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Abstract: In this paper, we consider a two-dimension symmetric random walk with reset. We give,
in the first part, some results about the distribution of every component. In the second part, we
give some results about the final altitude Zn. Finally, we analyse the statistical properties of NX

n , the
number of resets (the number of returns to state 1 after n steps) of the first component of the random
walk. As a principal tool in these studies, we use the probability generating function.
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1. Introduction

The two-dimensional Moran model is a simple discrete process used in many fields to
describe the evolution of two discrete random walks in each unit of time.

Moran’s random walk model can be applied in the field of renewable energy. Many
renewable energy situations can be modelled as Moran’s random walk. This modelling has
the advantage of minimizing expenses to guarantee the proper functioning of such a system
by avoiding surprise breakdowns. In certain ecosystems, and more particularly in certain
tropical forests, different species with the same ecological requirements coexist in the same
environment. For example, some forests have more than a hundred different tree species
on one hectare. To explain this astonishing diversity, scientists have constructed models in
which community composition is solely based on the stochastic dispersal of individuals.
The mathematical model studied in our paper is in line with this. It was suggested by M.
Kalyuzhni [1] in an article where he justifies its relevance. It is known as Moran’s model in
a random environment. It is therefore a question of studying a process of birth and death
which takes into account environmental hazards (climates, diseases, etc.) that randomly
favour or disadvantage certain species.

In this work, our goal is to study the statistical properties of some discrete statistics
such as the limiting distributions, the mean and the variance of two discrete walks in our
model, Xn and Yn, and the maximum of two walks Zn (called final altitude) using very
elegant tools called probability generating functions. Also, we analyse the return time, NX

n ,
of the random walk Xn and find its mean and variance.

In the literature, these properties of discrete random walks are studied in one dimen-
sion and in higher dimensions via the kernel method and singularity analysis (see [2,3]).
For example, for one dimension, if one focuses on articles which play a role in our analysis,
Banderier and Flajolet have proven in [2] that the limiting distribution of the final altitude of
a random meander of length n converges to a Rayleigh distribution (drift δ = 0) and normal
distribution (δ > 0). Furthermore, the height of discrete bridges/meanders/excursions for
bounded discrete walks has been analysed by Banderier and Nicodème [4]. Also, Aguech,
Althagafi , and Banderier in [5] have studied the height of walks with resets and the Moran
Model. Similar extremal parameters were studied for trees in [6,7], and by Gafni [8] for
the asymptotic distribution of the length of the longest run of consecutive equal parts.
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Finally, Banderier and Wallner treated the number of catastrophes of a random excursion
of size n, which converges to a Gaussian, Rayleigh, or discrete distribution depending on
the drift (see Theorem 4.12 in [9]).

For higher dimensions, still in connection with our model, we can mention the two-
dimensional Moran model, investigated by Abdelkader and Althagafi in [10], where they
showed that the age of each component converges to a shifted geometric distribution in
law. Furthermore, the limiting distribution for the lifetime of an individual converges
to a (shifted) geometric distribution in law, proven by Itoh and Mahmoud [11]. Itoh,
Mahmoud, and Takahashi in [12] proved that the wavelength converges, in distribution, to a
convolution of geometric random variables. Other papers are related to the Moran process
(in biology and population genetics); see, e.g., [13–15]. The models in the papers [16,17]
can be modelled as a Moran process.

This paper is organized as follows. In Section 2, we present our model in detail and
define some statistics. In Section 3, in order to obtain the probability generating functions
of the random walks, Xn and Yn, we give some recursive equations for the sequence of
multivariate polynomials in our model. We show that the two Moran random walks
Xn and Yn converge to shifted geometric distributions in law asymptotically. Also, we
calculate their means and variances using the probability generating function of the random
walks Xn and Yn. In Section 4, we study the statistical properties of the maximum age, Zn,
between two random walks Xn and Yn. In Section 5, we analyse the number of returns up to
time n, NX

n . We start with a simulation of the random walk NX
n with different lengths: 100,

1000, 10,000, and 100,000 according to the initial probability q using R software. Also, we
obtain the distribution and the probability generating function. In Section 6, we determine
the general probability generating function of the two-dimensional random walk, which
can be useful to extract the distribution of the height Hn. In Section 7, we present some
conclusions concerning our results and some perspectives. In Appendix A, we give some
technical lemmas useful for studying the final altitude.

2. Definitions and Presentation of the Model

In this section, we introduce our model: the two-dimensional symmetric Moran model.
We define some statistics such as the final altitude, the height, and the return time. We
present an elegant tool called the probability generating function, which plays an important
role in finding the statistical properties of discrete random walks.

2.1. Presentation of the Model

Our model is presented as follows: At time 0, the random walk starts from the origin.
After one unit of time, (a) the first random walk shifts by one positive unit, but the second
random walk returns to 1 with probability 1− q; (b) the second walk shifts by one positive
unit, but the first random walk returns to 1 with same probability 1− q; (c) the two random
walks shift by one positive unit with probability 2q− 1, where q ∈ (1/2, 1). Mathematically,
our model is given by the following system: for all n ∈ N

(Xn+1, Yn+1) =


(1 + Xn, 1), with probability 1− q,

(1, 1 + Yn), with probability 1− q,

(1 + Xn, 1 + Yn), with probability 2q− 1,

(1)

where q ∈ (1/2, 1). The process (Xn, Yn) is considered a stochastic process with dimen-
sion two defined on the state space S2 = {0, . . . , n}2, and started from the initial state
(X0, Y0) = (0, 0).

2.2. Definitions

In this subsection, we present some definitions concerning some discrete random walks.
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1. The final altitude, Zn, of the two-dimensional Moran random walk is defined by

∀n ∈ N, Zn = max(Xn, Yn),

2. The height, Hn, of the two-dimensional Moran random walk is defined by

∀n ∈ N, Hn = max(Z0, Z1, Z2, . . . , Zn),

3. The return time, NX
n , of the Moran random walk X. equals the number when X.

returns to 1.

where Z0 = 0, H0 = 0 and NX
0 = NX

1 = 0.

Our goal is to study the statistical properties of the following discrete random walks:
Xn, Yn, Zn, Hn, NX

n . Precisely, we want to find their limiting distributions, their means, and
their variances. As mentioned before, as a tool, we use the probability generating function.

Definition 1. Let U be a discrete random variable with distribution P(U = r) = pr, r ∈ N.
The probability generating function, denoted by G, of the variable U is defined by

GU(u) = E(uU) =
∞

∑
r = 0

ur pr,

for all u ∈ R such that |u| ≤ 1.

Due to their numerous uses, probability generating functions constitute an elegant
tool to study the characteristic of a distribution. Mainly, the probability density functions
associated with discrete stochastic processes and their moments can be obtained from the
derivatives of the probability generating function. In fact, the mean and the variance of the
process (the first and second centred moments of the distribution of U) are related to the
derivatives of the probability generating function at u = 1. More precisely, the next folklore
lemma explains this link.

Lemma 1 ([3]). Let GU be the probability generating function of a the discrete random process U.
For all k ∈ N, the kth factorial moment of U is given by

∂kGU(u)
∂ku

∣∣∣
u=1

= E
[
U(U − 1)(U − 2) . . . (U − k + 1)

]
.

In addition, if the limits of ∂GU(u)
∂u and ∂2GU(u)

∂2u exist at u = 1, then we have the following
two important equations, which are related to the mean and variance of U and GU(u):

E
(

U
)
=

∂GU(u)
∂u

∣∣∣
u=1

and Var
(

U
)
=

∂2GU(u)
∂2u

∣∣∣
u=1

+E
(

U
)
−E

(
U
)2

. (2)

3. Distributions of Xn and Yn

In this section, firstly, we derive a conditional probability of the position of the process
defined in (1) at time (n + 1) given that we know its position at time n. Secondly, we

determine the sequence of multivariate polynomials, denoted by fn(x, y) = E
(

xXn yYn
)

,
and find the recursive equation related to this sequence between two consecutive times
n and n + 1. Finally, we show that the two symmetric random Moran walks Xn and Yn
converge to the shifted geometric distribution, and we compute their means and variances.
Using the definitions in Section 2, we define the joint probability mass function of (Xn, Yn).
Denote, for all r, s ∈ {0, . . . , n + 1},

Pn+1(r, s) = P(Xn+1 = r, Yn+1 = s), (3)
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this is the probability that the process is in the position (r, s) at time n + 1.
We start this section with a technical lemma. It involves a recursive equation between

the probability of our model for two consecutive times, n and n+ 1, to be used in Theorem 1.
It is based on the following conditional probability:

Lemma 2. For all n ≥ 2, we have

Pn+1(r, s) =



(2q− 1)Pn(r− 1, s− 1), if r ≥ 2, s ≥ 2,

(1− q)
n

∑
l=1

Pn(l, s− 1), if r = 1, s ≥ 2,

(1− q)
n

∑
k=1

Pn(r− 1, k), if s = 1, r ≥ 2.

Proof. This proof is based on the utility of the conditional probability that the Moran walks
X and Y are aged r and s at time n + 1, given that they are aged l and k at time n, and then

1. For r ≥ 2 and s ≥ 2, we have

Pn+1(r, s) =P(Xn+1 = r, Yn+1 = s)

=P(Xn+1 = r, Yn+1 = s, Xn = r− 1, Yn = s− 1)

=P(Xn+1 = r, Yn+1 = s|Xn = r− 1, Yn = s− 1)

× P(Xn = r− 1, Yn = s− 1) = (2q− 1)Pn(r− 1, s− 1),

2. For r = 1 and s ≥ 2, we have:

Pn+1(1, s) =
n

∑
l=1

P(Xn+1 = 1, Yn+1 = s, Xn = l, Yn = s− 1)

=
n

∑
l=1

P(Xn+1 = 1, Yn+1 = s|Xn = l, Yn = s− 1)

× P(Xn = l, Yn = s− 1)

=(1− q)
n

∑
l=1

Pn(l, s− 1),

3. For r ≥ 2 and s = 1, we have by symmetry:

Pn+1(r, 1) =(1− q)
n

∑
k=1

Pn(r− 1, k).

Remark 1. Consider two consecutive times n and (n + 1), r and s days, starting from 1 to (n + 1),
and the ages of two components X and Y are equal at time n + 1, respectively. We give some
comments on the different cases of the age of two components X and Y at time n + 1:

1. If r ≥ 2 and s ≥ 2, then the probability that X and Y are aged r and s at time (n + 1) is equal
to the probability that (X, Y) is aged (r− 1, s− 1) days at the preceding time n multiplied
by (2q− 1).

2. If r = 1 and s ≥ 2, the probability that (X, Y) is aged (1, s) days equals (1− q) multiplied
by the sum of all probabilities of X and Y that are aged l and s− 1 days at time n, where l
starts from 1 to n, respectively.

3. If r ≥ 2 and s = 1, the probability that (X, Y) is aged (r, 1) days equals (1− q) multiplied
by the sum of all probabilities of X and Y that are aged r− 1 and k days at time n, where k
starts from 1 to n, respectively.
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Next, we define the sequence of multivariate polynomials fn(x, y) (for n ∈ N) associ-
ated with the two-dimensional process (Xn, Yn), by

fn(x, y) = E
(

xXn yYn
)
=

n

∑
r=0

n

∑
s=0

xr ysPn(r, s). (4)

The coefficient of xr ys in fn(x, y) represents the probability that the position of the two-
dimensional process (X, Y) is at level (r, s) at time n.

When x = y = 1, we have the special case

fn(1, 1) =
n

∑
r=0

n

∑
s=0

Pn(r, s) = 1. (5)

By Equation (4) and Lemma 2, we deduce a recursive equation related to fn+1(x, y), fn(x, 1),
fn(1, y), and fn(x, y). It is presented in the next proposition.

Proposition 1. For all (x, y) ∈ R2, the explicit expression of the sequence of multivariate polyno-
mials fn(x, y) holds the following recurrence:

fn+1(x, y) = (1− q) x y fn(x, 1) + (1− q) x y fn(1, y) + (2q− 1) x y fn(x, y),

f0(x, y) = P0(0, 0) = 1.
(6)

Proof. Using Equation (4) and for all n ≥ 1, the function fn+1(x, y) can be developed as

fn+1(x, y) =
n+1

∑
r=2

n+1

∑
s=2

xr ys Pn+1(r, s)︸ ︷︷ ︸
A

+y
n+1

∑
r=1

xr Pn+1(r, 1)︸ ︷︷ ︸
B

+x
n+1

∑
s=1

ys Pn+1(1, s)︸ ︷︷ ︸
C

. (7)

Due to Lemma (2), we can compute A, B, and C as follows:

A =(2q− 1)
n+1

∑
r=2

n+1

∑
s=2

xr ys Pn(r− 1, s− 1) = (2q− 1)
n

∑
r=1

n

∑
s=1

xr+1 ys+1 Pn(r, s) (8)

=(2q− 1) x y
n

∑
r=0

n

∑
s=0

xr ys Pn(r, s) = (2q− 1) x y fn(x, y),

C = (1− q)
n+1

∑
s=1

n

∑
l=1

ysPn(l, s− 1) = y(1− q)
n

∑
s=0

n

∑
l=0

ysPn(r, s) = (1− q)y fn(1, y), (9)

finally, via symmetry, we deduce

B = (1− q)x fn(x, 1). (10)

We obtain Equation (6) by combining Equations (7) and (10).

In this part, we study some statistical characteristics such that the probability generat-
ing function, the asymptotic distribution, the mean, and the variance of the final altitude
of each component Xn and Yn at time n can be obtained. Precisely, we start by finding
the probability generating function of each component f X

n (x) = E
[
xXn
]
= fn(x, 1) and

f Y
n (y) = E

[
yYn
]
= fn(1, y). Next, we show that the final altitude of the two random walks

Xn and Yn converge to a shifted geometric distribution asymptotically. Finally, we finish
this section by computing the mean and the variance of the two random walks. The fol-
lowing theorem introduces the probability generating function and the asymptotic limit
distributions of Xn and Yn.
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Theorem 1. Xn and Yn converge to a shifted geometric distribution with parameter (1− q) in law
asymptotically, with the same probability generating function given by the following: for all n ≥ 0

fn(x) = E
(

xXn
)
= (q x)n + (1− q)

x− qnxn+1

1− q x
, (11)

for all x ∈ R, such that |1− q x| < 1.

Proof. Using Equations (5) and (6) with y = 1, we obtain

fn(x, 1) = (1− q) x fn−1(x, 1) + (1− q) x fn−1(1, 1) + (2q− 1) x fn−1(x, 1)

= (1− q) x fn−1(1, 1) + q x fn−1(x, 1)

= (1− q) x + q x fn−1(x, 1).

We iterate fn(x, 1) n times and we obtain

E
(

xXn
)
= fn(x, 1) = (1− q) x

n−1

∑
s=0

(q x)s + (q x)n = (q x)n + (1− q)
x− qn xn+1

1− q x
.

Hence, passing to the limit of fn(x, 1), we the have

lim
n→∞

fn(x, 1) = lim
n→∞

[
(q x)n + (1− q)

x− (1− q)n xn+1

1− q x

]
=

(1− q)x
1− qx

, (12)

it is exactly the generating function of a shifted geometric distribution with parameter 1− q.
By symmetry, we have

lim
n→∞

fn(1, y) = lim
n→∞

[
(q y)n + (1− q)

y− (1− q)n yn+1

1− q y

]
=

(1− q)y
1− qy

.

Theorem 1 leads us to find the explicit expressions of the means and variances of Xn
and Yn, which depend on the first and the second derivatives of the probability generating
function fn(u), u = x, y.

Corollary 1. The means and the variances of Xn and Yn are given by

E
(

Xn

)
= E

(
Yn

)
=

1− qn

1− q
, (13)

and

Var
(

Xn

)
= Var

(
Yn

)
=

1
(1− q)2

(
q− qn

{
qn + (2 n q− 1) (1− q)

})
. (14)

Proof. Calculating the first derivative of fn(u, 1) defined in Equation (11) with respect to u,

∂ fn(u)
∂u

=
∂

∂u

{
qn un + (1− q)

u− qn un+1

1− q u

}
(15)

=n qn un−1 + (1− q)
1− (n + 1) qn un

1− q u
+ (1− q) q

u− qn un+1

(1− q u)2 ,

evaluating with u = 1,
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∂ fn(u)
∂u

∣∣∣
u=1

=n qn + (1− q)
1− (n + 1) qn

1− q
+ (1− q) q

1− qn

(1− q)2

=n qn + 1− (n + 1) qn +
q (1− qn)

1− q
=

1− qn

1− q
.

Using Equation (2), we obtain

E
(

Xn

)
= E

(
Yn

)
=

∂ fn(u)
∂u

∣∣∣
u=1

=
1− qn

1− q
.

To derive the variance of Xn and Yn, we need to define the following sequences of functions:

Kn(u) =
1− qn un

1− q u
,

Ln(u) =
un

1− q u
,

Mn(u) =
u− qn un+1

(1− q u)2 .

Observe that

∂ fn(u)
∂u

= n qn un−1 + (1− q)Kn(u)− n (1− q) qn Ln(u) + (1− q) q Mn(u), (16)

using Equation (16) and computing the second derivative of fn(u) with respect u, one has

∂2 fn(u)
∂u2 =n qn ∂(un−1)

∂u
+ (1− q)

∂Kn(u)
∂u

(17)

− n (1− q) qn ∂Ln(u)
∂u

+ (1− q) q
∂Mn(u)

∂u
.

The first derivatives of the functions Kn(u), Ln(u), and Mn(u) are given by

∂Kn(u)
∂u

=
−nqn un−1

1− q u
+ q

1− qn un

(1− q u)2 ,

∂Ln(u)
∂u

=
n un−1

1− q u
+ q

un

(1− q u)2 ,

∂Mn(u)
∂u

=
1− (n + 1)qn un

(1− q u)2 + 2q
u− qn un+1

(1− q u)3 .

Let u = 1 and multiply by (1− q), n(1− q)qn, and (1− q) q, respectively, we can obtain

(1− q)
∂Kn(u)

∂u

∣∣∣
u=1

=(1− q)
(−nqn

1− q
+ q

1− qn

(1− q)2

)
= −nqn +

q (1− qn)

1− q
,

n(1− q)qn ∂Ln(u)
∂u

∣∣∣
u=1

=n(1− q)qn
( n

1− q
+

q
(1− q)2

)
= n2qn +

n qn+1

1− q
,

(1− q) q
∂Mn(u)

∂u

∣∣∣
u=1

=q (1− q)
(1− (n + 1)qn

(1− q)2 + 2q
1− qn

(1− q)3

)

=
q
(

1− (n + 1)qn
)

(1− q)
+

2 q2 (1− qn)

(1− q)2 .
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Replacing, in Equation (17), the first derivatives of Kn(u), Ln(u), and Mn(u), with respect
the variable u, with 1, we obtain

∂2 fn(u)
∂u2

∣∣∣
u=1

=n(n− 1)qn − nqn +
q (1− qn)

1− q
− n2qn − n qn+1

1− q
(18)

+
q− (n + 1)qn+1

(1− q)
+

2 q2 (1− qn)

(1− q)2

=− 2 n qn +
q (1− qn)

1− q
− 2n qn+1

1− q
+

q
1− q

− qn+1

1− q
+

2 q2 (1− qn)

(1− q)2 .

Using the following equalities,

2 n qn +
2n qn+1

1− q
=

2 n qn

1− q
, (19)

q (1− qn)

1− q
+

q
1− q

− qn+1

1− q
+

2 q2 (1− qn)

(1− q)2 =
2 q (1− qn)

(1− q)2 , (20)

and combining Equations (18)–(20), the second derivative of fn(u) evaluated at u = 1 is
given by

∂2 fn(u)
∂u2

∣∣∣
u=1

= − 2 n qn

1− q
+

2 q (1− qn)

(1− q)2 . (21)

Applying Equation (2), and using Equations (13) and (18), we obtain

Var(Xn) = Var(Yn) =−
2 n qn

1− q
+

2 q (1− qn)

(1− q)2 +
1− qn

1− q
−
(1− qn

1− q

)2

=
1

(1− q)2

(
− 2 n qn + 2 n qn+1 + 2 q− 2 qn+1

)
+

1
(1− q)2

(
1− q− qn + qn+1 − 1 + 2 qn − q2n

)
=

1
(1− q)2

(
q− qn

{
qn + (2 n− 1) (1− q)

})
.

4. Statistical Properties of the Maximum Age Zn

In this section, we analyse the final altitude of the maximum age, Zn = max(Xn, Yn),
between two components at time n. Precisely, we determine the explicit form of Φn(v),
the probability generating function of Zn. It is defined as follows: for all v ∈ R such that
|v| ≤ 1

Φn(v) = E
[
vZn
]
=

n

∑
s=0

vs P
(

Zn = s
)

.

4.1. Moment Generating Function of Zn

In the following theorem, we give the explicit expression of Φn(v):

Theorem 2. The probability generating function, Φn(v), of the final altitude Zn between the two
components Xn and Yn is given by the following expression:

For all v ∈ [−1, 1] and for all n ∈ N∗,
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Φn(v) =
(

2qn − (2q− 1)n−1
)

vn + 2 (1− q)
q v2 − qn vn+1

1− q v

− 2 (1− q)
1− (2q− 1)v

(
(2q− 1) v2 − (2q− 1)n−1 vn

)
,

with Φ0(v) = 1.

Proof. The probability generating function, Φn(v), of the final altitude Zn = max(Xn, Yn),
can be developed as follows: ∀n ∈ N∗, v ∈ R

Φn(v) =
n

∑
r=1

vr P(Zn = r) =
n

∑
r=1

vr
(
P(Xn = r, Yn ≤ r) + P(Xn < r, Yn = r)

)
=2

n

∑
r=1

r

∑
s=1

vr P(Xn = r, Yn = s)−
n

∑
s=1

vrP(Xn = Yn = r),

and
P(Xn = n, Yn = n) = (2q− 1)n−1, where n ≥ 1. (22)

Using the last equation and Equation (A8), in Appendix A, we deduce that for all n ≥ 1

Φn(v) =
(

2qn − (2q− 1)n−1
)

vn +
2(1− q)
1− q v

(
q v2 − qn vn+1

)
− 2 (1− q)

1− (2q− 1)v

(
(2q− 1) v2 − (2q− 1)n−1 vn

)
.

Remark 2. The probability generating function Φn(v) of the random walk Zn, satisfies

Φn(v) = 2 Sn(v)− (2q− 1)n−1 vn, (23)

where Sn(v) is given in Appendix A. The coefficient (2q− 1)n−1 represents the probability that
both random walks Xn and Yn are always increasing from (1, 1) at time 1 to (n, n) at time n with
probability (2q− 1). Also, this probability equals 1 when n = 1, (i.e., P1(1, 1) = P0(0, 0) = 1).
The coefficient 2 in Equation (23) reflects the symmetry between Xn and Yn.

4.2. Moments of Zn

Due to the explicit form of Φn(v) and using the first and the second derivatives in
v = 1, we are able to compute the mean and the variance of the final altitude Zn.

Corollary 2. The explicit expressions of the mean and the variance of the final altitude Zn are
given by

E(Zn) =
1

2(1− q)

(
3− 4 qn + (2q− 1)n

)
, (24)

Var(Zn) =
1

2(1− q)2

(
1 + 6q + 8qn

[
(n− 1)q− n

]
+ (2q− 1)n

[
2n(1− q) + (2q− 1)

])
+

1
2(1− q)

(
3− 4 qn + (2q− 1)n

)
−
[ 1

2(1− q)

(
3− 4 qn + (2q− 1)n

)]2
.

Proof. In order to obtain the mean and the variance of Zn, we need to compute the first and
the second derivatives of the probability generating function, Φn(v), given in Theorem 2.
Next, we evaluate two derivatives of Φn(v) at v = 1.



Mathematics 2023, 11, 3774 10 of 22

Define the following sequences of functions: ∀n ≥ 1, ∀v ∈ R such that qv < 1 and
(2q− 1)v < 1

Hn(v) =
1

1− q v

(
q v2 − qn vn+1

)
,

Ln(v) =
1

1− (2q− 1)v

(
(2q− 1) v2 − (2q− 1)n−1 vn

)
.

The first derivative of Φn(v) defined in Theorem 2 with respect v is given by

∂Φn(v)
∂v

=
∂

∂v

{(
2 qn − (2q− 1)n−1

)
vn +

2 (1− q)
1− q v

(
q v2 − qn vn+1

)
− 2 (1− q)

1− (2q− 1)v

(
(2q− 1) v2 − (2q− 1)n−1 vn

)}
(25)

=n
(

2 qn − (2q− 1)n−1
)

vn−1 + 2(1− q)
∂Hn(v)

∂v
− 2 (1− q)

∂Ln(v)
∂v

,

where

∂Hn(v)
∂v

=
1

1− q v

(
2q v− (n + 1) qn vn

)
+

1
(1− q v)2

(
q2 v2 − qn+1 vn+1

)
,

∂Ln(v)
∂v

=
1

1− (2q− 1) v

(
2(2q− 1) v− n (2q− 1)n−1 vn−1

)
+

1
(1− (2q− 1) v)2

(
(2q− 1)2 v2 − (2q− 1)n vn

)
,

and evaluating at v = 1, we obtain

2(1− q)
∂Hn(v)

∂v

∣∣∣
v=1

=2(1− q)
(2q− (n + 1) qn

1− q
+

q2 − qn+1

(1− q)2

)
=4q− 2(n + 1) qn +

2(q2 − qn+1)

1− q
, (26)

2(1− q)
∂Ln(v)

∂v

∣∣∣
v=1

=2(1− q)
(2(2q− 1)− n (2q− 1)n−1

1− (2q− 1)
+

(2q− 1)2 − (2q− 1)n

(1− (2q− 1))2

)
=2(2q− 1)− n (2q− 1)n−1 +

(2q− 1)2 − (2q− 1)n

(1− (2q− 1))
. (27)

By combining Equations (25)–(27), we obtain

∂Φn(v)
∂v

∣∣∣
u=1

=2 n qn − n (2q− 1)n−1 + 4q− 2(n + 1) qn +
2(q2 − qn+1)

1− q

− 2(2q− 1) + n (2q− 1)n−1 − (2q− 1)2 − (2q− 1)n

2(1− q)
(28)

=
1

2(1− q)

(
3− 4 qn + (2q− 1)n

)
.

Using Equations (2) and (28), we obtain

E
(

Zn

)
=

∂Φn(v)
∂v

∣∣∣
v=1

=
1

2(1− q)

(
3− 4 qn + (2q− 1)n

)
.

Observe that
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∂2Φn(v)
∂2v

= n (n− 1)
(

2 qn − (2q− 1)n−1
)

vn−2 + 2(1− q)
∂2Hn(v)

∂2v
− 2 (1− q)

∂2Ln(v)
∂2v

. (29)

The second derivative of the function Hn(v) can be computed as

∂2Hn(v)
∂2v

=
∂

∂v

{ 1
1− q v

(
2q v− (n + 1) qn vn

)
+

1
(1− q v)2

(
q2 v2 − qn+1 vn+1

)}
=

1
1− q v

(
2q− n (n + 1) qn vn−1

)
+

1
(1− q v)2

(
2q2 v− (n + 1) qn+1 vn

)
(30)

+
1

(1− q v)2

(
2q2 v− (n + 1) qn+1 vn

)
+

1
(1− q v)3

(
2q3 v2 − 2qn+2 vn+1

)
.

We evaluate ∂2 Hn(v)
∂2v at v = 1, and we multiply it by 2(1− q) to obtain

2(1− q)
∂2Hn(v)

∂2v

∣∣∣
v=1

=2(1− q)
(2q− n (n + 1) qn

1− q
+

2q2 − (n + 1) qn+1

(1− q)2

)
+ 2(1− q)

(2q2 − (n + 1) qn+1

(1− q)2 +
2q3 − 2qn+2

(1− q)3

)
(31)

=4q− 2n (n + 1) qn +
(8q2 − 4(n + 1) qn+1

(1− q)

)
+
(4q3 − 4qn+2

(1− q)2

)
.

The second derivative of the function Ln(v) is given by

∂2Ln(v)
∂2v

=
∂2

∂2v

(2(2q− 1) v− n (2q− 1)n−1 vn−1

1− (2q− 1) v
+

(2q− 1)2 v2 − (2q− 1)n vn

(1− (2q− 1) v)2

)
=

1
1− (2q− 1) v

(
2(2q− 1)− n(n− 1) (2q− 1)n−1 vn−2

)
+

2q− 1
(1− (2q− 1) v)2

(
2(2q− 1) v− n (2q− 1)n−1 vn−1

)
+

1
(1− (2q− 1) v)2

(
2(2q− 1)2 v− n (2q− 1)n vn−1

)
+

2(2q− 1)
(1− (2q− 1) v)3

(
(2q− 1)2 v2 − (2q− 1)n vn

)
.

The last second derivative evaluated at v = 1 gives

∂2Ln(v)
∂2v

∣∣∣
v=1

=
1

2(1− q)

(
2(2q− 1)− n(n− 1) (2q− 1)n−1

)
+

2q− 1
4(1− q)2

(
2(2q− 1)− n (2q− 1)n−1

)
+

1
4(1− q)2

(
2(2q− 1)2 − n (2q− 1)n

)
+

(2q− 1)
4(1− q)3

(
(2q− 1)2 − (2q− 1)n

)
.

We simplify
∂2Ln(v)

∂2v

∣∣∣
v=1

, and we multiply it by 2(1− q) to obtain

2(1− q)
∂2Ln(v)

∂2v

∣∣∣
v=1

=
(

2(2q− 1)− n(n− 1) (2q− 1)n−1
)

+
1

(1− q)

(
2(2q− 1)2 − n (2q− 1)n

)
(32)

+
1

2(1− q)2

(
(2q− 1)3 − (2q− 1)n+1

)
.
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Since

n (n− 1)
(

2 qn − (2q− 1)n−1
)
− 2n (n + 1) qn + n (n− 1)(2q− 1)n−1 = −4n qn, (33)

by (31)–(33), we deduce

∂2Φn(v)
∂2v

∣∣∣
v=1

=− 4n qn − 2(2q− 1) +
(8q2 − 4(n + 1) qn+1

(1− q)

)
+
(4q3 − 4qn+2

(1− q)2

)
− 1

(1− q)

(
2(2q− 1)2 − n (2q− 1)n

)
(34)

− 1
2(1− q)2

(
(2q− 1)3 − (2q− 1)n+1

)
.

Define Aq by

Aq =
1

1− q

(
8q2 − 2(2q− 1)2

)
+

1
2(1− q)2

(
8q3 − (2q− 1)3

)
− 2(2q− 1) + 4q.

Via a simple calculation, we obtain

Aq =
1

2(1− q)2 (1 + 6q). (35)

Since

−4nqn − 1
1− q

(
4(n + 1)qn+1

)
− 4qn+1

(1− q)2 =
4qn

(1− q)2

(
(n− 1)q− n

)
, (36)

1
1− q

n(2q− 1)n +
1

2(1− q)2 (2q− 1)n+1 =
(2q− 1)n

2(1− q)2

(
2n(1− q) + (2q− 1)

)
, (37)

and combining Equations (34)–(37), we obtain

∂2Φn(v)
∂2v

∣∣∣
v=1

=
1

2(1− q)2

(
1 + 6q + 8qn

[
(n− 1)q− n

]
+ (2q− 1)n

[
2n(1− q) + (2q− 1)

])
. (38)

The variance of Zn is finally obtained using Equations (2), (24), and (38).

5. Return Time NX
n of the Random Walk Xn

In this section, we analyse the number of return times NX
n at time n of the process

(X.) to position 1 at time n. Precisely, we start with a simulation of the process NX
n and

determine the explicit form of Gn(x), i.e., the probability generating function of NX
n .

5.1. Simulations of NX
n

In this subsection, we give some simulations with R-program using NX
n with differ-

ent lengths: 100, 1000, 10,000, and 100,000 for different values of the given probabilities
q = 0.6, 0.75, 0.9.

Figure 1 shows that the return time, Nn
X, of the random walk, X, with length 100

is increasing from 0 to 40 from time 0 to time 100, when the random walk X alternates
between 0 and 9 with initial probability q equal to 0.6. Also, we observe that the return time
of random walk NX

n with lengths 1000, 10,000, and 100,000 is increasing from 0 to 400, 4000,
and 40,000, when the evolution of the random walk, X, is about 0 (very small variation in
X), respectively.
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Figure 1. Return time of X (in red) and the random walk X (in green) of lengths 1000 and 500 and for
q = 0.6.

Figure 2 shows that the return time, Nn
X, of the random walk, X, with length 100 is

increasing from 0 to 40 from time 0 to time 100, when the evolution of the random walk
X alternates between 0 and at most 12 with initial probability q equal to 0.75. Also, we
observe that the return time of random walk NX

n with length 1000 is increasing from 0 to 300,
when the evolution of the random walk, X, alternates between 0 and 25. Furthermore,
Figure 2 shows that the return time of random walk NX

n with lengths 10,000 and 100,000
is increasing from 0 to 2500 and 25,000, when the evolution of the random walk X is
about 0, respectively.

Figure 2. Return time of X (in red) and the random walk X (in green) of lengths 1000 and 500 and for
q = 0.75.

Figure 3 shows that the return time, Nn
X, of the random walk, X, with length 100 is

increasing slowly from 0 to 10 from time 0 to time 100, when the evolution of the random
walk X alternates between 0 and 17 with initial probability q equal to 0.9. Also, it shows
that the return time of random walk NX

n with length 1000 is increasing from 0 to 100, when
the evolution of the random walk X alternates between 0 and 50. Furthermore, we observe
that the return time of random walk NX

n with lengths 10,000 and 100,000 is increasing
from 0 to 1000 and from 0 to 10,000, when the evolution of the random walk X alternates
between 0 and 80, and about 0, respectively.
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Figure 3. Return time of X (in red) and the random walk X (in green) of lengths 1000 and 500 and for
q = 0.9.

5.2. Probability Distribution of NX
n

In this section, we give the probability distribution of NX
n .

Theorem 3. The exact distribution of NX
n is given by

P(NX
n = k) = qn

(1− q
q

)k+1 n−k−1

∑
s=1

(
n− 1− s

k

)
qs.

Remark 3. Through an easy computation, we prove that this probability can be given by

P(NX
n = k) =

qn−k−1

k!

( xn−1 − xk

x− 1

)(k)∣∣
x=q−1 ,

where for a k differentiable function g, the notation g(k) denotes the kth derivative of g.

Proof. For the proof of Theorem 3, we start by computing the joint distribution of the dis-
crete return time NX

n and the discrete random walk X. To this end, for all k ∈ {0, . . . , n− 2}
and for all s ∈ {1, . . . , n− 1}, we compute, as a first step, the probability of intersection
between the return time equal to k, and the random walk equal to s. As a second step, we
deduce the marginal distribution of NX

n .
Consider NX

n the number of visits of the process X. to the state 1 up to time n.

(NX
n = k|Xn = s) =


X. increases from time n− s + 1 to time n,

X. has k resets from time 2 to time n− s.
(39)

We start by giving the joint distribution of
(

NX
n , Xn

)
.

Lemma 3. The joint distribution of (NX
n , Xn) satisfies the following relation:

P(Nx
n = k, Xn = s) = (1− q)qs P

(
Bin(n− 1− s, 1− q) = k

)
, (40)

and is given as

P(Nx
n = k, Xn = s) =

 (n−1−s
k )(1− q)k+1 qn+s−k−1 if k ∈ {1, . . . , n− s− 1},

0 other wise,
(41)

where Bin(n− 1− s, 1− q) is a binomial distribution with parameters n− 1− s and 1− q.
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Proof. Using Equation (39), we have

P(NX
n = k|Xn = s) =

 (n−s−1
k )(1− q)k qn−1−k if k ∈ {1, . . . n− 1− s},

0 other wise.
(42)

By Theorem 1, Xn follows a shifted geometric distribution with parameter 1− q

P(Xn = s) = qs(1− q). (43)

We conclude the proof by using the fact that

P(NX
n = k, Xn = s) = P(Nx

n = k|Xn = s)P(Xn = s). (44)

By summing with respect to s and using the known distribution of Xn, we deduce the
result of Theorem 3.

Remark 4. In the particular cases,

• If k = n− 2, we obtain

P
(

NX
n = n− 2

)
= q2(1− q)n−1,

• If k = 1, we obtain

P
(

NX
n = 1

)
= qn−2(1− q)

(n− 2)(n− 1)
2

,

• If k = 0, we obtain

P
(

NX
n = 0

)
=

q2n + qn − qn+1 − q2n−1

1− q
.

• If the return time of X equals 0 (k = 0), then the probability that the random walk X is strictly
increasing from time 0 to time n equals qn−1 for any age of the random walk Y at time n.

• If the return time of X equals n− 2 (k = n− 2), given that the age of X increases from 0 at
time 0 to n− 2 at time n− 2, the probability that the age of X equals 1 at time n− 1 comes
from the probability of X at time n− 2 multiplied by (1− q).

Remark 5. The probability generating function Gn(x) of NX
n can be expressed, and we prove that

it is given by

Gn(x) =
1

nx(q + x)

[
qn−1(q− 1)(q + x)x

( n−2

∑
k=0

(1− q)k
(

xq−1
)k
(n− k)

(
n
k

)
g(n, k, q)

)
− n

(
q2n+1

(
−xq−1

)n
+ xq2n

)]
,

where the function g(n, k, q) is the well-known hyper-geometric function given by

g(n, k, q) = hypergeom
(

1, n; [n− k]; q−1
)

.

From Gn(x), we can compute the mean and the variance of NX
n , but the expressions are

very complicated.
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6. The Probability Generating Function of the Random Walks Xn and Yn

Next, consider the generating function associated to the above Moran process defined
in (1), where the time is encoded by the exponent of t:

F(t, x, y) := ∑
n≥0

E
[

xXn yYn
]

tn = ∑
n≥0

fn(x, y) tn, ∀(x, y) ∈ R2. (45)

Starting from the functional equation defined in (6) and using the kernel method (for more
details view [2,18]), we obtain the PGF. It is very important to obtain this the probability
generating function because it contains all information about the past of the random walk;
in particular, it will be very useful for studying the height Hn. This point will be one of our
objectives in a future work.

Theorem 4. The probability generating function of the final altitude of the two-dimensional Moran
walk is given as follows: for all (x, y) ∈ R2 such that |t| < 1, |t x y| < 1/(2q− 1), |t x| < 1/q
and |t y| < 1/q

F(t, x, y) =
1 + Q(x, y)

t
1− t

1− (2q− 1) t x y
, (46)

where

Q(x, y) =
(1− q)xy

[
1− t(1− (1− q)x)

]
1− q t x

+
(1− q)xy

[
1− t(1− (1− q)y)

]
1− q t y

.

Proof. By Equation (4), and for all n ≥ 1, we have

fn(x, y) = (1− q) x y fn−1(x, 1) + (1− q) x y fn−1(1, y) + (2q− 1) x y fn−1(x, y).

Using the following identities

∑
n≥1

fn−1(1, x2) tn =t ∑
n≥0

fn(1, x2) tn = t F(t, 1, x2),

∑
n≥1

fn−1(x1, 1) tn =t ∑
n≥0

fn(x1, 1) tn = t F(t, x1, 1),

∑
n≥1

fn−1(x1, x2) tn =t ∑
n≥0

fn(x1, x2) tn = t F(t, x1, x2),

the probability generating function F(t, x, y) satisfies the recursive equation

F(t, x, y) = 1 + (1− q) x y t F(t, 1, y) + (1− q) x y t F(t, x, 1) + (2q− 1) x y t F(t, x, y). (47)

From Equation (47), F(t, x, 1) and F(t, 1, y) are given by

F(t, x, 1) =
1

1− qtx
+

(1− q)t x
1− qtx

F(t, 1, 1), (48)

F(t, 1, y) =
1

1− qty
+

(1− q)t y
1− qty

F(t, 1, 1). (49)

From Equations (47)–(49), we obtain

(
1− (2q− 1) x y t

)
F(t, x, y) =1 + t

( (1− q)2txy2

1− qty
+

(1− q)2tx2y
1− qtx

)
F(t, 1, 1)

+ t
( (1− q)xy

1− qty
+

(1− q)xy
1− qtx

)
.
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Since F(t, 1, 1) = 1/(1− t) for |t| < 1, we deduce(
1− (2q− 1) x y t

)
F(t, x, y) = 1 +

( (1− q)2txy2

1− qty
+

(1− q)2tx2y
1− qtx

) t
1− t

+ (1− t)
( (1− q)xy

1− qty
+

(1− q)xy
1− qtx

) t
1− t

(50)

= 1 +
( (1− q)xy

[
1− t(1− qx)

]
1− qtx

) t
1− t

+
( (1− q)xy

[
1− t(1− qy)

]
1− qty

) t
1− t

.

Divide Equation (50) by ((1− (2q− 1) x y t); this concludes the proof.

Remark 6. The term 1− t p x1 x2 in Equation (46) is called the kernel factor.

Remark 7. We can factorize the probability generating function given by Equation (46) as

F(t, x, y) =
1

1−Q(x, y) t
1

1− t
(

1−Q(x, y)
)

1(
1− (2q− 1)

)
t x y

, (51)

with Q(1, 1) = 2(1− q).

From the previous theorem, we can find the probability generating function of two
random Moran walks Xn and Yn.

Corollary 3. The probability generating functions, denoted by FX(t, x) := F(t, x, 1) and
FY(t, y)F(t, 1, y) :=, of Xn and Yn are given by

FX(t, x) =
1

1− (2q− 1)t x

(
1 + (1− q) x +

(1− q)x
[
1− t(1− (1− q)x)

]
1− qtx

)
, (52)

and

FY(t, y) = F(t, y) =
1

1− (2q− 1)t y

(
1 + (1− q) y +

(1− q)y
[
1− t(1− (1− q)y)

]
1− qty

)
, (53)

∀(x, y) ∈ R2 such that |t x| < 1/(2q− 1), |t y| < 1/(2q− 1), where |t| < 1.

Proof. The proof is a direct consequence of the previous theorem: if we take x = 1 in (46),
then we obtain the expression of the probability generating function of Xn, and similarly
for Yn.

The previous result is very important. It allows us to know the probability generating
function of the two-dimensional walk (Xn, Yn). Combining Equations (45), (52), and (53),
and evaluating at t = 1, then we have the expressions of fn(x, 1) and fn(1, y) .

7. Conclusions and Perspectives

In this current paper, we use very useful tools called probability generating functions
to find the statistical properties, i.e., the mean, the variance, and the limiting distribution, of
the random walks Xn, Yn, Zn, and NX

n . Firstly, we prove that both symmetric random Moran
walks Xn and Yn converge to a shifted geometric distribution with parameter (1− q) using
the probability generating functions asymptotically. Also, the means and the variances of
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Xn and Yn are calculable explicitly using the same tools. Secondly, we use the symmetry
of two random walks Xn and Yn to find the statistical properties of the maximum age Zn
between two components, such as the mean and the variance, derived from the probability
generating function. Finally, we analyse the return time, NX

n , of the random Moran walk
Xn. From the simulation of NX

n , we observe that the return time is affected according to the
initial probability q and the length of the random walk. Precisely, we distinguish two cases:

1. When the initial probability q approaches 1 (q = 0.9), the return time with a small
length (n = 100) is increasing slowly and remains lower than the final altitude of
Xn at time n (see Figure 3). In this case, the Moran random walk increases often and
returns to 1 few times. That means the number of increases in Xn is greater than the
number of times that NX

n returns to 1.
2. When the length of the random walk Xn is very large, (n = 1000) or 10,000 or 100,000,

the return time NX
n is not affected by the initial probability q and increases quickly (see

Figures 1–3). In this case, the Moran random walk often returns to 1 but Xn alternates
between 1 and at most 50. That means the number of times that Xn returns to 1 is
greater than the increase in Xn.

Here, the initial probability q represents the probability that the random walk Xn
increases. This increase in Xn happens intwo ways: in the first way, Xn increases but Yn
stops at 1 with probability (1− q); in the second, both walks Xn and Yn increase in the
same time with probability (2q− 1) (see Equation (1)).

In the next work, we will use the probability generating function to study the statistical
properties of the height statistics, Hn. Precisely, we will find the distribution of Hn and
compute its mean and variance based on the return time NX

n . Firstly, we will start with the
following conditional probability:

P(Hn ≤ k|Nn = r) = ∑
In, r, k

P
(

G1 = n1, G2 = n2 − n1, . . . , Gr = nr − nr−1, Xnr+1 · · ·Xn 6= 0
)

,

where the random walk Hn is bounded by an integer k > 0 given that the random walk
NX

n equals r ≥ 1. Secondly, we will try to obtain the joint distribution of (Hn, NX
n ). Fi-

nally, we can extract the distribution of the bounded random walk Hn and determine its
statistical properties.
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Appendix A. Technical Lemmas

In this subsection, we study the following sequences of polynomials, Rn(v), Tn(v),
Nn(v), and Sn(v), defined by

Rn(v) :=
n

∑
r=1

vr P(Xn = r, Yn = 1) =
n

∑
r=1

vr Pn(r, 1),
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Tn(v) :=
n

∑
r=2

r

∑
s=2

vr P(Xn = r, Yn = s) =
n

∑
r=2

r

∑
s=2

vrPn(r, s),

Nn(v) :=
n

∑
r=1

n

∑
s=r+1

vr P(Xn = r, Yn = s) =
n

∑
r=1

n

∑
s=r+1

vr Pn(r, s),

Sn(v) :=
n

∑
r=1

r

∑
s=1

vr P(Xn = r, Yn = s) =
n

∑
r=1

r

∑
s=1

vrPn(r, s),

where R0(v) = 0, T0(v) = T1(v) = 0, N0(v) = N1(v) = 0, and S0(v) = 0.
The sequence Sn(v) is essential for the proof of Theorem 2. The sequences Rn(v), Tn(v),

Nn(v) are needed to study Sn(v).
The expressions of these sequences are given in the following lemmas.

Lemma A1. The sequence of polynomials Nn(v) holds the following recursive equation: for all
n ≥ 1,

Nn(v) = (1− q) v + (2q− 1) v Nn−1(v),

and, then, the explicit form of Nn(v) is given by

Nn(v) = (1− q)
v− (2q− 1)n−1 vn

1− (2q− 1) v
, (A1)

for all v ∈ R such that |(1− p) v| < 1.

Proof. Developing the sequence of polynomials Nn(v)

Nn(v) :=
n

∑
r=1

n

∑
s=r+1

vr Pn(r, s) =
n

∑
s=2

vPn(1, s) +
n

∑
r=2

n

∑
s=r+1

vr Pn(r, s), (A2)

applying Lemma 2

n

∑
s=2

vPn(1, s) =v (1− q)
n−1

∑
r=1

n

∑
s=2

Pn−1(r, s− 1) = v (1− q)
n−1

∑
r=1

n−1

∑
s=1

Pn−1(r, s),

and using
n−1

∑
r=0

n−1

∑
s=0

Pn−1(r, s) = fn−1(1, 1) = 1,

we obtain

n

∑
s=2

vPn(1, s) = v (1− q)
n−1

∑
r=0

n−1

∑
s=0

Pn−1(r, s) = v (1− q), (A3)

and

n

∑
r=2

n

∑
s=r+1

vr Pn(r, s) =(2q− 1) v
n−1

∑
r=1

n−1

∑
s=r+1

vr Pn−1(r, s) := (2q− 1) v Nn−1(v). (A4)

Combining Equations (A2)–(A4), we obtain

Nn(v) = (1− q) v + (2q− 1) v Nn−1(v).

The last equation is iterated n times, and the equation defined in (A1) is proved.

The next lemma is used to compute the sequence of polynomials Tn(v) when the final
ages of two components, Xn and Yn, are started at time 2 from (2, 2) and are finished at two
different times, n and r, where r < n, respectively. It is introduced as follows:
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Lemma A2. The sequence of polynomials Tn(v) verifies the following recursive equation: for all
n ≥ 2

Tn(v) = (2q− 1) v
(

fn−1(v, 1)− Nn−1(v)
)

.

Its explicit expression is given by

Tn(v) = (2q− 1) qn−1 vn + (2q− 1) (1− q)
v2 − qn−1 vn+1

1− q v
(A5)

− (2q− 1) (1− q)
v2 − (2q− 1)n−2 vn

1− (2q− 1) v
,

for all v ∈ R such that |(2q− 1) v| < 1 and |q v| < 1.

Proof. Applying Lemma 2,

Tn(v) :=
n

∑
r=2

r

∑
s=2

vr Pn(r, s) = (2q− 1) v
n−1

∑
r=1

r

∑
s=1

vr Pn−1(r, s),

and using Equation defined in (4), with x = v and y = 1,

Tn(v) = (2q− 1) v
( n−1

∑
r=1

n−1

∑
s=1

vr Pn−1(r, s)−
n−1

∑
r=1

n−1

∑
s=r+1

vr Pn−1(r, s)
)

= (2q− 1) v
(

fn−1(v, 1)− Nn−1(v)
)

,

hence, the explicit expression of Tn(v) is obtained directly from Equations (11) and (A1).

Lemma A3. The sequence of polynomials Rn(v) satisfies the following: for all n ≥ 1

Rn(v) = (1− q) v fn−1(v, 1), where q = 1− (p/2), (A6)

the explicit form of Rn(v) is given by

Rn(v) = (1− q)n−1 vn + (1− q)2 v2 − qn−1 vn+1

1− q v
, (A7)

for all v ∈ R such that |q v| < 1.

Proof. Using Lemma 2 and Equation (4), we have

Rn(v) = (1− q) v
n−1

∑
r=0

n−1

∑
s=1

vr Pn−1(r, s) = (1− q) v fn−1(v, 1),

also, the explicit expression of Rn(v) is obtained directly from Equation (11).

Lemma A4. The sequence of polynomials Sn(v) satisfies the following: for all n ≥ 1

Sn(v) = q v fn−1(v, 1)− (1− p) v Nn−1(v),

the form of Sn(v) is given by

Sn(v) =(q v)n +
1− q

1− q v

(
q v2 − qn vn+1

)
− 1− q

1− (2q− 1) v

(
(2q− 1) v2 − (2q− 1)n−1 vn

)
, (A8)
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for all v ∈ R such that |q v| < 1 and |(2q− 1) v| < 1.

Proof. Developing the sequence of polynomials Sn(v)

Sn(v) :=
n

∑
r=1

r

∑
s=1

vr Pn(r, s) =
n

∑
r=1

vr Pn(r, 1) +
n

∑
r=2

r

∑
s=2

vr Pn(r, s) = Rn(v) + Tn(v),

using Lemmas A2 and A4, we obtain

Sn(v) = (1− q) v fn−1(v, 1) + (2q− 1) v fn−1(v, 1)− (2q− 1) v Nn−1(v)

= q v fn−1(v, 1)− (2q− 1) v Nn−1(v).

The explicit expression of Sn(v) is obtained by combining Equations (11) and (A1).

Remark A1. Consider two consecutive times n and (n− 1), r and s days, the age of two com-
ponents X and Y at time n, respectively. We present some remarks concerning the sequences of
polynomials Nn(v), Tn(v), Rn(v) ,and Sn(v).

(1) From Equation (A3), if X is aged 1 day at time n and the age of Y is strictly increasing from 2
to n, we deduce

n

∑
s=2

Pn(1, s) = (1− q) = P2(1, 2).

By symmetry, we have
n

∑
r=2

Pn(r, 1) = (1− q) = P2(2, 1).

(2) The sequence Tn(v) is given by the multiplication between (2q − 1)v and the difference
between the explicit expressions of the probability generating function fn−1(v, 1) and the
sequence of polynomials Nn−1(v).

(3) The sequence Rn(v) is expressed by the product between (1− q)v and the explicit expression
of the probability generating function fn−1(v, 1).

(4) The sequence Sn(v) is expressed from the explicit expressions of two sequences Tn(v) and
Rn(v). The sequence Sn(v) depends on the probability generating function fn−1(v, 1) and
the sequence of polynomials Nn−1(v).
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