t = Tf ) ‖ v[k] ‖2 ‖ v[k]− v[k− 1] ‖2

(I) 50,000 1 1 1 229,543 15,987 3943
(II) 50,000 10 1 1 198,924 210,293 14,770
(III) 50,000 50 1 1 199,421 209,570 18,477
(IV) 50,000 50 10 1 218,448 86,979 24,296
(V) 50,000 50 10 5 217,986 90,980 9120
(VI) 75,000 1 1 1 226,986 34,343 15,489
(VII) 75,000 10 1 1 189,715 259,974 24,880
(VIII) 75,000 50 1 1 183,758 294,083 40,017
(IX) 75,000 50 10 1 216,815 96,340 10,545
(X) 75,000 50 10 5 211,212 132,180 14,563
(XI) 100,000 1 1 1 228,907 21,677 7933
(XII) 100,000 10 1 1 170,477 368,702 45,626
(XIII) 100,000 50 1 1 168,307 386,925 86,353
(XIV) 100,000 50 10 1 218,549 86,186 12,683
(XV) 100,000 50 10 1 211,336 131,626 13,796

8.2.2. Effect of Increase in Weekly Vaccination

The first part of the simulations analyze the effect of increasing the limit of application
of vaccines weekly. As expected, Figure 36 shows that increases in the weekly vaccination
limit, when associated with an increase in the weight τ1, which refers to the number of
deaths at the end of the period, reflect a significant drop in this value.

The analysis of the weekly new cases graph reflects the same behavior. Figure 37
shows that an increase in vaccination reduces the number of new weekly cases when the
weight τ1 is increased, which prioritizes a reduction in the number of deaths in relation to
the cost of administering vaccines.
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Figure 36. Comparison of the number of accumulated deaths in the vaccination control.
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Figure 37. Comparison of the number of new cases per week in vaccination control.

Another interesting fact is that the weekly vaccination rate obtained for conditions
where τ1 is much greater than τ2 and τ3 is not the maximum vaccination vector at all times.
It can be noted in Figure 38 that in none of the cases, the maximum vaccination for the
period in 26%, 39% and 52% of the population, respectively, was reached. This is because
the model assumes obtaining immunity after recovering from the disease. Therefore,
individuals who were not vaccinated either died or recovered.
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Figure 38. Comparison for the cumulative of vaccinated in the vaccination control—percentage of
the initial population.

A severely negative point of the application of control only by vaccination is that the
limit of the number of available hospital beds was not respected, as can be seen in Figure 39.
In the tenth week, the health system collapses.
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Figure 39. Comparison of the number of individuals needing hospital beds in the vaccination control.

8.2.3. Effects of Changes in Vaccination Campaign Prioritization

To highlight the policy changes when we prioritize the number of deaths over the
cost of vaccination or vice versa, Figures 40–42 are presented, related to cases (VI) to (X)
of the prioritization parameters. First, Figure 40 shows that the increase in τ1 in the case
(VI) pro (VII) and (VII) pro (VIII) showed a decrease in the number of accumulated deaths,
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as expected; likewise, from case (VIII) to (IX), in which an increase in τ2 is considered,
the graph shows an increase in the number of accumulated deaths.
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Figure 40. Comparison of the number of accumulated deaths in the vaccination control.
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Figure 41. Comparison of the cumulative of vaccinated in the vaccination control with changes in
vaccination campaign prioritization—percentage of the initial population.
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Figure 42. Comparison of the number of new cases weekly in the vaccination control.

Analogously to the case of control by social distancing, where there is a drop in the
number of deaths, an increase in τ3, which penalizes the variation in the control vector v(t),
also showed a drop in the number of deaths.

A more detailed study considering validation with real data of the control strategy
based on vaccination was carried out in [51]. The model considers the possibility of rein-
fection and allows checking information on unreported infected people. The validation of
the model was carried out with data from the city of São Paulo, which, due to its sociode-
mographic and economic difference, presents complex scenarios and can be extended to
regions with the same qualitative characteristics.

9. Conclusions

Inspired by the different policies of social distances adopted by Brazil and Uruguay,
showing remarkable differences concerning the results of controlling the COVID-19 epi-
demic, a framework for modeling and applying public policies in the form of social dis-
tancing was proposed aiming for a reduction in disease spread.

Validation of the SIRD model using cumulative case data and cumulative death data
for the states of São Paulo, Minas Gerais and Rio de Janeiro proved satisfactory. For the
accumulated death data, the performance was good, while for the accumulated case data,
the performance was average, with advances in relation to previous results. Possibly,
a better relationship between deaths and cases should be explored, such as inserting delay
terms into the equations, or else considering the γ and Ω parameter variables, as we
conducted with β.

Comparison of data on the effective reproduction number Re obtained by the model
with respect to the values obtained by a COVID-19 observatory showed a delay, possibly
due to the difference in the methodology used. The work proposes a minimization of
square errors for the developed model, while a COVID-19 observatory performed the
estimate using serial intervals, defined as the time interval between the onset of illness in a
primary case and the onset of illness in a secondary case [69].

Control by social distancing performed well, complying with the restrictions imposed.
At all times, there was no failure of the health system. However, during the 52 weeks,
the level of isolation remained intense without returning to the preisolation level. Also, con-
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tinuous levels of Re would likely be quite difficult to implement. For example, in practice,
it is difficult to implement public policies with an Re of 0.9 versus Re of 0.95.

Meanwhile, vaccination control reduced the number of accumulated deaths at the
end of the period, but it did not prevent the failure of the health system. In this way,
social distancing is necessary until herd immunity is reached, the value at which a primary
infection produces, on average, less than a secondary infection, which eventually leads to
the extinction of the disease.

The results are satisfactory, mainly due to the good performance shown for the accu-
mulated death data, which allowed the use of the model to apply social distancing control
and vaccination control.

A three-level controller was proposed, and simulations indicate that a 21-day up-
date strategy shows good results, preventing the healthcare system from collapsing and
presenting much fewer deaths at the end of the process.

Aspects to be explored to improve the model are to consider the algorithm behavior
varying Re for each level, to have a different number of levels and to include uncertainty
and delay in the observability of the number of infected cases.

Despite being an intuitively obvious conclusion, it was shown that failing to mitigate
the spread of the disease is not a wise option. The algorithm with 21 days between updates
presents, for example, almost 650 deaths at the end of the year, whereas doing nothing
resulted in approximately 2700.

Therefore, it is possible to say that the framework outlined is a good and simple
reference model to be followed when designing techniques to address COVID-19 disease
spread, as well as possibly other diseases that follow the same pattern of transmission as
the coronavirus.
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Appendix A

From Wiggins, 1990, p. 193 [98]. Consider vector fields of the form{
ẋ = Ax + f (x, y),
ẏ = By + g(x, y), (x, y) ∈ IRc × IRs,

(A1)

satisfying

f (0, 0) = 0, D f (0, 0) = 0,

g(0, 0) = 0, Dg(0, 0) = 0,

where A is a c × c matrix having eigenvalues with zero real parts, B is an s × s having
eigenvalues with negative real part and f and g are Cr functions (r ≥ 2). Then,

Remark A1. An invariant manifold will be called a center manifold for (A1) if it can locally be
represented as

Wc(0) = {(x, y) ∈ IRc × IRs|y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0} (A2)

for δ sufficiently small.
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Theorem A1. There exists a Cr center manifold for (A1). The dynamics of (A1) restricted to the
center manifold is, for u sufficiently small, given by the following c-dimensional vector field

u̇ = Au + f (u, h(u)), u ∈ IRc. (A3)

Theorem A2. (i) Suppose the zero solution of (A3) is stable (asymptotically stable) (unstable);
then, the zero solution of (A1) is also stable (asymptotically stable) (unstable). (ii) Suppose the zero
solution of (A3) is stable. Then, if (x(t), y(t)) is a solution of (A1) with (x(0), y(0)) sufficiently
small, there is a solution u(t) of (A3) such that as t→ ∞

x(t) = u(t) +O(e−γt),

y(t) = h(u(t)) +O(e−γt),

where γ > 0 is a constant.
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