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Abstract: Spatial Autoregressive (SAR) models are used to model the relationship between variables
within a specific region or location, considering the influence of neighboring variables, and have
received considerable attention in recent years. However, when the impact of exogenous variables
becomes notably pronounced, an alternative approach is warranted. Spatial Expansion, coupled with
the Casetti model approach, serves as an extension of the SAR model, accommodating the influence
of these exogenous variables. This modeling technique finds application in the realm of rainfall
prediction, where exogenous factors, such as air temperature, humidity, solar irradiation, wind speed,
and surface pressure, play pivotal roles. Consequently, this research aimed to combine the SAR
and Spatial Expansion models through the Casetti model approach, leading to the creation of the
Spatial Autoregressive Exogenous (SAR-X) model. The SAR-X was employed to forecast the rainfall
patterns in the West Java region, utilizing data obtained from the National Aeronautics and Space
Administration Prediction of Worldwide Energy Resources (NASA POWER) dataset. The practical
execution of this research capitalized on the computational capabilities of the RStudio software
version 2022.12.0. Within the framework of this investigation, a comprehensive and integrated
RStudio script, seamlessly incorporated into the RShiny web application, was developed so that it is
easy to use.

Keywords: SAR-X; Casetti’s model; climate variables; prediction; RShiny

MSC: 9004; 62M30

1. Introduction

Water is very important for all living organisms, including humans, thereby ranking
as one of the most indispensable resources in the environment [1]. The phenomenon of
climate change and global warming has significantly reshaped numerous environmental
aspects across multiple countries. This transformation carries the potential for profound
consequences, imperiling the populace, agriculture, ecosystems, economy, and industry.
Alterations in precipitation patterns exert a direct impact on the management of water
resources, agricultural practices, hydrological systems, and ecological balance [2]. It is
crucial to acknowledge that the entirety of life-sustaining water on Earth originates from
rainfall. Consequently, comprehending the spatial distribution and fluctuations in this
rainfall is very important. This understanding is pivotal for efficient water resource man-
agement and also for devising strategies for addressing challenges such as anticipating
natural hazards triggered by intense rainfall events [1,3,4]. Delving into the spatial ar-
rangement and variances of rainfall can play a pivotal role in shaping perspective notions
concerning water resources. Furthermore, it aids in formulating measures for upholding
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stable environmental circumstances. It is imperative to acknowledge that trends in rainfall
constitute a pivotal climate determinant with far-reaching implications, encompassing
future factors such as population growth, economic expansion, and enduring climatic shifts.
These factors collectively impact both the temporal and spatial availability of water [1,5,6].

In various spheres of life, the anticipation of rainfall yields indispensable advantages,
encompassing agriculture, water resource management, disaster preparedness, infrastruc-
ture planning, renewable energy, and transportation. Forecasts of rainfall assist farmers
in coordinating their planting and harvesting schedules, allowing for effective irrigation
planning, suitable crop selection according to weather conditions, and a decreased risk of
crop failure [7–9]. Moreover, these predictions contribute to the proficient handling of water
resources, encompassing the regulation of river flow and reservoir management [10,11].
The availability of accurate rainfall information empowers optimal water utilization and
mitigates flood and drought hazards, as well as plays a pivotal role in the management
of natural calamities such as floods and landslides [12–14]. Informed by projected rainfall
data, authorities can implement preventive measures such as early evacuation, timely
alerts, and the construction of robust infrastructure. Additionally, rainfall prediction has
proved vital in the realm of infrastructure planning, guiding the construction of structures
including dams, drainage networks, and irrigation channels [15–17]. By leveraging rainfall
insights, engineers and planners are equipped to devise designs resilient to extreme weather
conditions. Rainfall profoundly affects renewable energy industries, namely hydropower
and solar energy [18]. Forecasts of rainfall facilitate the strategic planning and management
of renewable energy production, thereby optimizing energy potential [19]. The influence
of rainfall extends to transportation planning as well [20]. Intense rainfall impacts road
traffic, transportation speeds, and driver safety. By leveraging rainfall predictions, trans-
portation schedules can be organized more efficiently, ultimately reducing accident risks.
The availability of accurate rainfall information empowers sound decision making and aids
in mitigating the risks and repercussions arising from unforeseen weather fluctuations [21].
Therefore, the precision and accuracy of rainfall prediction are said to be important.

Based on previous research, diverse rainfall predictions have been undertaken, includ-
ing projections of rainfall variability, particularly focusing on the winter and pre-monsoon
rainfall across Pakistan [22]. In Turkey, monthly and seasonal rainfall trend predictions
were calculated through a comparison of three interpolation methods, namely Inverse
Distance Weighted, Completely Regularized Spline, and Ordinary Kriging [23]. A Spatial
Autoregressive model was employed to predict seasonal legume yields for non-irrigated
croplands in the semi-arid region of Mexico, categorized by regular rainy and dry sea-
sons [24]. The rainfall and groundwater patterns along the northeastern coast of Brazil
were predicted, and the monthly rainfall patterns were characterized to mitigate their
impacts during heavy rainfall periods and significant floods, utilizing the Kriging method
and a clustering analysis [25]. Additionally, short-term rainfall forecasts were derived
using a Hierarchical Bayesian model for spatiotemporal data [26]. It is important to note
that the scope of these predictions exclusively pertains to rainfall variability and does not
encompass other climate variables.

One of the outcomes of climate phenomena is La Niña, which triggers heightened
rainfall in the western Pacific region. Based on empirical data from BMKG, La Niña
can amplify the rainfall in West Java by anywhere from 20% to 70% [27]. Rainfall is
intertwined with other climatic factors such as air temperature, humidity, solar irradiation,
wind speed, and surface pressure, all of which fluctuate across different areas [28]. The
climate variables pertinent to specific regions or locations can be effectively modeled
using a spatial analysis approach. Among the spatial models commonly employed, the
Spatial Autoregressive (SAR) model stands out. This is frequently referred to as a mixed
regressive spatial autoregressive model or a spatial lag model [29]. The SAR model, a
statistical tool, is harnessed to depict the relationships between variables within a given
region or location, considering the impacts of surrounding variables. However, the model
falls short in capturing the spatial disparities between locations. To address this gap,
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Casetti [30] developed the Spatial Expansion model, which extends the SAR to encompass
exogenous variables through a linear regression approach. The amalgamation of the SAR
and spatial expansion models, in line with the approach of Casetti, culminates in the Spatial
Autoregressive Exogenous (SAR-X) model. The SAR-X introduces spatial heterogeneity,
thereby enabling the description of distinct parameter values for each spatial observation,
determined by the geographical distances between locations. A notable application of the
SAR-X is evident in gauging the repercussions of climate change on the ecosystem of a
region. For example, when analyzing flood risk prediction within the SAR-X framework,
it becomes imperative to incorporate climate variable factors. In this scenario, the model
serves as a valuable tool, facilitating an elevated spatial perspective of climate effects and
accounting for the spatial influences that shape relationships. In essence, SAR-X modeling
has emerged as a valuable instrument for comprehending the ramifications of climate
change and supporting decision making to tackle these consequences.

The current research on rainfall prediction entails observations across 13 climate-
monitoring stations in the West Java region, utilizing data sourced from the Meteorol-
ogy, Climatology, and Geophysics Agency (BMKG) with location indexing. The research
variables comprised rainfall as the responsive parameter, coupled with exogenous vari-
ables encompassing air temperature, humidity, solar irradiation, wind speed, and surface
pressure. These climate data were procured from the National Aeronautics and Space
Administration Prediction of Worldwide Energy Resources (NASA POWER) dataset. The
application study in this research is supported by computing using the R programming
language. R is a statistical and graphical programming language; currently, R is widely
known as one of the programming languages used for data analysis and data science. R has
advantages, including being open source, having many packages available, finding it easy
to transform and process data, and being able to create interactive applications/web-based
dashboards. In this research, the RStudio software is used, which is an Integrated Develop-
ment Environment (IDE) for R [31]. The custom-built RStudio script can be further evolved
into a web application employing RShiny version 1.7.4, one of the packages of software
specifically designed for creating interactive web interfaces [32]. These web applications,
once deployed, offer a user-friendly platform for data processing. Users can conveniently
upload data for analysis, and the ensuing results are promptly presented on the RShiny
web application interface. In this research endeavor, integrated commands within R script
enable the utilization of the SAR-X model through the RShiny web application, rendering
the process effortlessly accessible.

2. Materials and Methods
2.1. Inverse Distance Weight Matrix

The spatial weight matrix is a matrix that states the proximity relationship between
locations. In this study, the inverse distance weight matrix, also called the distance weight,
is used, which describes the actual distance between locations. The distance between
locations is calculated using the latitude and longitude coordinates of the center point
of the observed location. It is known that a location xij

(
uij, vij

)
with xij is the symbol of

the location i and j, with i = 1, 2, 3 . . . , N and j = 1, 2, 3 . . . , N, while u and v indicate the
latitude and longitude coordinates. If dij is the distance between location i and location j,
and Wij is the inverse value of dij, we use the Euclidean distance and the equation is as
follows [33]:

dij =
√(

xi(ui)− xj
(
uj
))2

+
(
xi(vi)− xj

(
vj
))2 (1)

wij =

{
1

dij
, i 6= j

0, i = j
(2)
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Next, if the sum of the distance weights of a row in the inverse distance weight
matrix is not equal to 1, then the distance weights must be standardized, so as to obtain
N
∑

j=1
wij = 1, ∀ i = 1, 2, 3, . . . , N, where:

w∗ij =
wij

N
∑

j=1
wij

, ∀ i = 1, 2, 3, . . . , N. (3)

In detail:
xij: the symbol of location i and j, with i = 1, 2, 3 . . . , N and j = 1, 2, 3 . . . , N
ui: latitude i− th for i = 1, 2, 3, . . . , N
vi: longitude i− th for i = 1, 2, 3, . . . , N
uj: latitude j− th for j = 1, 2, 3, . . . , N
vj: longitude j− th for j = 1, 2, 3, . . . , N
dij: the distance between location i and location j
In this investigation, the inverse distance weight matrix was employed to calculate

the climate variable data across 13 climate observation stations in the West Java region. The
input coordinates for each location, expressed as latitude and longitude, served to establish
the proximity relationship between these locations.

2.2. Moran Index

One approach to assessing the spatial dependencies among locations is through a
spatial autocorrelation test using the Moran Index statistic. Spatial autocorrelation gauges
the correlation between observation values concerning the location of the same variable.
When a systematic pattern emerges in the distribution of a variable, spatial autocorrelation
is present. This phenomenon underscores the interdependence of the spatial data between
different locations, influenced by their proximity or intersection [29].

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(4)

The hypothesis formulation in this test is as follows:
H0 : I = 0 There is no spatial autocorrelation between locations.
H1 : I 6= 0 There is spatial autocorrelation between locations.
The test statistic employed is expressed below:

Z(I) =
I − E(I)√

Var(I)
≈ N(0, 1) (5)

with,

E(I) = − 1
n− 1

(6)

Var(I) =
n2S1 − nS2 + 3S2

0

(n2 − 1)S2
0

− [E(I)]2 (7)

S0 =
n

∑
i=1

n

∑
j=1

wij S1 =
1
2

n

∑
1 6=j

(
wij + wji

)2 S2 =
n

∑
i 6=j

(
n

∑
i=1

wij +
n

∑
j=1

wji

)2

where:
I: the Moran Index value
n: the number of observation locations
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xi: the value of the observation variable at location i− th
xj: the value of the observation variable at location j− th
x: the average of the number of variables
wij: the elements of the standardized weight matrix between regions i and j
Decision:
Reject H0 at the significance level α if −Zscore ≤ −Z α

2
or −Zscore ≥ Z α

2
.

The Moran Index was in the range of [−1, 1]. A negative value signified a negative
spatial autocorrelation, while a positive value implied a positive spatial autocorrelation [34].

2.3. Spatial Autoregressive Exogenous (SAR-X)

Spatial regression is a method tailored for data with spatial effects, encompassing
spatial dependency and heterogeneity. Spatial dependence pertains to observations at one
location being influenced by those at another, while spatial heterogeneity arises due to
random location effects. The foundation of spatial regression lies in the classical linear
regression method, evolving to consider the influence of space on the data under scrutiny.
The first Law of Geography by Tobler emphasizes interconnectedness and the greater
influence of nearby entities [29]. The general model of spatial regression can be written as
follows:

y = ρWy + Xβ+ u

u = λWu + εwith
iid
ε∼N

(
0,σ2I

) (8)

In [29], an alternative model derived from Equation (8) was developed. When ρ 6= 0
and λ = 0, then the Spatial Autoregressive (SAR) model can be formed as follows:

y = ρWy+Xβ+ εwith
iid
ε∼N(0, σ2I) (9)

The SAR model, an area-based spatial model, encompasses the impact of spatial lag
on the dependent variable [29].

The introduction of the Spatial Expansion model (Casetti, 1972) [30] addresses spatial
heterogeneity, which characterizes diverse parameter values for each spatial observation
based on the distance between locations. The Euclidean distance, such as location coor-
dinates, quantifies the separation between two locations. The Spatial Expansion model,
adopting a linear regression approach, can be formulated as follows:

y = Xβ+ εwith
iid
ε∼N(0, σ2I)

β = ZJβ0
(10)

In this research, a fusion of the SAR and Spatial Expansion models was executed,
utilizing the approach of Casetti on exogenous variables, called the Spatial Autoregressive
Exogenous (SAR-X) model. The SAR-X model could be said to be an extension of SAR,
which encompasses exogenous variables. Referring to [35], the SAR-X model served to
describe and predict independent variables, considering location effects and exogenous
variables. Mathematically, the SAR-X model prediction with the Casetti’s model approach
was derived by substituting Equation (10) into (9), in order to produce the following:

y = ρWy+Xβ+ εwith β = ZJβ0 (11)

Equation (11) is subsequently written as:

y = ρWy+XZJβ0 + εwith
iid
ε∼N(0, σ2I) (12)

with:
y: the vector of the dependent variables of size (n× 1)
ρ: the spatial lag parameter coefficient of the independent variable
W: a spatial weight matrix of size (n× n)
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X: the matrix of the independent variables of size (n× nk)
Z: location information that contains elements Zxi, Zyi with i = 1, . . . , n, representing

the latitude and longitude of each observation, of size (nk× 2nk)
J: the expansion of the identity matrix of size (2nk× 2k)
β: a matrix of size (nk× 1), containing parameter estimators for all the explanatory k

variables at each observation
β0: parameter expressed by βlatitude,βlongitude of size (2k× 1)
⊗: the Kronecker product
ε: an error vector of size (n× 1)
si: the location matrix with i = 1, . . . , n
The matrix form in the model can be written as follows:

y =


y(s1)
y(s2)

...
y(sn)

, W =


0 w12 . . . w1n

w21 0 . . . w2n
...

...
. . .

...
wn1 wn2 . . . 0

, X =


x11 · · · x1k 0 · · · 0 · · · 0 · · · 0

0 · · · 0 x21 · · · x2k 0
... · · ·

...
...

. . .
... 0

. . . 0
. . . 0

. . . 0
0 · · · 0 0 · · · 0 0 xn1 · · · xnk



β =


β1(s1)
β1(s2)

...
βk(sn)

, ε =


ε(s1)
ε(s2)

...
ε(sn)

, β0 =

(
βlatitude
βlongitude

)

Z =

Zx1 ⊗ Ik Zy1 ⊗ Ik 0 0 0 0

0 0
. . . . . . 0 0

0 0 0 0 Zxn ⊗ Ik Zyn ⊗ Ik

, J =


Ik 0
0 Ik
...

...
0 Ik


2.4. Estimation

The random error variable in the SAR-X model assumed a normal distribution. There-
fore, the parameter estimation in this model followed the SAR parameter estimation
method, employing the Maximum Likelihood Estimation (MLE) technique. The observed
sources for this approach included Ord [36], Smirnov and Anselin [37], Robinson and
Rossi [38], and Feng [39]. Equation (12) can be written as the following equation:

y = ρWy+Aβ0 + εwith A = XZJ (13)

y = ρWy+Aβ0 + εwith
iid
ε∼N(0, σ2I) (14)

The probability density function used is expressed below:

f (y) =
(

1
2πσ2

) n
2

exp

[
− (y− ρWy−Aβ0)

T(y− ρWy−Aβ0)

2σ2

]
(15)

The likelihood function of the dependent variable y is formulated as follows:

L(ρ,β0|y) = f (y|ρ,β0 )

=
(

1
2πσ2

) n
2 exp

[
− (y−ρWy−Aβ0)

T(y−ρWy−Aβ0)
2σ2

]
(16)
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Furthermore, the log-likelihood function is obtained as:

ln L(ρ,β0|ε) = ln
(

1
2πσ2

) n
2 exp

[
− (y−ρWy−Aβ0)

T(y−ρWy−Aβ0)
2σ2

]
= − n

2 ln(2π)− n
2 ln σ2 − (y−ρWy−Aβ0)

T(y−ρWy−Aβ0)
2σ2

(17)

A parameter estimation ρ, β0 is obtained by maximizing the log-likelihood function.
To obtain the MLE estimation of the parameters ρ̂, the first derivative of Equation (17)

for the parameters ρ was expressed as:

∂ ln L( ρ,β0|ε)
∂β0

= − (y−ρWy−Aβ0)
T(−Wy)

2σ2

= (y−ρWy−Aβ0)
T(Wy)

2σ2

(18)

∂ ln L( ρ,β0|ε)
∂ρ

∣∣∣
ρ=ρ̂

= 0, this is further expressed as follows:

(y− ρWy−Aβ0)
T(Wy)

2σ2 = 0 (19)

In Equation (19), multiply by 2σ2(Wy)T to obtain:

(y− ρWy−Aβ0)
T
(

Wy(Wy)T
)
= 0 (20)

Multiply Equation (20) by
(

Wy(Wy)T
)−1

to obtain:

(y− ρWy−Aβ0)
T = 0 (21)

Transpose Equation (21) to obtain:

y−Aβ0 = ρWy (22)

In Equation (22), multiply both segments by (Wy)T , thus obtaining:

(y−Aβ0)(Wy)T = ρWy(Wy)T (23)

From Equation (23), multiply both segments by
(

Wy(Wy)T
)−1

to further obtain:

(y−Aβ0)(Wy)T
(

Wy(Wy)T
)−1

= ρ
(

Wy(Wy)T
)(

Wy(Wy)T
)−1

(24)

ρ̂ = (y−Aβ0)(Wy)T
(

Wy(Wy)T
)−1

(25)

Substitute the equation A = XZJ into Equation (13), in order to determine ρ̂ the
following:

ρ̂ = (y− (XZJ)β0)(Wy)T
(

Wy(Wy)T
)−1

(26)

To obtain the MLE estimation of the parameters β̂0, first determine the first derivative
of Equation (17) for the parameters β0 as follows:

∂ ln L( ρ,β0|ε)
∂β0

= − (y−ρWy−Aβ0)
T(−A)

2σ2

= (y−ρWy−Aβ0)
T(A)

2σ2

(27)
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∂ ln L( ρ,β0|ε)
∂β0

∣∣∣
β0=β̂0

= 0. This leads to the equation below:

(y− ρWy−Aβ0)
TA

2σ2 = 0 (28)

In Equation (28), multiply with 2σ2AT , in order to obtain:

(y− ρWy−Aβ0)
TAAT = 0 (29)

Multiply Equation (29) by
(

AAT
)−1

to obtain:

(y− ρWy−Aβ0)
T = 0 (30)

Transpose Equation (30), in order to obtain the expression below:

Aβ0 = y− ρWy (31)

In Equation (31), multiply both segments by AT to obtain:

(Aβ0)A
T = (y− ρWy)AT (32)

From Equation (32), multiply both segments by
(

AAT
)−1

to obtain the following
expression:

β0

(
AAT

)(
AAT

)−1
= (y− ρWy)AT

(
AAT

)−1
(33)

β̂0 = (y− ρWy)AT
(

AAT
)−1

(34)

Substitute the equation A = XZJ into Equation (13) and derive β̂0 as follows:

β̂0 = (y− ρWy)(XZJ)T
(
(XZJ)(XZJ)T

)−1
(35)

Based on the estimated parameter β̂0 in Equation (35), the value β can be obtained by
substituting into Equation (11):

β=ZJ
(
(y− ρWy)(XZJ)T

(
(XZJ)(XZJ)T

)−1
)

(36)

3. Real Data Application
3.1. Data Description

In this research, secondary data from 13 climate observation stations in West Java were
utilized. These data were sourced from the Meteorology, Climatology, and Geophysics
Agency (BMKG), while climate variable data were extracted from the National Aeronautics
and Space Administration Prediction of Worldwide Energy Resources (NASA POWER)
satellite observations. The climate variable dataset included rainfall, air temperature,
humidity, solar irradiation, wind speed, and surface pressure shown on Table 1.
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Table 1. Climate variable data at 13 climate observation stations in West Java.

No. Locations Latitude Longitude Rainfall
(mm)

Air Tem-
perature

(◦C)

Humidity
(%)

Solar
Irradiation

(W/m2)

Wind
Speed
(m/s)

Surface
Pressure

(kPa)

1 Balitpa
Sukamandi −6.3 107.65 186.36 25.3 83.45 415.2 1.76 97.86

2 Lanud Atang
Sanjaya Semplak −6.9 106.77 200.74 23.72 87.25 411.23 1.71 95.52

3 LPHP
Tasikmalaya −7.28 108.16 228.2 23.68 89.15 398.29 2.1 96.46

4 SMPK Cirebon −6.72 108.58 189.71 27.7 78.58 418.72 3.67 100.86

5
SMPK

Maranginan
Sukabumi

−7.25 106.25 191.42 25.79 84.61 415.46 3.12 98.84

6 SMPK
Nariewattie −7.25 108 194.57 22.59 87.85 398.29 1.57 93.62

7 SMPK Pacet
Cianjur −6.73 107 176.28 24.7 85.19 415.2 1.46 96.82

8 SMPK Pasir
Sarongge −6.75 107 176.28 24.7 85.19 415.2 1.46 96.82

9 Stage of Bandung −6.92 107.6 203.29 21.41 88.29 415.2 1.51 90.93

10 Stage of
Lembang −6.83 107.62 203.29 21.41 88.29 415.2 1.51 90.93

11 Staklim Darmaga −6.55 106.75 176.28 24.7 85.19 411.23 1.46 96.82

12 Stamet Citeko
Bogor −6.7 106.93 176.28 24.7 85.19 411.23 1.46 96.82

13 Stamet Jatiwangi −6.75 108.27 181.08 26.45 80.97 418.72 2.49 99.66

3.2. RShiny Web Application for SAR-X Model

At this stage, an R script was developed to process the data using the SAR-X model
through the RShiny web application.

A. The process of building an R script for the SAR-X model

The SAR-X modeling process, employing the Casetti model approach, entailed the
following steps:

1. Importing the climate data used for the SAR-X modeling, encompassing 13 climate
observation stations in the West Java region.

2. Constructing vectors and matrices based on the climate data, including:

a. Vector y: defines the rainfall variable at each location.
b. Matrix X: represents the exogenous variables, such as air temperature, humidity,

solar irradiation, wind speed, and surface pressure.
c. Matrix Z: consists of location coordinate entries in latitude and longitude.
d. Matrix J: identity matrix with the size of as many as five exogenous variables,

according to matrix X.
e. Matrix W: the result of calculating the inverse distance weight matrix using the

equation with input location coordinates (latitude and longitude).
f. Kronecker Z: the expression obtained from the multiplication of the kronecker

with the identity matrix of the five exogenous variables (Z⊗ Ik)
g. Matrix A: the product of matrix X, Z, and J

3. The Moran Index calculation using function “moran.test” and Moran Scatterplot using
function “moran.plot”.
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4. The calculation of parameter estimation ρ̂ and β̂0, obtaining the prediction results
ŷ, absolute error, and MAPE of the SAR-X model prediction with the Casetti model
approach.

5. The SAR-X model prediction data with the Casetti model approach in the form of ŷ

B. Creating and publishing the RShiny web application with the developed script.

At this stage, the R script explicitly built for the SAR-X model was transformed into
an RShiny web application following these steps:

1. Installing packages and call libraries, specifically “shiny” and “shinythemes”, to set
up RShiny.

2. Creating a User Interface (UI) and Server for the Web Application UI scripts managed
the appearance of the web, incorporating headers, images, panel tabs, and more.
Furthermore, the previously crafted R script for the SAR-X model was integrated
into the server script. Running the application involved clicking “Run App.” Suc-
cessful execution prompted progression, while errors in the console necessitated
troubleshooting.

3. Publishing the RShiny Web Application

At this stage, the designed application was published on the https://www.shinyapps.
io platform, accessed on 5 July 2023. The account creation on the site was followed by token
activation. The provided token was copied and inserted into RStudio. The application
could be published by clicking the designated icon.

3.3. Calculation Result of Inverse Distance Weight Matrix

The inverse distance weight was computed by taking into account the actual distances
between each location. The standardized inverse distance weight matrix for the SAR-X
model was then obtained using Equation (2), which produced the following:

W =



0 0.049832 0.046317 0.054288 0.019748 0.055151 0.093068 0.090447 0.146109 0.200602 0.06479 0.083328 0.096319

0.015477 0 0.008455 0.005307 0.044687 0.010736 0.214639 0.232858 0.025472 0.024137 0.14286 0.267645 0.007726

0.016001 0.009405 0 0.039857 0.005352 0.736974 0.01185 0.012007 0.044065 0.039526 0.007747 0.010561 0.066655

0.050697 0.015956 0.107736 0 0.009246 0.085519 0.021146 0.021139 0.05277 0.056539 0.015629 0.019388 0.544235

0.034948 0.254618 0.027416 0.017521 0 0.032666 0.12011 0.123126 0.051796 0.048721 0.135189 0.130788 0.023102

0.018078 0.01133 0.699231 0.030017 0.00605 0 0.014586 0.014824 0.068909 0.057761 0.009028 0.012802 0.057385

0.000609 0.004519 0.000224 0.000148 0.000444 0.000291 0 0.924044 0.000933 0.000937 0.003895 0.063727 0.000229

0.0006 0.00497 0.00023 0.00015 0.000461 0.0003 0.936838 0 0.000964 0.000959 0.003656 0.05064 0.000232

0.018523 0.010397 0.01617 0.007164 0.003711 0.026651 0.018093 0.018428 0 0.843116 0.008339 0.014411 0.014999

0.025362 0.009825 0.014464 0.007654 0.003481 0.022278 0.018121 0.018288 0.84081 0 0.008556 0.014497 0.016663

0.021581 0.153208 0.007469 0.005574 0.025445 0.009174 0.198412 0.1837 0.02191 0.022542 0 0.342974 0.008011

0.004212 0.043556 0.001545 0.001049 0.003735 0.001974 0.492634 0.386119 0.005746 0.005796 0.052045 0 0.001589

0.065939 0.01703 0.132081 0.398967 0.008937 0.119851 0.023988 0.023994 0.080996 0.09023 0.016465 0.021523 0



3.4. Calculation Result of Moran’s Index and Scatterplot Moran

The calculation of the Moran Index was employed to assess the existence of spatial
autocorrelation among the observation locations. The Moran Index for each climate variable
was calculated using Equation (4). The results of the Moran index calculations are shown
on Table 2.

Aside from the computation of the Moran Index on Table 2, a Moran Scatterplot
was also utilized to visualize the overall clustering tendency and distinctive attributes of
each region. This visual representation took the form of a four-quadrant graph for each
unit of analysis. The four quadrants showed potential groupings, bounded by mean and
average lines. Areas were considered to have high attributes when their values exceeded
the average, while values below the average indicated low characteristics. The complete
results of the Moran Scatterplot for each climate variable can be seen in Figure 1.

https://www.shinyapps.io
https://www.shinyapps.io
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Table 2. Spatial autocorrelation test using Moran’s Index.

No. Climate Variable p-Value Description

1 y (Rainfall) 0.0168 There is spatial
autocorrelation

2 X1 (Air Temperature) 0.0061 There is spatial
autocorrelation

3 X2 (Humidity) 0.0163 There is spatial
autocorrelation

4 X3 (Solar Irradiation) 0.0013 There is spatial
autocorrelation

5 X4 (Wind Speed) 0.0487 There is spatial
autocorrelation

6 X5 (Surface Pressure) 0.0044 There is spatial
autocorrelation
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3.5. Prediction Result of SAR Model

The estimation of the prediction parameters ρ̂ and β̂ in the SAR model was conducted
using R version 4.2.2. An estimated ρ̂ value of 0.744 was obtained, indicating spatial lag
dependence. This signified the influence of adjacent locations within the West Java region
on the rainfall prediction data. The results of the calculation of the parameter estimate for
β̂ are shown in Table 3.

Table 3. Parameter estimated value β̂.

No. β̂ Parameter Estimated Value

1 β1 −89.56

2 β2 −12.21

3 β3 −0.63

4 β4 27.50

5 β5 36.49

The SAR model equation for each location is presented and can be found in Ap-
pendix A. The predictions of rainfall and absolute errors at each location are shown in
Table 4.

Table 4. Prediction results and error prediction of SAR model.

No. Locations y ŷ Absolute Error

1 Balitpa Sukamandi 186.36 214.49 15.09

2 Lanud Atang Sanjaya Semplak 200.74 215.98 7.59

3 LPHP Tasikmalaya 228.20 260.09 13.98

4 SMPK Cirebon 189.71 217.49 14.64

5 SMPK Maranginan Sukabumi 191.42 226.58 18.37

6 SMPK Nariewattie 194.57 273.16 40.39

7 SMPK Pacet Cianjur 176.28 189.40 7.44

8 SMPK Pasir Sarongge 176.28 189.41 7.45

9 Stage of Bandung 203.29 250.93 23.44

10 Stage of Lembang 203.29 250.81 23.38

11 Staklim Darmaga 176.28 196.39 11.41

12 Stamet Citeko Bogor 176.28 192.96 9.46

13 Stamet Jatiwangi 181.08 228.85 26.38

Based on the results of the absolute error calculation in Table 4, the MAPE (Mean
Absolute Percentage Error) value for prediction using the SAR model amounted to 16.85%.
According to Lewis (1982) in [40], the prediction accuracy level is accurate, as the MAPE
was less than 20%.

3.6. Prediction Result of SAR-X Model

The estimation of the prediction parameters ρ̂ and β̂0 in the SAR-X model was con-
ducted using R software through a web application powered by RShiny. An estimated
ρ̂ value of 1.001973 was obtained, indicating spatial lag dependence. This signified the
influence of adjacent locations within the West Java region on the rainfall prediction data.
The results of the parameter estimate calculation of β̂0 for each β̂latitude and β̂longitude are
shown in Table 5.
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Table 5. Parameter estimated value β̂0 for each β̂latitude and β̂longitude.

No. β̂0 Parameter Estimated Value

1 β̂latitude(x1)
−539.33

2 β̂longitude(x1)
−96.53

3 β̂latitude(x2)
2.93

4 β̂longitude(x2)
139.34

5 β̂latitude(x3)
207.11

6 β̂longitude(x3)
−33.57

7 β̂latitude(x4)
−5.94

8 β̂longitude(x4)
0.17

9 β̂latitude(x5)
8.96

10 β̂longitude(x5)
12.86

Based on the estimated value of β̂0 in Table 5, the value of β̂ was determined using
Equation (38). The calculated values of β̂ are shown in Table 6.

Table 6. Parameter estimated value of β̂.

No. Locations
Parameter Estimated Value of β̂

β̂1 β̂2 β̂3 β̂4 β̂5

1 Balitpa Sukamandi −215.93 −45.51 58.56 −21.52 −0.73

2 Lanud Atang Sanjaya Semplak −31.14 −116.44 −2.56 120.40 43.66

3 LPHP Tasikmalaya 0.16 −20.48 −42.76 29.06 16.71

4 SMPK Cirebon 86.59 3.91 −112.28 −1.67 24.16

5 SMPK Maranginan Sukabumi 80.12 −0.91 38.00 −0.32 11.79

6 SMPK Nariewattie 137.49 36.36 14.27 −49.03 −1.14

7 SMPK Pacet Cianjur 32.06 5.04 −1.21 71.15 24.35

8 SMPK Pasir Sarongge −1.75 343.87 20.79 20.24 −12.06

9 Stage of Bandung −4.98 68.96 −17.38 −1.40 6.13

10 Stage of Lembang −55.57 −2.87 48.79 12.41 8.65

11 Staklim Darmaga 295.90 −58.45 16.20 −30.12 −1.05

12 Stamet Citeko Bogor 60.51 −134.81 −1.27 −50.76 29.39

13 Stamet Jatiwangi −2.62 285.08 18.01 −1.64 −5.17

The SAR-X model equation for each location can be found in Appendix B. The predic-
tions of the rainfall and corresponding errors at each location are shown in Table 7.

Based on the results of the absolute error calculation in Table 7, the MAPE value for
prediction using the SAR-X model amounted to 1.95%. According to Lewis (1982) in [40],
the prediction accuracy level is very accurate, as the MAPE value was less than 10%.
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Table 7. Prediction results and absolute error prediction of SAR-X Model.

No. Locations y ŷ Absolute Error

1 Balitpa Sukamandi 186.36 189.49 1.68

2 Lanud Atang Sanjaya Semplak 200.74 200.78 0.02

3 LPHP Tasikmalaya 228.20 222.30 2.59

4 SMPK Cirebon 189.71 190.80 0.57

5 SMPK Maranginan Sukabumi 191.42 193.36 1.01

6 SMPK Nariewattie 194.57 202.01 3.82

7 SMPK Pacet Cianjur 176.28 175.13 0.65

8 SMPK Pasir Sarongge 176.28 176.62 0.19

9 Stage of Bandung 203.29 193.78 4.68

10 Stage of Lembang 203.29 210.81 3.70

11 Staklim Darmaga 176.28 171.90 2.48

12 Stamet Citeko Bogor 176.28 179.17 1.64

13 Stamet Jatiwangi 181.08 176.87 2.32

3.7. Cross-Validation

In this research, for a cross-validation study, the data collection stage was carried
out through a parameter selection process in the form of climate variable data. Those
used were rainfall, solar irradiance, and wind speed in the West Java region, consisting of
11 regencies/cities shown on Table 8.

Table 8. Climate variable data from 11 regencies/cities in West Java.

No. Locations Latitude Longitude Rainfall
(mm)

Solar
Irradiation

(W/m2)

Wind Speed
(m/s)

1 Bandung City −6.91486 107.6082 203.29 415.2 1.511

2 Bekasi City −6.24159 106.9924 172.32 411.2 2.492

3 Cirebon City −6.73725 108.5507 189.71 418.7 3.674

4 Sukabumi City −6.9237 106.9287 200.74 411.2 1.706

5 Tasikmalaya City −7.31956 108.203 228.2 398.3 2.099

6 Pangandaran Regency −7.61506 108.4988 210.14 1.816 398.3

7 Bogor Regency −6.59504 106.8166 176.28 411.2 1.456

8 Majalengka Regency −6.83638 108.2274 194.57 418.7 1.575

9 Indramayu Regency −6.32758 108.3249 181.08 418.7 2.495

10 Purwakarta Regency −6.53868 107.4499 186.36 415.2 1.76

11 Kuningan Regency −7.01381 108.5701 184.64 398.3 1.781

An estimated ρ̂ value of 0.8055492 was obtained, indicating spatial lag dependence.
This signified the influence of adjacent locations within the West Java region on the rainfall
prediction data. The results of the parameter estimate calculations of β̂0 for each β̂latitude
and β̂longitude are shown in Table 9.

The results of calculating the estimated value of β̂ are shown in Table 10.
The results of predictions of the rainfall and absolute errors at each location are shown

in Table 11.
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Based on the results of the absolute error calculation in Table 11, the MAPE value
for prediction with the SAR-X model in the cross-validation dataset was 7.09% and the
prediction accuracy level was very accurate, as the MAPE value was less than 10%.

Table 9. Parameter estimated value β̂0 for cross-validation dataset.

No. β̂0 Parameter Estimated Value

1 β̂latitude(x1)
−0.08

2 β̂longitude(x1)
4.04

3 β̂latitude(x2)
−0.01

4 β̂longitude(x2)
0.35

Table 10. Parameter estimated value of β̂ for cross-validation dataset.

No. Locations
Parameter Estimated Value of β̂

β̂1 β̂2

1 Bandung City 0.11 −0.06

2 Bekasi City 2.72 0.08

3 Cirebon City 0.03 3.88

4 Sukabumi City 5.48 0.10

5 Tasikmalaya City 0.08 3.26

6 Pangandaran
Regency 3.79 0.03

7 Bogor Regency 0.12 5.51

8 Majalengka Regency 2.48 0.07

9 Indramayu Regency 0.16 4.32

10 Purwakarta Regency 1.14 0.12

11 Kuningan Regency 0.20 2.59

Table 11. Prediction results and MAPE Prediction of SAR-X Model for cross-validation dataset.

No. Locations y ŷ Absolute Error

1 Bandung City 203.29 206.08 2.79

2 Bekasi City 172.32 177.63 5.31

3 Cirebon City 189.71 203.23 13.52

4 Sukabumi City 200.74 201.40 0.66

5 Tasikmalaya City 228.20 223.60 4.60

6 Pangandaran Regency 210.14 140.21 69.93

7 Bogor Regency 176.28 191.01 14.73

8 Majalengka Regency 194.57 203.28 8.71

9 Indramayu Regency 181.08 183.86 2.78

10 Purwakarta Regency 186.36 190.22 3.86

11 Kuningan Regency 184.64 211.11 26.47

4. Discussion

The procedure for predicting rainfall in West Java, utilizing the SAR-X model with
the Casetti Model approach, was conducted based on data from 13 climate observation
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stations. The entire process was carried out within the RStudio software environment,
leveraging the capabilities of the RShiny web application. The R script constructed for this
purpose encompassed various stages of the SAR-X modeling procedure, ranging from data
import, vector, matrix construction, Moran index, Moran scatterplot calculation, parameter
estimation, prediction result calculation, and MAPE assessment to the publication of the
RShiny web application. It should be noted that the execution time of the script ranged
from 1 to 5 min. The source code is stored in the GitHub directory and the link is included
in Appendix C, which could be valuable for facilitating the replication and verification of
the model and its results by other researchers [41,42].

The result of the Moran index calculation, presented in Table 2, showed a positive
spatial autocorrelation across the 13 observation stations within the West Java region. In
addition, it concurred with the descriptive analysis, indicating that the areas exhibiting
high rainfall tended to be situated in proximity to other high-rainfall areas, and vice
versa. The results of the identification, parameter estimation, and prediction of rainfall,
involving five other climate variable factors in Tables 4 and 7, showed that the MAPE
value of the SAR-X model prediction results was smaller than the MAPE of the SAR model,
with the calculation of the rainfall prediction providing very high results based on the
MAPE value of 1.95%. This shows that the prediction of rainfall using NASA POWER data
from 13 observation stations in the West Java region using the SAR-X model was better
than prediction with the SAR model, because the SAR-X model obtained β̂ parameters
that varied for each exogenous variable at each location. This research aligned with the
discovery of Hermawan [28], highlighting the influential role of five climate variable factors
in shaping rainfall patterns, namely air temperature, humidity, solar irradiation, wind
speed, and surface pressure.

5. Conclusions

In conclusion, the SAR-X model using Casetti’s approach was applied to analyze
the rainfall data and climate variables in West Java, utilizing information from 13 climate
observation stations. These data showed a positive spatial autocorrelation among different
regions. The results highlighted the remarkable accuracy of the prediction outcomes
obtained through the SAR-X model at each observation location. This accuracy was
attributed to the distinct estimated parameter values assigned to each climate variable,
contributing to the high precision of the prediction results.

The summary of this research underscored that the level of rainfall in each region,
based on the data from 13 climate observation stations in West Java, was significantly
influenced by five other climate variable factors. It should be noted that these factors
collectively exhibited a positive spatial autocorrelation across various areas. Therefore, the
recommendation for relevant institutions engaged in rainfall prediction is to thoroughly
consider the diverse aspects of climate variables. This approach enables a comprehensive
understanding of how each climate variable exerts its influence within distinct locations.
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Appendix A

• SAR model for predicting rainfall in Balitpa Sukamandi:

ŷ(s1)
= 0.744

13

∑
i=1

w1iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Lanud Atang Sanjaya Semplak:

ŷ(s2)
= 0.744

13

∑
i=1

w2iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in LPHP Tasikmalaya:

ŷ(s3)
= 0.744

13

∑
i=1

w3iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Cirebon:

ŷ(s4)
= 0.744

13

∑
i=1

w4iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Maranginan Sukabumi:

ŷ(s5)
= 0.744

13

∑
i=1

w5iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Nariewattie:

ŷ(s6)
= 0.744

13

∑
i=1

w6iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Pacet Cianjur:

ŷ(7) = 0.744
13

∑
i=1

w7iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Pasir Sarongge:

ŷ(s8)
= 0.744

13

∑
i=1

w8iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stage of Bandung:
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ŷ(s9)
= 0.744

13

∑
i=1

w9iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stage of Lembang:

ŷ(10) = 0.744
13

∑
i=1

w10iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Staklim Darmaga:

ŷ(s11)
= 0.744

13

∑
i=1

w11iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stamet Citeko Bogor:

ŷ(s12)
= 0.744

13

∑
i=1

w12iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stamet Jatiwangi:

ŷ(s13)
= 0.744

13

∑
i=1

w13iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

Appendix B

• SAR-X model for predicting rainfall in Balitpa Sukamandi:

ŷ(s1)
= 1.001973

13

∑
i=1

w1iy(si)
− 215.93X1 − 45.51X2 + 58.56X3 − 21.52X4 − 0.73X5

• SAR-X model for predicting rainfall in Lanud Atang Sanjaya Semplak:

ŷ(s2)
= 1.001973

13

∑
i=1

w2iy(si)
− 31.14X1 − 116.44X2 − 2.56X3 + 120.40X4 + 43.66X5

• SAR-X model for predicting rainfall in LPHP Tasikmalaya:

ŷ(s3)
= 1.001973

13

∑
i=1

w3iy(si)
+ 0.16X1 − 20.48X2 − 42.76X3 + 29.06X4 + 16.71X5

• SAR-X model for predicting rainfall in SMPK Cirebon:

ŷ(s4)
= 1.001973

13

∑
i=1

w4iy(si)
+ 86.59X1 + 3.91X2 − 112.28X3 − 1.67X4 + 24.16X5

• SAR-X model for predicting rainfall in SMPK Maranginan Sukabumi:

ŷ(s5)
= 1.001973

13

∑
i=1

w5iy(si)
+80.12X1−0.91X2 + 38.00X3 − 0.32X4 + 11.79X5

• SAR-X model for predicting rainfall in SMPK Nariewattie:

ŷ(s6)
= 1.001973

13

∑
i=1

w6iy(si)
+ 137.49X1 + 36.36X2 + 14.27X3 − 49.03X4 − 1.14X5
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• SAR-X model for predicting rainfall in SMPK Pacet Cianjur:

ŷ(s7)
= 1.001973

13

∑
i=1

w7iy(si)
+ 32.06X1 + 5.04X2 − 1.21X3 + 71.15X4 + 24.35X5

• SAR-X model for predicting rainfall in SMPK Pasir Sarongge:

ŷ(s8)
= 1.001973

13

∑
i=1

w8iy(si)
− 1.75X1 + 343.87X2 + 20.79X3 + 20.24X4 − 12.06X5

• SAR-X model for predicting rainfall in Stage of Bandung:

ŷ(s9)
= 1.001973

13

∑
i=1

w9iy(si)
− 4.98X1 + 68.96X2 − 17.38X3 − 1.40X4 + 6.13X5

• SAR-X model for predicting rainfall in Stage of Lembang:

ŷ(s10)
= 1.001973

13

∑
i=1

w10iy(si)
− 55.57X1 − 2.87X2 + 48.79X3 + 12.41X4 + 8.65X5

• SAR-X model for predicting rainfall in Staklim Darmaga:

ŷ(s11)
= 1.001973

13

∑
i=1

w11iy(si)
+ 295.90X1 − 58.45X2 + 16.20X3 − 30.12X4 − 1.05X5

• SAR-X model for predicting rainfall in Stamet Citeko Bogor:

ŷ(s12)
= 1.001973

13

∑
i=1

w12iy(si)
+ 60.51X1 − 134.81X2 − 1.27X3 − 50.76X4 + 29.39X5

• SAR-X model for predicting rainfall in Stamet Jatiwangi:

ŷ(s13)
= 1.001973

13

∑
i=1

w13iy(si)
− 2.62X1 + 285.08X2 + 18.01X3 − 1.64X4 − 5.17X5

Appendix C

The source code is stored in the GitHub directory and can be accessed at the following
link: https://github.com/annisanurfalah02/SAR-X-Model, accessed on 15 August 2023.
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