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Abstract: In this paper, the four-index generalization of the classical Le Roy function is considered
on a wider set of parameters and its order and type are given. Letting one of the parameters take
non-negative integer values, a family of functions with such a type of index is constructed. The
behaviour of these functions is studied in the complex plane C and in different domains thereof.
First, several inequalities are obtained in C, and then they are modified on its compact subsets as
well. Moreover, an asymptotic formula is proved for ‘large’ values of the indices of these functions.
Additionally, the multi-index analogue of the abovementioned four-index Le Roy type function is
considered and its basic properties are obtained. Finally, several special cases of the two functions
under consideration are discussed.
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1. Introduction

The special function F(γ), defined in the whole complex plane C by the power series

F(γ)(z) =
∞

∑
k=0

zk

[Γ(k + 1)]γ
, z ∈ C, (1)

is known as the Le Roy function. It was named after the French mathematician Édouard
Louis Emmanuel Julien Le Roy (1870–1954) who introduced it in [1]. He himself used it in
studying the asymptotics of the analytic continuation of the sum of power series. In his
paper [2], Kolokoltsov used this function (with γ = 1/2), namely,

R(z) = F(1/2)(z) =
∞

∑
k=0

zk
√

k!
, (2)

in evaluating the solution of initial stochastic DE. As he himself commented therein, ’the
function R(z) plays the same role for stochastic equations as the exponential function and
Mittag-Leffler functions for deterministic equations’.

We have to admit that, probably because of its purely theoretical origin, the Le Roy
function remains relatively little known and used. However, due to various problems of
analysis and probability theory, interest in the Le Roy function has recently been revived.
These are problems related to integral-differential operators involving fractional Hadamard
derivatives or hyper-Bessel operators, finding of solutions of some integral-differential
equations involving such operators by using operational methods, probability density
functions of probability distributions, solutions of initial stochastic differential equations,
and so on. Because of growing interest and possible further applications, many new
generalizations of it have appeared.
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Recently, Gerhold [3] and Garra and Polito [4], independently of each other, have
introduced the new special function F(γ)

α,β , generalizing in such a manner the Mittag-Leffler
function Eα, β:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C, (3)

with two indices (parameters) by adding an index γ, namely,

F(γ)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]γ
, z ∈ C, (4)

for complex values of the variable z and positive values of the parameters α, β, γ. In fact,
Gerhold [3] found an asymptotic formula that holds true in different sectors of the complex
plane and thus extended the work of Le Roy [1]. Garra and Polito [4] have dealt with some
operators involving Hadamard derivatives.

At a later stage, imposing more general conditions on the parameters, its definition
was extended by Garrappa, Rogosin and Mainardi [5]. However, to ensure the existence of
the coefficients [Γ(αk + β)]−γ in the expansion (4), the values of the parameters should be
constrained. In this direction, the restriction α, β ∈ C, γ > 0 would be quite natural. It
turns out that (4) is an entire function of the complex variable z for all parameter values
such that [5]

α, β ∈ C, <(α) > 0, γ > 0. (5)

It should be noted that if the condition γ > 0 is changed with <(γ) > 0 and addition-
ally <(αγ) > 0, (4) remains an entire function, i.e., the condition (5) can be replaced from

α, β ∈ C, <(α) > 0, <(γ) > 0, <(αγ) > 0. (6)

Here, it is appropriate to note that the conditions <(α) > 0 and <(γ) > 0 are imposed
in connection with the expression [Γ(αk + β)]−γ. Furthermore, <(γ) > 0 ensures the exis-
tence of [Γ(αk + β)]−γ without any additional conditions for β. However, if <(αk + β) > 0,
then the constraint <(γ) > 0, concerning γ, is no longer needed. The condition <(αγ) > 0
provides the convergence of the series (4) in the whole complex plane.

The function F(γ)
α,β is said to be a Le Roy-type function [5] (it is also known as a Mittag-

Leffler function of Le Roy type). It is clear that (4) is a natural generalization of the Le Roy
function (1).

In their paper [6], Tomovski and Mehrez, in studying Mathieu series and their gener-
alizations and associated probability distributions, introduced the following generalization
of the function (4)

F(γ)
α, β; τ(z) =

∞

∑
k=0

(τ)k

[Γ(αk + β)]γ
zk

k!
, z ∈ C, τ ∈ C, (7)

adding one more index. Here, (τ)k denotes the Pochhammer symbol ([7] [2.1.1] )

(τ)0 = 1, (τ)k = τ(τ + 1) . . . (τ + k− 1).

Obviously, if τ = 1, then the function (7) coincides with (4). However, if γ = 1, then (7) is
the so-called Mittag-Leffler function Eτ

α,β with three parameters [8]:

Eτ
α, β(z) =

∞

∑
k=0

(τ)k
Γ(αk + β)

zk

k!
, z ∈ C, τ ∈ C, (8)

(also known as the Prabhakar function). Being close to the Mittag-Leffler function, this
function is widely used in the modelling of various processes (for its applications in
diffusion and random search processes, random search and stochastic resetting processes,
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many examples of anomalous diffusion and other fields, see, e.g., the recently published
books [9,10]).

It is worth noting that if γ = m is a positive integer, then (4) becomes a case of the
so-called multi-index (2m-index) Mittag-Leffler function E(αi), (βi)

, and (7) becomes a case of

the 3m-index Mittag-Leffler function E(τi), m
(αi), (βi)

(for more details for domains of parameters,
properties and applications of these functions, see, e.g., the books [10,11] and also the
papers [12,13]. Their definitions are given below, namely,

E(αi), (βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
, z, αi, βi ∈ C,<(αi) > 0, (9)

respectively,

E(τi), m
(αi), (βi)

(z) =
∞

∑
k=0

(τ1)k . . . (τm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m , z, τi, αi, βi ∈ C,<(αi) > 0. (10)

More specifically,

F(m)
α, β (z) = E(αi), (βi)

(z), F(m)
α, β; τ(z) = E(τi), m

(αi), (βi)
(z), (11)

with parameters
αi = α, βi = β, and τi = τ (i = 1, . . . , m). (12)

Let us also note that, similarly to the Mittag-Leffler functions, more general analogues of
(4) and (7) with multi-indices were defined and studied by Rogosin and Dubatovskaya [14]
and Kiryakova and Paneva-Konovska [15] almost simultaneously.

The function (7) is called a Le Roy-type function (with four indices), or generalized
Le Roy-type function, or Prabhakar function of Le Roy type. It was studied in detail
by Paneva-Konovska [16], and its basic properties were obtained. It was proved that if
α, β, τ ∈ C, <(α) > 0, γ > 0, then this function is an entire function and its order and
type and different integral representations of Mellin–Barnes type were obtained. It is also
established that the nth integer derivatives of the function (4) are Le Roy-type functions
with four indices. Analogical relations for the integrals and derivatives of fractional orders
have been obtained as well. Further, the resulting derivatives of the nth order are used for
representing the three-index function (4) in a Taylor series at an arbitrary point z0 ∈ C.

The main objective of this paper is to study the function (7) and its multi-index ana-
logue (44) under more extended parameter domains and to establish their basic properties,
such as order and type and related asymptotic inequalities, and also different representa-
tions of them depending on the parameters. We also intend to provide upper estimations
in different domains of the complex plane and asymptotic formulae for ‘large values’ of the
parameters. Our motivation to consider this topic is provoked by the increasing interest in
the Le Roy function and its generalizations and their possible applications.

The paper is organized in the following way. The definitions and historical overview
are given in Section 1. The Prabhakar function of Le Roy type is considered in Section 2
under a more extended domain of the parameters. Its order and type are established. In
Section 3, families of such a type of function are considered and their representations are
given, depending on the parameters. They are used in Section 4 for obtaining inequalities
and asymptotic formulae in the complex plane. Section 5 is devoted to the multi-index
Prabhakar function of Le Roy type which is a 4m-index analogue of (7). In Section 6, several
specific cases are considered. In the concluding Section 7, the validity of the results obtained
in the previous sections is discussed for them.
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2. Order and Type of the Four-Parametric Le Roy-Type Function

A careful follow-up of the proof in [16] shows that if the condition γ > 0 is replaced
by conditions <(γ) > 0 and <(αγ) > 0, then all the coefficients in (7) exist and it remains
an entire function. In what follows, we consider the function (7) under the weakened
condition

α, β, γ, τ ∈ C, <(α) > 0, <(γ) > 0, <(αγ) > 0, (13)

thus making the results stronger than the ones obtained in [16]. The order and type of the
function (7) are given below under the condition (13), imposed on the parameters.

Theorem 1. Let α, β, τ, and γ be the parameters satisfying the condition (13) and let τ be neither
a negative integer nor zero. Then, (7) is an entire function.

Proof. According to Cauchy–Hadamard’s formula, the radius of convergence of the series
(7) is R ≥ 0, and

R =
1

lim supk→∞ |ck|
1
k

, where ck =
(τ)k

[Γ(αk + β)]γ
1
k!

. (14)

After equivalent analytical manipulations and applying both, Stirling’s asymptotic formula
for the Γ-function and Γ-functions quotient property (see e.g., [11] [Rem. 6.5, (iii)] for them),
namely:

Γ(z + α) ∼
√
(2π)zz+α− 1

2 exp(−z), | arg(z + α)| < π, (15)

for large values of z, respectively,

Γ(z)
Γ(z + α)

= O
(

1
zα

)
, | arg(z)| < π, | arg(z + α)| < π, (16)

and, in view of (14) along with the relation (τ)k =
Γ(τ+k)

Γ(τ) , we obtain

ck =
1

Γ(τ)
Γ(τ + k)
Γ(k + 1)

1
[Γ(αk + β)]γ

. (17)

From here, it follows that

(|ck|)
1
k ∼ 1

|
√

2π
γ/k|

|k(τ−1)/k|
|Γ1/k(τ)|

exp(<(αγ))

| (αk)αγ+βγ/k−γ/(2k) |
→ 0, when k→ ∞. (18)

Due to (14) and (18), the radius of convergence of the series in the Formula (7) is R = ∞,
which means that the function (7) is an entire function.

Let us recall ([17] [Chapter 7, §1]) that an important characteristic of a given entire
function f is the maximum of its modulus M(r) = max

|z|=r
| f (z)|. More precisely, if there exists

a positive number µ such that M(r) < exp(rµ), for all r sufficiently large, then f is said to
be a function of a finite order ρ = inf µ ≥ 0. Further, if f has a finite order ρ and there exists
a positive number κ such that M(r) < exp(κrρ), then f is said to be a function of a finite
type. The infimum of this κ for which the above inequality is valid for r sufficiently large,
is denoted by σ and is called type of f , namely, σ = inf κ ≥ 0. In view of the definitions
recalled, the following asymptotic inequality holds true

| M(r) |< exp((σ + ε)rρ), ∀ r > r0(ε) > 0, (19)

for each ε > 0 and r0 sufficiently large.

The order and type of the function (7) are given by the following theorem.
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Theorem 2. Let α, β, τ, and γ be the parameters satisfying the condition (13) and let τ be neither
a negative integer nor zero. Then, the order ρ and type σ of the entire function (7) are connected by
the relations

1
ρ
= <(α γ), (20)

respectively,
1
σ
= |(αρ) αγρ |, (21)

i.e.,
1
σ
=
|ααγ| 1/<(αγ)

<(αγ)
. (22)

Proof. In order to calculate the order ρ of (7), we use Stirling’s formula in the logarithmic
form:

ln Γ(z) =
(

z− 1
2

)
ln z +

1
2

ln(2π) + O
(

1
z

)
, (23)

the relation ln |z| = <(ln z), and the well-known formula, expressing the order ρ of the
entire function ∑∞

k=0 ckzk, namely:

ρ = lim sup
k→∞

k ln k
ln(1/|ck|)

. (24)

Further, in view of (17), the denominator in (24) becomes:

ln
1
|ck|

= ln |Γ(τ)|+ ln Γ(k + 1)−<(ln Γ(τ + k)) +<(γ ln Γ(αk + β)), (25)

and additionally writing the functions ln Γ(k + 1), ln(Γ(τ + k)), and ln(Γ(αk + β)) in the
form (23), we get to the relation:

ln
1
|ck|

= ln |Γ(τ)|+
(

k +
1
2

)
ln Γ(k + 1)− <

[(
τ + k− 1

2

)
ln Γ(τ + k))

]
(26)

+<
[

γ

(
αk + β− 1

2

)
ln(αk + β) +

γ

2
ln(2π)

]
+ O

(
1
k

)
.

Hence,
1
ρ
= lim

k→∞

ln(1/|ck|)
k ln k

= 1 + <(αγ)− 1 = <(αγ),

which proves the formula (20).

Further, the type of the entire function ∑∞
k=0 ckzk of order ρ, is expressed by the formula

(σeρ)1/ρ = lim sup
k→∞

(
k1/ρ|ck|1/k

)
. (27)

The above equality, due to (20) and (18), produces the following result:

k1/ρ|ck|1/k ∼ k<(αγ)

|
√

2π
γ/k|
|k(τ−1)/k|
|Γ1/k(τ)|

exp(<(αγ))

| (αk)αγ+βγ/k−γ/(2k) |
, when k→ ∞.

Now, by taking the limit in the above formula, the relation below follows

lim
k→∞

k1/ρ|ck|1/k = lim
k→∞

(
k<(αγ) exp(<(αγ))

|(αk)αγ|

)
,
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and the last limit becomes

lim
k→∞

k1/ρ|ck|1/k =
exp(<(αγ))

|ααγ| .

Then, the above equality along with (27) implies:

(σeρ)<(αγ) =
exp(<(αγ))

|ααγ| , i.e., (σρ)<(αγ) =
1
|ααγ| .

From here, taking into account (20), the relation (21) immediately follows. The relation (22)
follows after the calculations written below, namely,

1
σ
= |ααγρ||ραγρ| = |ααγρ| ρ ρ<(αγ) =

|ααγ| 1/<(αγ)

<(αγ)
,

which ends the proof of the theorem.

By the general theory of entire functions, in particular according to the formula (19),
an upper asymptotic estimate is valid for the entire function (7). Namely, the following
corollary can be formulated.

Corollary 1. Let the parameters α, β, τ, and γ satisfy the condition (13), ε be an arbitrary positive
number, and let τ be neither a negative integer nor zero. Then, there exists a positive number
r0(ε) > 0, depending only on ε, such that the following asymptotic estimation

| F(γ)
α, β; τ(z) |< exp((σ + ε)|z|ρ), ∀ |z| > r0(ε) > 0, (28)

holds true, with ρ and σ like in (20) and (21).

3. Auxiliary Statements

In the recent papers [18–20], Paneva-Konovska considered series in systems of the
three-parametric Le Roy-type functions and some of their special cases, as representatives
of the Special Functions of Fractional Calculus ([21]). Different representations, inequalities,
and asymptotic formulae, concerning these systems, were obtained and discussed there.
They were further used in order to study the convergence of such series in the complex
plane C in proving Cauchy–Hadamard, Abel, and Tauberian-type theorems. Such a type of
problem was also considered for other type of functions. Among them are the Bessel and
Mittag-Lefler-type functions (for details, see e.g., [11]).

To be able to prove similar convergence theorems for series in the four-parametric
Le Roy-type functions (7), we need first some inequalities in the complex plane, as well
as on its compact subsets, and asymptotic formulae for ‘large’ values of indices of these
functions.

Remark 1. In what follows, we will use the notations Z− (resp. N) for the set of negative (resp.
positive) integers, N0 = N∪ {0}, and Z−0 = Z− ∪ {0}.

Consider now the Prabhakar function of Le Roy type (7), satisfying the condition (13),
for indices of the kind β = n; n = 0, 1, 2, . . . , namely, the family of functions:

F(γ)
α, n; τ(z) =

∞

∑
k=0

(τ)k
[Γ(αk + n)]γ

zk

k!
, α, γ, τ ∈ C, <(α) > 0,<(γ) > 0,<(αγ) > 0, n ∈ N0. (29)
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Remark 2. For a given number τ, it is possible that some coefficients in (29) become equal to zero,
that is, there exists a number p ∈ N0, such that the representation (29) can be written as follows:

F(γ)
α, n; τ(z) = zp

∞

∑
k=p

(τ)k
[Γ(αk + n)]γ

zk−p

k!
. (30)

Further, let us set

ak =
1

[Γ(αk + n)]γ
, bk = (τ)k , ck = akbk/k! , k = 0, 1, 2, . . . . (31)

Depending on τ, we consider three main cases separately. The first of them is τ /∈ Z−0 .

Lemma 1. Let z, α, and γ satisfy the conditions in (13), τ ∈ C, but τ /∈ Z−0 . Then the Formula (30)
holds true with:

1. p = 0, for n ∈ N,
2. p = 1, for n = 0.

Proof. Obviously, in the first case, bk 6= 0 and αk + n are neither negative integers nor zero.
Because of that, ak 6= 0 and therefore ck 6= 0 for all the values of k. In the second case, n = 0
and therefore αk + n = αk, which means that c0 = 0 but ck 6= 0 for all the natural values of
k, since only a0 equals zero.

Remark 3. Actually, in the case τ ∈ Z−0 , the functions (29) reduce to polynomials of the kind (30)
of power m = −τ, and then their representation can be rewritten in the alternative forms:

F(γ)
α, n;−m(z) = zp

m

∑
k=p

(−m)k
[Γ(αk + n)]γ

zk−p

k!
= zp

m

∑
k=p

(−1)k
(m

k

) zk−p

[Γ(αk + n)]γ
. (32)

The second case is that τ is a negative integer.

Lemma 2. Let z, α, and γ satisfy the conditions in (13), τ ∈ Z−, m = −τ. Then, (29) can be
expressed by the formula (32) with the following values of p:

1. p = 0, for n ∈ N,
2. p = 1, for n = 0.

Proof. The numbers ak are given by (31) and their values are the same as in the proof of
Lemma 1. Moreover,

bk = (−m)k = −m(−m + 1) . . . (−m + k− 1) = (−1)k m . . . (m− k + 1) = (−1)k
(m

k

)
.

Then bk 6= 0 only for k ≤ m and hence ck = 0 for all k > m, and therefore the values of p
are the same as required.

Lemma 3. Let z, α, and γ satisfy the conditions in (13), and τ = 0. Then:

1. F(γ)
α, n; 0(z) =

1
[Γ(n)]γ

, for n ∈ N,

2. E(γ)
α, 0; 0(z) = 0.

Proof. It automatically follows, taking in view that bk = 0 for all k ∈ N.

Remark 4. Let us mention that if τ is a non-positive integer, as is seen above, the functions (7)
reduce to polynomials, but when τ /∈ Z−0 , they are entire functions of z.
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The above lemmas show that the functions F(γ)
α, n, τ(z) can be written in the following

form

F(γ)
α, n; τ(z) =

(τ)k
[Γ(αk + n)]γ

zp (1 + θ
γ
α, n(z)

)
, (33)

with

θ
γ
α, n; τ(z) =

∞

∑
k=p+1

(τ)k
(τ)p

[Γ(αp + n)]γ

[Γ(αk + n)]γ
zk−p

k!
for τ ∈ C \Z−0 , (34)

and, respectively:

θ
γ
α, n;−m(z) =

m

∑
k=p+1

(−m)k
(−m)p

[Γ(αp + n)]γ

[Γ(αk + n)]γ
zk−p

k!
(35)

=
m

∑
k=p+1

(−1)k−p (m
k
)(

m
p

) [Γ(αp + n)]γ

[Γ(αk + n)]γ
zk−p, for τ = −m, m ∈ N.

Remark 5. The parameter τ in the representations (33)–(35) is nonzero, and the parameter p is
determined by Lemmas 1 and 2. More precisely, p = 0 for all the natural values of n and p = 1 for
n = 0. If τ = 0, then θ

(γ)
α, n; 0 = 1

[Γ(n)]γ for n ∈ N and θ
(γ)
α, 0; 0 = 0, according to Lemma 3.

4. Inequalities and Asymptotic Formulae

Our goal is to find upper estimations of the moduli of the entire functions θ
γ
α, n; τ(z).

To this end, we transform the expressions in the equalities (34) and (35), to the following
forms:

θ
γ
α, n; τ(z) =

[Γ(αp + n)]γ

[Γ(α(p + 1) + n)]γ
∞

∑
k=p+1

g̃n,k
(τ)k
(τ)p

zk−p

k!
(36)

and, respectively,

θ
γ
α, n;−m(z) =

[Γ(αp + n)]γ

[Γ(α(p + 1) + n)]γ
m

∑
k=p+1

(−1)k−p g̃n,k

(m
k
)(

m
p

) zk−p, (37)

with

g̃n,k = (gn,k)
γ, gn,k =

Γ(α(p + 1) + n)
Γ(αk + n)

(n ∈ N0). (38)

Theorem 3. Let α, γ satisfy the conditions in (13) and τ ∈ C \Z−0 . Then, there exists an entire
function ϕ such that

∣∣θγ
α, n; τ(z)

∣∣ ≤ |[Γ(αp + n)]γ|
|[Γ(α(p + 1) + n)]γ| ϕ(|z|; α, γ, τ), (39)

for all the values of z ∈ C.

Proof. In order to find such a function ϕ and to prove the inequality (39), we estimate the
function (36) beginning with the values of (38). Since

g0, k =
Γ(α(p + 1))

Γ(αk)
,

gn,k =
Γ(α(p + 1))

Γ(αk)
(α(p + 1))

(αk)
. . .

(α(p + 1) + n− 1)
(αk) + n− 1

for n ∈ N,
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and due to the following inequality

|α(p + 1)|
|αk| · · · |α(p + 1) + n− 1|

|αk + n− 1| ≤ 1,

we obtain that

|gn,k| ≤
|Γ(α(p + 1))|
|Γ(αk)| , for all the possible values of n and k.

Finally, by taking

ϕ(z; α, γ, τ) =
∞

∑
k=p+1

|[Γ(α(p + 1))]γ|
|[Γ(αk)]γ|

|(τ)k|
|(τ)p|

zk−p

k!
,

the proof of the theorem ends.

Theorem 4. Let α, γ satisfy the conditions in (13), τ ∈ Z−, and m = −τ. Then, there exists a
polynomial ϕ̃ such that for all z ∈ C:

∣∣θγ
α, n;−m(z)

∣∣ ≤ |[Γ(αp + n)]γ|
|[Γ(α(p + 1) + n)]γ| ϕ̃(|z|; α, γ, m). (40)

Proof. Denoting

ϕ̃(z; α, γ, m) =
m

∑
k=p+1

|[Γ(α(p + 1))]γ|
|[Γ(αk)]γ|

(m
k
)(

m
p

) zk−p,

and following the idea of the proof of Theorem 3, we complete the proof. The details are
omitted.

The inequalities from Theorems 2 and 3 are valid in the whole complex plane. More-
over, in the case that the analytic functions ϕ and ϕ̃ are considered only on a given compact
subset of C, then they are modulo bounded. In this case, the inequalities (39) and (40) can
be combined. Namely, the following remark can be written.

Remark 6. If α, γ, τ satisfy the conditions in (13) and K is a compact subset of the complex plane
C, then there exists a constant C = C(K) such that

∣∣θγ
α, n; τ(z)

∣∣ ≤ C
|[Γ(αp + n)]γ|

|[Γ(α(p + 1) + n)]γ| , ∀z ∈ K, n = 0, 1, 2, . . . , (41)

for τ 6= 0 and p defined by Lemmas in Section 3.

Further, an asymptotic formula for ‘large’ values of the indices n is proved.

Theorem 5. Let α, γ, τ satisfy the conditions in (13), n ∈ N0, τ 6= 0, and θ
γ
α, n,τ be given by

the formulae (36)–(38). Then, the Prabhakar functions of Le Roy type (29) satisfy the following
asymptotic formulae

F(γ)
α, n;τ(z) =

(τ)p

[Γ(αp + n)]γ
zp (1 + θ

γ
α, n;τ(z)

)
and θ

γ
α, n;τ(z)→ 0 as n→ ∞ (z ∈ C), (42)
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with the corresponding p, depending on τ. Moreover, the convergence of θ
γ
α, n;τ is uniform on the

compact subsets of the complex plane C, and

θ
γ
α, n;τ(z) = O

(
1

n<(αγ)

)
(n ∈ N). (43)

Proof. Using the formulae (33), (41), and the Γ-functions quotients formula (16), the proof
is evident. The details are omitted.

Remark 7. According to the asymptotic formula (42), it follows there exists a natural number M
such that the functions F(γ)

α, n;τ have no zeros at all for n > M, possibly except for the zero.

5. Multi-Index Analogue of the Prabhakar Function of Le Roy Type

In the recent paper [15], a multi-index version of the Prabhakar function of Le Roy type
(7), which is also a generalization of (10), has been introduced and studied by Kiryakova
and Paneva-Konovska. This function (multi-index Mittag-Leffler-Prabhakar functions of
Le Roy type and abbrev. as multi-MLPR) has been defined analogously to (10), taking 4m
parameters (αi, βi, τi and γi for i = 1, . . . , m) instead of four: α, β, τ and γ, namely:

Fm(z) := Fγi ;m
αi ,βi ;τi

(z)

=
∞

∑
k=0

(τ1)k . . . (τm)k

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]

γm ·
zk

(k!)m (44)

=
∞

∑
k=0

ck zk, with ck =
m

∏
i=1

{
Γ(k + τi)

Γ(k + 1)
· 1

Γ(τi)
· 1
[Γ(αik + βi)]

γi

}
,

with 4m parameters αi > 0, βi > 0, γi > 0, τi > 0, ∀i = 1, ..., m. It has been established that
(44) is an entire function and its order and type have been determined.

As already mentioned in the Introduction, almost in parallel, Rogosin and
Dubatovskaya [14] have studied a multi-index analog of (4) with 3m parameters, denoted by
them with F(γ)m

(α, β)m
. It can be considered as the above functions (44) when τi = 1, ∀i = 1, ..., m,

i.e.,

F(γ)m
(α, β)m

= Fγi ;m
αi ,βi ;1

(z) =
∞

∑
k=0

zk

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]

γm · (45)

Extending the domains of the parameters, we consider the functions (44) under the
weakened conditions:

αi, βi, γi, τi ∈ C, <(αi) > 0, <(γi) > 0,
m

∑
i=1
<(αiγi) > 0. (46)

It turns out, that under the new conditions, the function (44) is also an entire function
Moreover, if at least one of τi is either a negative integer or zero, then (44) is reduced to a
finite sum (polynomial); say if

∃i0 : −τi0 = M ∈ N0 (1 ≤ i0 ≤ m),

then, similarly to the statements in Section 3, the function (44) has the form:

F(z) = Fγi ;m
αi ,βi ;τi

(z) =
M

∑
k=0

(τ1)k . . . (τm)k

[Γ(α1k + β1)]
γ1 . . . [Γ(αmk + βm)]

γm ·
zk

(k!)m . (47)

Oppositely, if none of the parameters τi is a non-positive integer, the proof is very
similar to this one for the positive parameters, given in [15]. Its order and type are given
below.
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Theorem 6. The multi-index MLPR-function (44), with the condition (46) on the parameters and
τi /∈ Z−0 , is an entire function of the complex variable z of order ρ and type σ, expressed as follows:

1
ρ
= <(α1γ1) + · · ·+<(αmγm), (48)

and
1
σ
=

m

∏
i=1
|(ραi)

ραiγi |, (49)

that is,
1
σ
=

∣∣αα1γ1
1 · · · ααmγm

m
∣∣1/(<(α1γ1)+···+<(αmγm))

<(α1γ1) + · · ·+<(αmγm)
· (50)

Proof. In the part concerning (48) and (49), it goes in the same way as in [15] for the positive
parameters. The details are omitted here. The relation (50) follows replacing ρ from (48)
into (49) and taking in view that

|(ραi)
ραiγi | = |α ραiγi

i ||ρ ραiγi | = |α ραiγi
i | ρ ρ<(αiγi),

and also ρ (<(α1γ1) + · · ·+<(αmγm)) = 1.

Remark 8. Note that the order and type of the multi-MLPR-function (44), given by (48)–(50), do
not depend on the parameters βi and τi. Moreover, if all the τi = 1, they coincide with the results
concerning the order and type of the function F(γ)m

(α, β)m
, obtained in ([14] [Theorem 1]); if m = 1, they

produce the order and type of the Prabhakar functions of Le Roy type (7) with four parameters. If the
parameters are positive, the formulae (48)–(50) lead to the results obtained in ([15] [Theorem 2]).

According to the general theory of entire functions, again according to the Formula (19),
an upper asymptotic estimate holds true for the entire function (44). Namely, the following
corollary can be formulated.

Corollary 2. Let the parameters αi, βi, τi, and γi satisfy the condition (13) and let τi be neither
negative integers nor zero. Then, for any ε > 0 there exists a positive number r0(ε) > 0, depending
only on ε, such that the asymptotic estimate

|Fm(z)| < exp((σ + ε)|z|ρ), ∀ |z| ≥ r0(ε) > 0, (51)

holds, with ρ and σ like in (48) and (49), and r0(ε) being sufficiently large.

6. Special Cases of the Multi-MLPR-Function

Let us summarize that the multi-MLPR-function (44) (considered as above under the
conditions (46) on the parameters), being more general than multi-index function (45),
Prabhakar functions of Le Roy Type (7), and multi-index Mittag-Leffler functions (9) and
(10), leads to them for special choices of the parameters. For example, if γi = 1 or τi = 1,
∀i = 1, ..., m, then (44) becomes (10), respectively (45); if γi = τi = 1, the function (44) is the
2m-index Mittag-Lefler function (9):

F1;m
αi ,βi ;τ

(z) = E(τi), m
(αi), (βi)

(z), Fγi ;m
αi ,βi ;1

(z) = F(γ)m
(α, β)m

, F1;m
αi ,βi ;1

(z) = E m
(αi), (βi)

(z). (52)

An interesting special case is mentioned by Pogány as an example only, in the pa-
per [22], devoted to the search for an integral form of the Le Roy-type function (4). It is a
special function of the form (his denotations are kept here):

Fα,β
(p,q;r,s)(z) =

∞

∑
k=0

zk

[Γ(pk + q)]α [Γ(rk + s)]β
· (53)
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This function illustrates the case m = 2 of the special functions (44), which we consider
here; namely, it is:

F(α,β);2
(p,r),(q,s);(1,1) =

∞

∑
k=0

(1)k(1)k

[Γ(pk + q)]α [Γ(rk + s)]β
· zk

(k!)2 ·

Then, in this case, we obtain that it is an entire function with:

ρ =
1

<(pα + rβ)
, σ =

<(pα + rβ)∣∣ppα · rrβ
∣∣1/<(pα+rβ)

· (54)

The Bessel function Jν of the first kind and its numerous generalizations can also be
represented by the cases of multi-index Mittag-Leffler functions (see e.g., [11] for such
type of representations) and thus, they can also be considered as special cases of the multi-
MLPR-function (44). Further, if m = 1, then (44) is the four-parametric Prabhakar function
of Le Roy type, given by (7). On the other hand, the function (7) produces different special
functions as particular cases. Some of them are written below. For example, if γ is a positive
integer, say γ = m ∈ N, the function (7) is a multi-index Mittag-Leffler function of the
kind (10), or (in particular, if additionally τ = 1), it is of the kind (9). Both examples are
expressed trough the multi-index Mittag-Leffler functions by the Formula (11) and their
parameters are given in (12). Further, for τ = 1 the function (7) is a Le Roy-type function
given by (4), for γ = 1, it is Prabhakar’s Eτ

α, β function (8), namely:

F(γ)
α, β; 1(z) = F(γ)

α, β (z), F(1)
α, β; τ(z) = Eτ

α, β(z). (55)

Finally, the Mittag-Leffler functions Eα, β, Eα, the classical Le Roy function (1) (and
therefore Kolokoltsov’ s function R), are also obtained as particular cases, i.e.,:

F(1)
α, β; 1(z) = Eα, β(z), F(1)

α, 1; 1(z) = Eα(z), F(γ)
1, 1; 1(z) = F(γ)(z), R(z) = F(1/2)(z). (56)

7. Conclusions

In this paper, the Prabhakar function (7) of Le Roy type as well as its 4m-index analogue
(44) are considered. Their basic properties, such as orders and types are established, and
also the corresponding asymptotic inequalities (28) and (51), resulting from the general
theory of entire functions. Moreover, by choosing non-negative integer values of the beta
parameter of (7), we construct the family (29). For its functions, different representations
and inequalities are found, depending on the parameters, and an asymptotic formula for
large values of the integer parameters as well. Some of the inequalities proved are valid
in the whole complex plane, and others in compact subsets of it. Additionally, numerous
special cases of the four-parametric Le Roy type function and its multi-index analogue
are listed.

In conclusion, let us emphasize that the results established in Sections 2–4 can be
automatically applied to the special cases (55) and (56). The results in Section 5 concerning
the order and type of (44), as well as the inequality (51), are applicable to all the special
cases discussed above in Section 6.
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