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Abstract: The density ratio model has been widely used in many research fields. To test the homo-
geneity of the model, the empirical likelihood ratio test (ELRT) has been shown to be valid. In this
paper, we conduct a parametric test procedure. We transform the hypothesis of homogeneity to one
on the equality of mean parameters of the exponential family of distributions. Then, we propose
a modified Wald test and give its asymptotic power. We further apply it to the semicontinuous case
when there is an excess of zeros in the sample. The simulation studies show that the new test controls
the type-I error better than ELRT while retaining competitive power. Benefiting from the simple
closed form of the test statistic, the computational cost is small. We also use a real data example to
illustrate the effectiveness of our test.

Keywords: density ratio model; homogeneity test; multiple semicontinous data; exponential family
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1. Introduction

The density ratio model (DRM) was first introduced by Anderson [1] and later popular-
ized by Qin and Zhang [2], who found the relationship between the two-sample DRM and
the logistic regression model in case–control studies. The DRM models in a semi-parametric
way the difference between two independent samples. Assume that X01, X02, · · · , X0n0 and
X11, X12, · · · , X1n1 are two samples independently drawn from two cumulative distribution
functions G0 and G1. The DRM postulates that

dG1(x) = exp(α + β>q(x))dG0(x), (1)

where q(x) is a d-dimensional pre-specified basis function while α and β are unknown
parameters. We can also generalize the DRM to the (m + 1) sample case as follows

X01, X02, · · · , X0n0 ∼ G0(x),

X11, X12, · · · , X1n1 ∼ G1(x),
...

Xm1, Xm2, · · · , Xmnm ∼ Gm(x),

(2)

where
dGi(x) = exp(αi + β>i q(x))dG0(x),

for i = 1, 2, · · · , m. Even though the form of gi(x) = dGi(x) is unspecified, many para-
metric distribution families are in the DRM, including normal, exponential, and gamma
distributions, among others.
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Due to its flexibility and utility, increasing importance has been attached to the DRM.
Zhang [3] proposed a weighted Kolmogorov–Smirnov type statistic to test the validity
of the DRM based on case–control data. Qin [4] and Zou et al. [5] applied the DRM to
the semi-parametric mixture model and developed test statistics based on the empirical
likelihood function. Zhang [6] induced the quantile estimator under a two-sample semi-
parametric model and Chen and Liu [7] generalized the estimator to the (m + 1)-sample
case. Another problem of interest is to test the homogeneity of the DRM model, that is,
to test whether G0 = G1 = · · · = Gm. Fokianos et al. [8] outlined a method based on the
classical normal-based one-way analysis of variance. Cai et al. [9] studied the properties of
the dual empirical likelihood ratio tests to general hypotheses on parameters. Moreover,
let G0 be the initial cumulative distribution function (cdf) of a population, and G1 be the
cdf of the weighted distribution of G0, so that their densities are connected to each other
as follows,

g1(x) =
w(x)

E[w(x)]
g0(x).

Then, w(x), in the context of the DRM, seems to be eα+β>q(x), and X is a random variable
with density g0(x). Thus, the DRM lies in the context of weighted distributions which have
many applications in various fields. The problem of detecting or estimating the weight func-
tion w(x) is of interest in the framework of weighted distributions; see Patil and Rao [10],
Rao [11,12] and Lele and Keim [13].

Recent research on the DRM mainly considered using the empirical likelihood function.
We give a brief introduction to this method below. Given α0 = 0 and β0 = 0, the likelihood
function of the model (2) has the form

L =
m

∏
i=0

ni

∏
j=1

dGi(xij)

=
m

∏
i=0

ni

∏
j=1

exp(αi + β>i q(xij))dG0(xij).

If G0 is restricted to a discretized distribution as

G0(x) =
m

∑
i=0

ni

∑
j=1

pij I(xij ≤ x),

where pij is constrained by

pij > 0 and
m

∑
i=0

ni

∑
j=1

pij exp(αt + β>t q(xij)) = 1,

for t = 0, 1, · · · , m. Then, the Lagrangian multipliers described in Qin and Lawless [14] are
used to obtain the maximum empirical likelihood estimate of (αi, βi). However, the type-
I error of the empirical likelihood ratio test cannot be well controlled in finite samples.
To deal with this problem, Wang et al. [15] suggested using a nonparametric bootstrap
procedure. However, the computational cost of the bootstrap procedure is non-negligible,
especially when m is large.

We also notice that there is increasing interest in the case when there are zero values
in the samples. This phenomenon happens in many research fields such as meteorology,
health, economics, and life sciences; see Tu and Zhou [16], Muralidharan and Kale [17] and
Kassahun-Yimer et al. [18]. For example, in the meteorology study, a group of zero observa-
tions may correspond to a number of dry days when there are no rainfall measurements
recorded. Another example happens in dietary intake studies, where zero observations
may occur for some food components that are consumed episodically. In the examples men-
tioned above, samples are constructed from two parts. One is the zero observations and the
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other is the positive observations. This kind of distribution is also called a semicontinuous
distribution, which has the form

F(x) = pI(x = 0) + (1− p)I(x > 0)G(x), X ≥ 0,

where p indicates the probability of drawing a zero observation and G(x) is a positive
and continuous distribution. We recommend the reviews of Neelon et al. [19,20] for more
details. In this paper, we adopt the DRM, as the choice of G(x) benefits from the advantages
we introduced above. Thus, the model becomes

X01, X02, · · · , X0n0 ∼ F0(x),

X11, X12, · · · , X1n1 ∼ F1(x),
...

Xm1, Xm2, · · · , Xmnm ∼ Fm(x),

(3)

where
Fi(x) = pi I(x = 0) + (1− pi)I(x > 0)Gi(x), x ≥ 0

for i = 0, 1, 2, · · · , m, where I is the indicator function.
A two-part test is proposed to test the homogeneity of the model (3), which is a funda-

mental problem in real applications. For example, the different distributions of precipitation
in certain areas among years may influence the strategy of agricultural irrigation. Further-
more, in colorectal cancer clinical trials, it is important to compare the efficacy and safety
between two or more treatment arms; see Lachenbruch [21], Su et al. [22], Smith et al. [23]
and Wang and Tu [24]. The two-part test consists of a test for the binomial distribution and
another for the continuous responses. For the two-sample case, Wang et al. [15] suggested
that the former test is a χ2 test while the latter can be a Wilcoxon–Mann–Whitney rank-
sum test or a two-sample t-test. For the (m + 1)-sample case, the latter can be replaced
by a Kruskal–Wallis rank-sum test or an ANOVA F-test; see for example, Wilcox [25],
Hallstrom [26] and Pauly et al. [27]. However, as far as we are concerned, the tests men-
tioned above may perform badly in heteroskedastic cases.

In this paper, we propose an efficient method based on the exponential family of
distributions. First, the problem of testing the homogeneity is transformed to testing the
equalities of the mean parameters. Secondly, a Wald test statistic is proposed to test the
equalities. Since g0 is unknown, we modify the Wald test statistic based on the sample
from g0. This modified statistic has a simple closed form and we show that it converges
in distribution to the χ2 distribution under the null hypotheses. We also give the local
asympotical power. Thirdly, the Bernoulli distribution can be regarded as a DRM and we
obtain the combined modified Wald test for the semicontinuous case. Finally, the simulation
studies illustrate that the computational cost of the modified Wald test is much less than
the bootstrap procedure, while it always controls type-I error better than the empirical
likelihood ratio test. Moreover, the power of the modified Wald test is competitive.

The rest of the paper is organized as follows. In Section 2, we propose the method for
testing the homogeneity of the two-sample model for both continuous and semicontinuous
distributions. In Section 3, we generalize the result to multiple-sample cases. We illustrate
the performance of the modified Wald test and compare it with the empirical likelihood
ratio test through simulations in Section 4. We consider a real data sample to show the
practicability of our method and give the conclusions in the last section.
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2. Two-Sample Case
2.1. Density Ratio Model

In this section, we assume that X01, X02, · · · , X0n0 and X11, X12, · · · , X1n1 are the two
independent samples drawn from G0(x) and G1(x), respectively. It is further assumed that
for certain d-dimensional q(x) = (q1(x), q2(x), · · · , qd(x))>,

g1(x) = eα+β>q(x)g0(x),

where g1(x) and g0(x) are the density of G1(x) and G0(x) with respect to a σ-finite measure
ν, respectively. The hypotheses for testing the homogeneity are

H0 : g0 = g1 vs. H1 : g0 6= g1. (4)

Since g1(x) is a density function, we have∫
eα+β>q(x)g0(x)dν(x) = eα

∫
eβ>q(x)g0(x)dν(x) = 1.

Hence, there is a function A(β) such that

eα = e−A(β).

Then,
g(x) = eβ>q(x)−A(β)g0(x).

Construct an exponential family of distributions

P = {eβ>q(x)−A(β)g0(x), β ∈ Ω0}, (5)

where

Ω0 =

{
β :
∫

eβ>q(x)g0(x)dν(x) < ∞
}

is the natural parameter space. Under the family P , the hypotheses (4) are equivalent to

H0 : β = 0 vs. H1 : β 6= 0. (6)

For family P , we give two simple assumptions.

Assumption 1. P is a full-rank exponential family of distributions.

Then, under Assumption 1, the Fisher information matrix of P is positively definite
and continuous. By the properties of the exponential family,

I(β) = covβ(q(x)) > 0,

for an interior point β of Ω0.

Assumption 2. The origin 0 is an interior point of Ω0.

Although always 0 ∈ Ω0 because g0(x) is a density, it may not be an interior point.
For example, if d = 1, q(x) = x4 and g0(x) = φ(x), the density of the standard normal
distribution, then Ω0 = (−∞, 0].

Hypotheses (6) are expressed by the nature parameter β of P . We further want to
represent them with the mean parameter of P , which is defined as

m(β) = Eβ(q(x)) =
∫ ∞

−∞
q(x)eβ>q(x)−A(β)g0(x)dν(x).
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The following lemma is demanded.

Lemma 1. Under Assumptions 1 and 2, β = 0 if and only if m(β) = m(0).

The proof is given in Appendix A.
Lemma 1 shows that the hypotheses (6) are equivalent to

H0 : m(β) = m(0) vs. H1 : m(β) 6= m(0). (7)

First, consider the case where g0 is known. Based on the data X1 = (X11, X12, · · · , X1n1)
>,

the maximum likelihood estimator of m(β) is

q̄(1) ,
1
n1

n1

∑
i=1

q(X1i).

The Wald test statistic of hypotheses (7) is then

T(X1) = n1(q̄(1) −m(0))>(I(0))−1(q̄(1) −m(0)). (8)

When β = 0, by the central limit theorem, we have

√
n1(q̄(1) −m(0)) d−→ N(0, I(0)),

where d→ is the convergence in the distribution. Then, T(X1)
d−→ χ2(d). The Wald test

with significance level α can be obtained by the critical region

{x1 : T(x1) ≥ χ2
1−α(d)}, (9)

where χ2
1−α(d) denotes the (1− α)-quantile of the χ2(d).

However, the test (9) is not applicable when g0(x) is unknown, because m(0) and I(0)
in T(X1) are unknown. Fortunately, we have sample X0 = (X01, · · · , X0n0) from g0(x),
which can be used to estimate m(0) and I(0) instead. The estimators are

m̂(0) = q̄(0) =
1
n0

n0

∑
i=1

q(Xi),

Î(0) = S2
0 =

1
n0 − 1

n0

∑
i=1

(q(X0i)− q̄(0))(q(X0i)− q̄(0))>.

Then, the test statistic (8) can be modified to

T(X0, X1) =
n0n1

n0 + n1
(q̄(1) − q̄(0))>S−2

0 (q̄(1) − q̄(0)). (10)

We refer to this statistic as a modified Wald statistic.
Notice that the two populations are the same under the null hypothesis, let

S2
1 =

1
n1 − 1

n1

∑
i=1

(q(X1i)− q̄(0))(q(X1i)− q̄(0))>.

then, we can use

S2 =
1

n0 + n1 − 2

[
(n0 − 1)S2

0 + (n1 − 1)S2
1

]
.

as an estimate of I(0) and obtain T∗(X0, X1), which is

T∗(X0, X1) =
n0n1

n0 + n1
(q̄(1) − q̄(0))>S−2(q̄(1) − q̄(0)). (11)
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Assumption 3. Let n = n0 + n1. When n→ ∞,

ni
n
→ ri ∈ (0, 1), i = 0, 1.

Theorem 1. Assume that the Assumptions 1–3 hold. Then,

1. Under H0 in (7),

T∗(X0, X1)
d−→ χ2(d).

2. Take βn = 1√
n h, h ∈ Rd. Under this alternative,

T∗(X0, X1)
d−→ χ2(d, δ),

where δ = r0r1h> I(0)h, the non-central parameter.

The proof is given in Appendix A.
Now, the modified Wald test with level α is determined by the critical region

{(x0, x1) : T∗(x0, x1) > χ2
1−α(d)}. (12)

The local asymptotic power of the modified Wald test is given by

P(V > χ2
(1−α)(d)), (13)

where V ∼ χ2(d, δ). Since r0 + r1 = 1, δ is maximized at r0 = r1 = 1/2, i.e, n0 = n1.
Furthermore, the power increases in h> I(0)h.

Remark 1. The distributions we consider in the next subsection are semicontinuous, where the
data are one-dimensional and non-negative. However, Theorem 1 holds for P in which the supports
of the distributions can be either multivariate or negative.

2.2. Semicontinuous Data

In this subsection, we consider the case when both populations are semicontinuous.
Specifically, assume that the two independent samples X0 = (X01, X02, · · · , X0n1) and
X1 = (X11, X12, · · · , X1n1) are drawn from F0(x) and F1(x), respectively, where

Fi(x) = pi I(x = 0) + (1− pi)I(x > 0)Gi(x), i = 0, 1.

The distributions G0 and G1 satisfy (1) and the supports of them are in [0, ∞). Denote the
densities of them by g0 and g1. Then, the hypotheses for testing homogeneity are

H0 : p0 = p1 and g0 = g1 vs. p0 6= p1 or g0 6= g1. (14)

Let n00 and n10 be the numbers of zero observations and let n01 and n11 be the numbers of
non-zero observations in two populations, respectively. Without loss of generality, assume
that the first n01 of X0 and n11 of X1 are non-zero. Then, the estimates of p0 and p1 are

p̂0 =
n00

n0
, p̂1 =

n10

n1
. (15)

A natural test statistic for p0 = p1 is

B2 =
( p̂0 − p̂1)

2

1
n0

p̂0(1− p̂0) +
1

n1
p̂1(1− p̂1)

. (16)
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Then, the two-part test statistic is a combination of test statistics (16) and (11), which is

Tsemi(X0, X1) = B2 +
n01n11

n01 + n11
(q̄(1) − q̄(0))>S−2(q̄(1) − q̄(0)) (17)

where

q̄(0) =
1

n01

n01

∑
i=1

q(X0i),

q̄(1) =
1

n11

n11

∑
i=1

q(X1i),

S2 =
1

n01 + n11 − 2

[
(n01 − 1)S2

0 + (n11 − 1)S2
1

]
,

and

S2
0 =

1
n01 − 1

n01

∑
i=1

(q(X0i)− q̄(0))(q(X0i)− q̄(0))>,

S2
1 =

1
n11 − 1

n11

∑
i=1

(q(X1i)− q̄(1))(q(X1i)− q̄(1))>.

Corollary 1. Assume that Assumptions 1–3 hold and 0 < p0, p1 < 1. Then,

1. Under H0 in (14),

Tsemi(X0, X1)
d−→ χ2(d + 1).

2. Take βn = 1√
n h, h ∈ Rd, p1n = p0 +

k√
n , under this alternative,

Tsemi(X0, X1)
d−→ χ2(d + 1, δ),

where

δ = r0r1

(
k2

p0(1− p0)
+ h> I(0)h

)
the non-central parameter.

The proof is given in Appendix A.
Now, the modified Wald test with level α is determined by the critical region

{(x0, x1) : Tsemi(x0, x1) > χ2
1−α(d + 1)}. (18)

The local asymptotic power of the modified Wald test is given by

P(V > χ2
1−α(d + 1)), (19)

where V ∼ χ2(d + 1, δ). Interestingly, although the numbers of non-zero observations in
two samples are random, the non-central parameter

δc = r0r1h> I(0)h

as δ in Theorem 1 (2).

3. Multiple Sample Case

In this section, we generalize the conclusions in the last section to the cases when there
are more than two populations. Similarly, we first study the case when all the populations
are DRM. Then, we move on to the semicontinuous case.
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3.1. Density Ratio Model

Assume that Xij, j = 1, 2, · · · , ni are samples independently drawn from the distribu-
tions Gi, i = 0, 1, 2, · · · , m. Let g0(x) be the density of G0. Then, the density function gi of
Gi satisfies

gi(x) = eαi+β>i q(x)g0(x)

where i = 1, 2, · · · , m. q(x) = (q1(x), q2(x), · · · , qd(x))> is known. −∞ < αi < ∞, and
βi = (βi1, βi2, · · · , βip)

> are unknown parameters. For convenience, we also define α0 = 0
and β0 = 0>. As in Section 2.1, there exists a function A(β) such that

gi(x) = eβ>i q(x)−A(βi)g0(x) ∈ P , (20)

for i = 1, 2, · · · , m. Then, to test the homogeneity of the DRM is equivalent to testing

H0 : β1 = β2 = · · · = βm = 0 vs. H1 : βi0 6= 0 for some i0 ∈ {1, 2, · · · , m}.

With Lemma 1, testing the homogeneity is equivalent to testing

H0 : m(βi) = m(0), 1 ≤ i ≤ m vs. H1 : m(βi0) 6= m(0) for some 1 ≤ i0 ≤ m. (21)

Based on the sample Xi = (Xi1, Xi2, · · · , Xini ), the MLE of the mean vector m(βi) is

q̄(i) =
1
ni

ni

∑
j=i

q(Xij), i = 1, 2, · · · , m.

Then, under H0, by the central limit theorem, we have

√
ni

(
q̄(i) −m(0)

)
d−→ Nd(0, I(0)), i = 1, 2, · · · , m.

We can construct the test statistic as

T =
m

∑
i=1

ni

(
q̄(i) −m(0)

)>
(I(0))−1

(
q̄(i) −m(0)

)
. (22)

Then, by the independence of q̄(i), this statistic is converging in distribution to a χ2 distri-
bution with mp degrees of freedom, that is,

T d−→ χ2(md).

When g0(x) is unknown, and m(0) and I(0) cannot be computed directly. Analogously,
the estimates of them using the samples X0 = (X01, X02, · · · , X0n0)

> and X1, X2, · · · , Xm
are

m̂(0) = q̄(0) =
1
n0

n0

∑
j=1

q
(
x0j
)
,

Î(0) = S2 =
1

n−m− 1

m

∑
i=0

(ni − 1)S2
i ,

where

S2
i =

1
ni − 1

ni

∑
j=1

(
q(xij)− q̄(i)

)>(
q(xij)− q̄(i)

)
and n = ∑m

i=0 ni. Then, the test statistic (22) is estimated by

m

∑
i=1

ni

(
q̄(i) − q̄(0)

)>
S−2

(
q̄(i) − q̄(0)

)
. (23)
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However, the statistic above may not converge in distribution to χ2(md) since there is q̄(0)

in all the terms of (23). So, we construct a modified test statistic as

T(X) =
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)>
S−2

(
q̄(i) − q̄(0)

)

− 1
n

[
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)]>
S−2

[
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)]
,

(24)

where X = (X0, X1, · · · , Xm).

Assumption 4. When n→ ∞,

ni
n
→ ri ∈ (0, 1), i = 0, 1, · · · , m.

Theorem 2. Assume that Assumptions 1, 2, and 4 hold. Then,

1. Under H0 in (21),

T(X)
d−→ χ2(md).

2. Take βin = 1√
n hi, hi ∈ Rd, i = 1, 2, · · · , m. Under this alternative,

T(X)
d−→ χ2(md, δ),

where

δ =
m

∑
i=1

rih>i I(0)hi −
(

m

∑
i=1

rihi

)>
I(0)

(
m

∑
i=1

rihi

)
.

The proof is given in Appendix A.
Now, the modified Wald test with level α is determined by the critical region

{x : T(x) > χ2
1−α(md)}. (25)

The local asymptotic power of the modified Wald test is given by

P(V > χ2
1−α(md)), (26)

where V ∼ χ2(md, δ).

Remark 2. When m = 1, the statistic (24) has the form

T(X) =n1

(
q̄(1) − q̄(0)

)>
S−2

(
q̄(1) − q̄(0)

)
− 1

n

[
n1

(
q̄(1) − q̄(0)

)]>
S−2

[
n1

(
q̄(1) − q̄(0)

)]
=

n1n0

n

(
q̄(1) − q̄(0)

)>
S−2

(
q̄(1) − q̄(0)

)
.

This is the same as the statistic (11).

Remark 3. When hi = h, g1 = g2 = · · · = gm. In this case, δ becomes

δ =
m

∑
i=1

rih> I(0)h−
(

m

∑
i=1

rih

)>
I(0)

(
m

∑
i=1

rih

)
= (1− r0)r0h> I(0)h.



Mathematics 2023, 11, 3789 10 of 28

This means that δ is maximized at r0 = 1/2.

Remark 3 above can be naturally generalized to the following question. When the
total sample size n is fixed, how to arrange (n0, n1, · · · , nm) to maximize the local power?
To solve this problem, we first let

H = (h1, h2, · · · , hm)

and
D =

(
h>1 I(0)h1, h>2 I(0)h2, · · · , h>m I(0)hm

)>
.

3.2. Semicontinuous Data

Now, we consider the model (3) where the populations are semicontinuous. Assume
that Xi = (Xi1, Xi2, · · · , Xini ) is drawn from

Fi(x) = pi I(x = 0) + (1− pi)I(x > 0)Gi(x), , i = 0, 1, · · · , m.

Let ni0 and ni1 be the numbers of zero and non-zero observations Xi. Without loss of gener-
ality, assume that the first ni1 samples of Xi are non-zero. The densities of G0, G1, · · · , Gm
are denoted by g0, g1, · · · , gm and satisfy

gi(x) = exp(αi + βiq(x))g0(x), i = 0, 1, · · · , m,

where α0 = 0 and β0 = 0. From the continuous case considered in the last subsection,
the hypotheses of testing the homogeneity are equivalent to

H0 : p0 = p1 = · · · = pm and β0 = β1 = · · · = βm vs.

H1 : pi0 6= p0 or βi0 6= 0 for some i0 ∈ {1, 2, · · · , m}.
(27)

The test for homogeneity of the continuous part is considered in the last subsection. The re-
maining task is to test the homogeneity of (m + 1) binomial distributions. The hypotheses
are

H0 : p0 = p1 = · · · = pm vs. H1 : pi0 6= p0 for some i0 ∈ {1, 2, · · · , m}.

As a proof of Corollary 1, the Bernoulli distributions can be expressed as a DRM,
where

αi = log
(

1− pi
1− p0

)
, βi = log

(
pi
p0

1− p0

1− pi

)
,

and q(x) = x. Then, the MLE of pi is

p̂i =
ni0
ni

, i = 0, 1, · · · , m.

The Fisher information is estimated by

S2
b =

1
n−m− 1

m

∑
i=0

(ni − 1)S2
bi,

where

S2
bi =

1
ni − 1

ni

∑
j=1

(
xij −

ni0
ni

)2
=

ni
ni − 1

p̂i(1− p̂i).

Then, we can construct the test statistic for the binomial part using Theorem 2.

Tb =
m

∑
i=1

ni

(
p̂(i) − p̂(0)

)2
S−2

b −
1
n

[
m

∑
i=1

ni

(
p̂(i) − p̂(0)

)]2

S−2
b . (28)
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Finally, we combine the two test statistics together to obtain the test statistic for the
semicontinuous case. Let

q̄(i) =
1

ni1

ni1

∑
j=i

q(xij), i = 0, 1, · · · , m.

and

S2
c =

1
∑m

i=0 ni1 −m− 1

m

∑
i=0

(ni1 − 1)S2
ci, i = 0, 1, · · · , m,

where

S2
ci =

1
ni1 − 1

ni1

∑
j=1

(
qj(xij)− q̄(i)

)>(
q(xij)− q̄(i)

)
.

Then, the test statistic for the semicontinuous case is

Tsemi =
m

∑
i=1

ni1

(
q̄(i) − q̄(0)

)>
S−2

c

(
q̄(i) − q̄(0)

)

− 1
∑m

i=0 ni1

[
m

∑
i=1

ni1

(
q̄(i) − q̄(0)

)]>
S−2

c

[
m

∑
i=1

ni1

(
q̄(i) − q̄(0)

)]

+
m

∑
i=1

ni

(
p̂(i) − p̂(0)

)2
S−2

b −
1
n

[
m

∑
i=1

ni

(
p̂(i) − p̂(0)

)]2

S−2
b .

Corollary 2. Assume that Assumptions 1, 2, and 4 hold and 0 < p0, p1, · · · , pm < 1. Then,

1. Under H0 in (27),

Tsemi(X)
d−→ χ2(m(d + 1)).

2. Take βin = 1√
n hi, hi ∈ Rd, pin = p0 +

ki
n , i = 1, 2, · · · , m. Under this alternative,

Tsemi(X)
d−→ χ2(m(d + 1), δ),

where

δ =
1

p0(1− p0)

 m

∑
i=1

rik2
i −

(
m

∑
i=1

riki

)2


+
m

∑
i=1

rih>i I(0)hi −
(

m

∑
i=1

rihi

)>
I(0)

(
m

∑
i=1

rihi

)
.

The proof is given in Appendix A.
Now, the modified Wald test with level α is determined by the critical region

{x : T(x) > χ2
1−α(m(d + 1))}. (29)

The local asymptotic power of the modified Wald test is given by

P(V > χ2
1−α(m(d + 1))), (30)

where V ∼ χ2(m(d + 1), δ).

4. Simulation Study

In our simulations we make comparison between three tests. In addition to the
modified Wald test we proposed, denoted by “MWT”, the others are the dual empirical
likelihood ratio test proposed by Cai et al. [9] and the empirical likelihood ratio test using
the bootstrap procedure proposed by Wang et al. [15], which are denoted by “DELRT” and
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“BELRT”, respectively. We hope to show that our modified Wald test is available for different
cases. In the first simulation study, we illustrate the case when the number of populations
is large. We compare the performances and computational costs of the three tests. It can be
seen that MWT controls the type-I error better than DELRT while taking much less time
than BELRT. In the second one, we look into three normal distributions with the same scale
and study how the tests perform with the change in location parameter. This means that the
three populations vary from the same to totally different. We can clearly see from Figure 1
how the three tests perform. In the third simulation study we hope to verify Remark 3
in our context, which shows an interesting phenomenon of the power effected by sample
sizes under certain alternative hypotheses. In the last one, we consider the semicontinuous
case when the continuous part is either log-normal or a gamma distribution. The same
parameter settings are also considered by Wang et al. [15]. From Figures 2 and 3, we can
show that our method is competitive.

4.1. Scenario 1

We consider the DRM when (m + 1) = 2, 3, 5, 8, and 11. Let G0 be the standard normal
distribution while the rest are the normal distribution with scale fixed to 1 and location
fixed to µ. We consider the cases when µ = 0, 0.5, 0.75, 1. We choose the same sample size
n0 = n1 = · · · = nm = 30 and 50 for all the populations and generate M = 1000 repetitions
for each situation with different m and µ. Then, we calculate the type-I error of the three
statistics when µ = 0 and the power of them when µ 6= 0 at the 5% significance level.
The results are shown in Tables 1 and 2, respectively.

Table 1. Type-I error and power of the three test statistics for different (m + 1) = 2, 3, 5, 8, 11 and
µ = 0, 0.5, 0.75, 1 when the sample size is 30.

(m + 1) µ MWT DELRT BELRT

2

0 5.6 6.7 4.8
0.5 39.7 40.8 34.1
0.75 73.7 74.3 69.5

1 93.8 93.8 92.6

3

0 4.9 6.0 4.7
0.5 35.6 43.1 38.1
0.75 71.8 79.1 76.1

1 94.0 96.8 95.0

5

0 5.7 8.0 5.4
0.5 32.1 39.2 32.7
0.75 68.3 75.3 70.8

1 93.2 95.4 93.9

8

0 6.0 8.8 5.9
0.5 30.0 37.3 30.3
0.75 65.3 72.5 66.2

1 93.3 94.5 93.0

11

0 5.6 7.4 4.6
0.5 26.5 31.5 25.4
0.75 59.7 65.3 58.2

1 89.2 91.8 88.3
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Table 2. Type-I error and power of the three test statistics for different (m + 1) = 2, 3, 5, 8, 11 and
µ = 0, 0.5, 0.75, 1 when the sample size is 50.

(m + 1) µ MWT DELRT BELRT

2

0 5.4 6.1 5.1
0.5 59.6 60.3 57.4
0.75 92.8 92.8 92.5

1 99.6 99.6 99.3

3

0 4.9 5.9 4.7
0.5 60.0 65.1 61.9
0.75 94.0 95.6 95.0

1 99.4 99.5 99.5

5

0 5.5 7.1 5.8
0.5 56.2 59.6 56.3
0.75 93.7 95.1 94.1

1 100.0 100.0 100.0

8

0 5.8 6.8 5.5
0.5 49.7 53.9 49.2
0.75 90.9 92.3 90.3

1 99.7 99.8 99.8

11

0 5.1 6.1 5.2
0.5 48.9 51.7 49.8
0.75 90.2 90.3 90.2

1 99.6 99.8 99.7

It can be seen that the type-I error of DELRT is not as well controlled as the other
two. The type-I error and the power of MWT is similar to that of BELRT. However,
the computational cost of MWT is much smaller. For the DELRT and the modified Wald
test, realizing a repetition of M = 1000 when (m + 1) = 11 needs no more than 40 s.
However, for the bootstrap procedure when B = 999, it takes nearly 4 h using the “for”
loop in the R programming language to realize a single repetition of M = 1000 when
(m + 1) = 5 and 12 h when (m + 1) = 8. When it comes to (m + 1) = 11, it took nearly
a whole day. Certainly we can use some parallel computational methods to accelerate the
computation, but the running time is still a big challenge. The modified Wald test statistic
we proposed seems to be a promising compromise, especially when the number of the
population is large. It controls the type-I error better than DELRT while retaining a similar
computational cost.

4.2. Scenario 2

In the second simulation study, we show how our test statistic performs in the case of
three continuous populations. We choose the three populations as normal distributions
with the scale equal to 1. The location parameters of the three are set to be −µ, 0, and
µ. Then, we change µ from 0.2 to 0.6 to see how our test statistic performs when the
three distributions vary from “similar” to “totally different”. We consider the case with
equal sample sizes ni = 20, 30, and 50, i = 0, 1, 2. For each sample size, we consider
µ = 0, 0.3, 0.4, 0.5, and 0.6. We generate M = 10,000 repetitions for each case and show the
comparison of the three statistics in Table 3 and Figure 1. In this figure, “MWT”, “DELRT”,
and “BELRT” denote the modified Wald test, dual empirical likelihood ratio test, and
bootstrap empirical likelihood ratio test, respectively.
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Figure 1. Type-I error and power (%) of the three statistics in simulation two for different sample sizes.
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Table 3. Type-I error and the power of the three statistics in the case of three populations.

ni µ MWT DELRT BELRT

20

0 5.15 7.42 5.12
0.2 13.84 17.90 13.39
0.3 27.08 31.90 25.5
0.4 46.37 51.67 44.87
0.5 67.50 72.07 65.42
0.6 84.34 86.99 82.67

30

0 4.39 6.19 4.65
0.2 18.93 21.80 18.06
0.3 40.63 44.49 39.44
0.4 66.60 69.93 65.1
0.5 87.29 89.03 85.94
0.6 96.78 97.24 96.36

50

0 4.80 5.77 4.80
0.2 31.63 34.02 30.81
0.3 65.69 67.68 64.62
0.4 90.18 90.77 89.30
0.5 98.73 98.92 98.59
0.6 99.96 99.96 99.81

It can be seen that the modified Wald test can control the type-I error nicely in this
case, even when the sample size is small. The power of the Wald test is always smaller
than that of the DELRT due to the better control of the type-I error. However, the disparity
is gradually eliminated with the increase in the sample size and the differences between
the populations.

4.3. Scenario 3

In this simulation study, we verify the conclusion in Remark 3. The total sample size
n is fixed and m = 2 and 4 are under consideration. We choose different (n0, n1, · · · , nm)
for both cases and compare the power for different sample sizes. We fixed g0 to N(0, 1),
LN(0, 1), and GAM(1, 2). The rest g1 = · · · = gm are chosen to be the same distribution
corresponding to g0 with different µ = 0.3, 0.5, and 0.7 for normal and log-normal cases
and 1.2, 1.4, and 1.6 for the location parameter in gamma’s case. For each different sample
size and µ, we generalize M = 100,000 repetitions and calculate the power. The details are
given in Tables 4 and 5. The symbols I to VIII in Table 5 denote different sample sizes which
are shown in Table 6.

Table 4. The power of testing H0 at significance level 0.05 for different sample sizes and µ when
m = 2.

µ (n0, n1, n2)

(40, 40, 120) (40, 80, 80) (60, 40, 100) (60, 70, 70) (100, 50, 50) (140, 30, 30) (180, 10, 10)

0.3 19.23 20.83 26.76 27.86 34.00 29.65 16.58
Normal 0.5 51.96 55.04 68.84 70.21 80.04 72.47 37.92

0.7 85.15 87.23 95.22 95.80 98.42 96.27 66.09

0.3 24.38 24.46 30.81 30.85 36.20 31.08 17.17
Log-normal 0.5 61.29 61.30 73.95 73.86 81.91 74.01 38.99

0.7 90.65 90.74 96.73 96.81 98.67 96.66 67.21

1.2 18.53 18.67 21.52 21.55 46.09 36.02 16.05
Gamma 1.4 55.67 55.82 66.28 66.36 88.58 78.41 35.41

1.6 87.12 87.24 94.19 94.19 99.26 97.12 59.99
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Table 5. The power of testing H0 at significance level 0.05 for different sample sizes and µ when
m = 4.

µ (n0, n1, n2, n3, n4)

Case I Case II Case III Case IV Case V Case VI Case VII Case VIII

0.3 10.65 10.33 16.22 24.32 25.90 25.56 25.59 20.31
Normal 0.5 23.44 22.81 43.76 65.58 68.34 67.84 66.68 49.41

0.7 45.98 44.53 77.86 94.56 95.61 95.48 94.84 81.69

0.3 13.27 13.21 19.13 26.96 28.31 28.20 27.61 21.64
Log-normal 0.5 30.24 30.39 49.77 69.18 71.25 71.19 69.33 51.45

0.7 57.14 57.25 83.11 95.73 96.42 96.35 95.62 83.18

1.2 11.87 11.72 14.46 17.12 16.56 16.65 15.57 12.31
Gamma 1.4 29.88 29.87 44.65 57.26 57.01 56.72 52.65 32.89

1.6 56.63 56.52 78.95 91.10 91.22 91.28 88.34 64.47

Table 6. The different settings of (n0, n1, n2, n3, n4) in Table 5.

Case Label Sample Size

I (20, 30, 40, 50, 60)
II (20, 45, 45, 45, 45)
III (40, 40, 40, 40, 40)
IV (80, 30, 30, 30, 30)
V (100, 25, 25, 25, 25)
VI (100, 40, 30, 20, 10)
VII (120, 20, 20, 20, 20)
VIII (160, 10, 10, 10, 10)

It can be seen that the conclusion in Remark 3 holds basically. It is obviously that n0
has the biggest impact on the power while the rest of the sample sizes n1, · · · , nm do not
seem to have much influence. This can be seen quite clearly from the comparison of the
first four sample sizes in the three-sample case and case I and II, and case V and VI in the
five-sample case.

4.4. Scenario 4

In this simulation study, we consider the semicontinuous case. We adopt the same
parameter settings as in Wang et al. [15]. Assume that the samples are generated from

Fi(x) = pi I(x = 0) + (1− pi)I(x > 0)Gi(x),

for i = 0, 1, 2, where Gi’s are all log-normal or gamma distributions. The parameters of Fi
are present in Table 7. Each of LN1–LN15 and GAM1–GAM15 in the first column denotes
a mixture model whose continuous part follows a log-normal or gamma distribution. pi
denotes the probability of drawing a zero observation for Fi. LN(ai, bi) denotes a log-
normal distribution whose associated normal distribution has the mean ai and variance bi.
GAM(ai, bi) denotes a gamma distribution with shape parameter ai and scale parameter
bi. We consider both the equal sample sizes where n0 = n1 = n2 = 30, 50, 100 and the
unequal sample size where (n0, n1, n2) = (50, 100, 150). For every parameter setting, we
generate M = 10,000 repetitions. We calculate the type-I error of testing homogeneity at 5%
significance level for LN1–LN3 and GAM1–GAM3, and the power of that for the rest of the
parameter settings. The type-I errors of the three statistics are shown in Table 8 while the
powers are shown in Tables 9 and 10, respectively, for the log-normal and the gamma cases.
To have a better view of them, we show the powers of the three statistics in Figures 2 and 3.
It can be seen that the results are competitive.
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Figure 2. Power (%) for testing H0 at significance level 0.05 when data are generated from LN4–LN15

in Table 7.
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Figure 3. Power (%) for testing H0 at significance level 0.05 when data are generated from GAM4–
GAM15 in Table 7.
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Table 7. Parameter settings for simulation study 3.

Model (p0, p1, p2) (a0, a1, a2) (b0, b1, b2) Mean Variance

LN1 (0.2, 0.2, 0.2) (0.0, 0.0, 0.0) (1.0, 1.0,1.0) (1.32, 1.32, 1.32) (4.17, 4.17, 4.17)
LN2 (0.4, 0.4, 0.4) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (0.99, 0.99, 0.99) (3.45,3.45,3.45)
LN3 (0.7, 0.7, 0.7) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (0.49, 0.49, 0.49) (1.97, 1.97, 1.97)
LN4 (0.2, 0.3, 0.4) (0.0, 0.0, 0.0) (1.0, 1.0, 1.0) (1.32, 1.15, 0.99) (4.17, 3.84, 3.45)
LN5 (0.4, 0.4, 0.4) (0.0, 0.5, 1.0) (2.0, 2.0, 2.0) (1.63, 2.69, 4.43) (30.10, 81.82, 222.40)
LN6 (0.6, 0.6, 0.6) (0.0, 0.0, 0.0) (1.0, 2.0, 3.0) (0.66, 1.09, 1.79) (2.52, 20.66, 158.16)
LN7 (0.5, 0.6, 0.7) (0.0, 0.5, 1.0) (3.0, 2.0, 1.0) (2.24, 1.79, 1.34) (196.69, 56.15, 14.57)
LN8 (0.6, 0.6, 0.6) (0.0, 0.5, 1.0) (3.0, 2.0, 1.0) (1.79, 1.79, 1.79) (158.16, 56.15, 18.63)
LN9 (0.3, 0.4, 0.5) (0.0, 0.15, 0.34) (2.0, 2.0, 2.0) (1.90, 1.90, 1.90) (34.60, 40.97, 49.89)
LN10 (0.4, 0.5, 0.6) (0.0, 0.0, 0.0) (2.0, 2.36, 2.81) (1.63, 1.63, 1.63) (30.10, 53.95, 107.90)
LN11 (0.4, 0.5, 0.6) (0.0, 0.5, 1.0) (2.69, 2.05, 1.5) (2.30, 2.30, 2.30) (124.67, 77.32, 54.07)
LN12 (0.5, 0.5, 0.5) (0.0, 0.5, 1.0) (2.46, 1.98, 1.5) (1.71, 2.21, 2.88) (65.93, 65.93, 65.93)
LN13 (0.3, 0.4, 0.5) (0.0, 0.07, 0.15) (2.0, 2.0, 2.0) (1.90, 1.75, 1.58) (34.60, 34.60, 34.60)
LN14 (0.3, 0.4, 0.5) (0.0, 0.0, 0.0) (2.0, 2.07, 2.15) (1.90, 1.69, 1.46) (34.60, 34.60, 34.60)
LN15 (0.4, 0.5, 0.6) (0.0, 0.5, 1.0) (2.28, 1.88, 1.5) (1.88, 2.11, 2.30) (54.07, 54.07, 54.07)
GAM1 (0.2, 0.2, 0.2) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (0.8, 0.8, 0.8) (0.96, 0.96, 0.96)
GAM2 (0.4, 0.4, 0.4) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (0.6, 0.6, 0.6) (0.84, 0.84, 0.84)
GAM3 (0.7, 0.7, 0.7) (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) (0.3, 0.3, 0.3) (0.51, 0.51, 0.51)
GAM4 (0.2, 0.3, 0.4) (1.0, 1.0, 1.0) (2.0, 2.0, 2.0) (1.6, 1.4, 1.2) (3.84, 3.64, 3.36)
GAM5 (0.6, 0.6, 0.6) (1.0, 1.5, 2.0) (2.0, 2.0, 2.0) (0.8, 1.2, 1.6) (2.56, 4.56, 7.04)
GAM6 (0.6, 0.6, 0.6) (1.0, 1.0, 1.0) (1.0, 2.0, 3.0) (0.4, 0.8, 1.2) (0.64, 2.56, 5.76)
GAM7 (0.4, 0.5, 0.6) (1.0, 1.5, 3.0) (3.0, 2.0, 1.0) (1.8, 1.5, 1.2) (7.56, 5.25, 3.36)
GAM8 (0.5, 0.5, 0.5) (1.0, 1.5, 3.0) (3.0, 2.0, 1.0) (1.5, 1.5, 1.5) (6.75, 5.25, 3.75)
GAM9 (0.4, 0.5, 0.6) (1.5, 1.8, 2.25) (2.0, 2.0, 2.0) (1.8, 1.8, 1.8) (5.76, 6.84, 8.46)
GAM10 (0.4, 0.5, 0.6) (1.0, 1.0, 1.0) (2.0, 2.4, 3.0) (1.2, 1.2, 1.2) (3.36, 4.32, 5.76)
GAM11 (0.4, 0.5, 0.6) (2.0, 3.0, 4.0) (2.0, 1.6, 1.5) (2.4, 2.4, 2.4) (8.64, 9.60, 12.24)
GAM12 (0.4, 0.4, 0.4) (1.0, 1.5, 3.0) (2.0, 1.53, 0.92) (1.20, 1.37, 1.66) (3.36, 3.36, 3.36)
GAM13 (0.3, 0.4, 0.5) (1.5, 1.56, 1.66) (2.0, 2.0, 2.0) (2.1, 1.87, 1.66) (6.09, 6.09, 6.09)
GAM14 (0.3, 0.4, 0.5) (1.0, 1.0, 1.0) (2.0, 2.08, 2.20) (1.4, 1.25, 1.1) (3.64, 3.64, 3.64)
GAM15 (0.4, 0.5, 0.6) (2.0, 3.0, 4.0) (2.0, 1.52, 1.26) (2.4, 2.28, 2.02) (8.64, 8.64, 8.64)

Table 8. Type I error rates (%) for testing H0 at significance level 0.05 when data are generated from
LN1–LN3 and GAM1–GAM3 in Table 7.

30 50 Unequal 100

MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT

LN1 6.27 7.28 5.16 6.12 6.54 5.53 5.67 5.80 5.20 5.81 6.39 5.68
LN2 6.29 7.41 4.78 5.59 6.42 4.83 4.94 5.82 4.92 5.88 6.24 5.31
LN3 7.32 9.75 4.16 6.92 8.35 5.34 5.98 7.11 5.38 5.05 5.78 4.40

GAM1 5.95 7.44 5.08 4.98 5.97 4.72 4.96 5.03 3.91 5.58 5.77 4.83
GAM2 6.67 7.54 5.20 6.31 7.21 5.32 5.46 6.04 4.91 5.03 5.82 4.72
GAM3 8.72 11.04 5.97 7.30 9.23 5.61 5.56 6.86 4.99 5.20 6.57 4.85

Table 9. Power (%) for testing H0 at significance level 0.05 when data are generated from LN4–LN15

in Table 7.

30 50 Unequal 100

MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT

LN4 22.91 23.66 18.68 35.22 35.37 31.73 51.89 53.87 51.36 63.90 63.68 61.71
LN5 32.29 32.26 25.89 50.33 50.21 45.66 75.33 75.26 73.04 84.40 84.13 82.28
LN6 18.47 25.03 16.72 28.54 39.30 31.63 27.23 54.44 48.74 57.68 70.41 66.76
LN7 45.04 56.76 45.37 72.55 81.95 76.22 98.12 98.27 97.78 98.51 99.44 99.19
LN8 34.93 44.15 39.24 53.91 66.28 58.47 93.30 93.76 92.88 89.52 95.09 92.78
LN9 23.22 23.78 18.77 36.54 36.77 32.73 57.24 58.15 54.75 66.41 66.52 64.08
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Table 9. Cont.

30 50 Unequal 100

MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT

LN10 23.77 23.84 17.19 32.05 32.11 27.12 52.13 54.09 50.54 64.43 63.87 60.69
LN11 44.82 50.17 41.15 67.94 72.27 67.43 94.42 93.83 92.89 96.92 97.33 96.78
LN12 31.07 33.24 25.34 50.02 53.10 47.09 81.51 79.53 77.33 82.64 84.13 82.21
LN13 20.49 20.75 16.18 33.44 33.25 28.94 49.47 50.48 47.62 58.35 58.52 55.89
LN14 19.90 20.23 15.67 32.29 32.01 27.88 47.76 49.19 45.65 57.45 57.09 54.16
LN15 45.51 48.36 39.74 68.15 70.96 66.04 93.49 93.00 91.77 97.08 97.25 96.89

Table 10. Power (%) for testing H0 at significance level 0.05 when data are generated from
GAM4–GAM15 in Table 7.

30 50 Unequal 100

MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT MWT DELRT BELRT

GAM4 23.17 23.32 18.02 35.76 35.79 31.80 51.19 52.87 49.98 64.18 64.34 61.47
GAM5 42.16 42.98 31.96 63.01 62.84 55.18 86.68 84.47 81.51 93.11 93.02 91.24
GAM6 41.39 47.65 35.12 64.66 70.92 63.75 78.57 89.12 86.83 93.95 96.40 95.42
GAM7 37.03 50.11 39.61 65.48 75.81 70.48 96.23 96.32 95.46 96.14 98.40 97.77
GAM8 25.23 35.12 26.26 41.51 55.00 48.53 87.33 86.97 84.52 80.90 88.72 86.75
GAM9 37.85 40.10 31.44 56.27 56.90 51.48 84.96 84.73 82.20 90.60 91.21 89.09
GAM10 28.49 28.87 21.69 43.46 43.07 37.32 66.08 68.49 64.31 75.19 75.05 72.36
GAM11 51.40 54.77 44.25 75.78 77.28 72.37 95.87 95.92 94.85 98.69 98.87 98.32
GAM12 40.43 50.95 41.38 65.29 75.65 70.52 97.69 97.68 96.80 95.33 97.57 97.10
GAM13 21.23 21.61 16.36 33.55 33.07 29.02 51.13 51.24 48.06 60.32 59.87 57.14
GAM14 22.63 23.39 17.25 30.91 31.20 26.68 48.67 50.40 46.13 60.22 60.24 57.32
GAM15 35.56 40.67 31.36 56.55 60.12 54.06 85.90 84.53 82.44 91.19 92.12 90.77

5. Real Data Sample

In this section, we employ the real data example suggested by Wang et al. [15] which
is available from the website of the University of Waterloo weather station data archive
(http://weather.uwaterloo.ca/data.html, accessed on 1 June 2023). We focus on the data
that records the daily precipitation measurements (in millimeters) in the North Campus of
the University of Waterloo, Canada and investigate whether the precipitation distribution
has changed over the past few years.

Benefiting from what Wang et al. [15] has previously reported, to reduce the time
dependence among the observations, we take every fourth measurement into our analysis,
i.e., only use the observations on days 1, 5, 9, . . . , 361, which gives a sample size of 91 for
each sample. Then, we consider two cases, one is from 2003 to 2006 and the other from
2008 to 2012, we hope to obtain some information about the changing of the precipitation
distribution in the last few years. Some summaries of the samples are given below

1. From 2003 to 2006, the estimates of the probability of dry days are (0.30, 0.40, 0.42,
0.42) while those of 2008 to 2012 are (0.45, 0.49, 0.43, 0.38, 0.40).

2. The sample means of 2003 to 2006 are (2.05, 3.54, 3.40, 3.50) while those of 2008 to 2012
are (3.42, 1.37, 2.29, 4.08, 3.09).

3. The sample variances are (17.52, 41.07, 76.10, 59.50) and (95.19, 13.53, 18.35, 73.83,
59.76), respectively.

For each null and alternative hypothesis, we fit the data to both the log-normal and
the gamma mixture under the assumption of the density ratio model using the maximum
likelihood estimate. The details are give in Table 11 below. There is a small difference
between the parameters of ours and Wang et al. [15], this may be caused by the mistake
when summarizing the data of the year 2003. LN16 and GAM16 are the parameters under
the null hypothesis of the case of 2003 to 2006, while LN18 and GAM18 are those of 2008 to
2012. The rest of the parameters are for the alternative hypotheses.

http://weather.uwaterloo.ca/data.html
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Table 11. The parameter settings for the null and alternative hypothesis for testing homogeneity.

Model p a b Mean Variance

LN16 (0.38, 0.38, 0.38, 0.38) (0.49, 0.49, 0.49, 0.49) (2.58, 2.58, 2.58, 2.58) (3.67, 3.67, 3.67, 3.67) (274.43, 274.43, 274.43, 274.43)
LN17 (0.30, 0.40, 0.42, 0.42) (0.10, 1.05 0.36, 0.52) (2.13, 1.70, 3.08, 3.00) (2.25, 4.04, 3.91, 4.39) (55.77, 131.52, 559.29, 645.92)
LN18 (0.43, 0.43, 0.43, 0.43, 0.43) (0.43, 0.43, 0.43, 0.43, 0.43) (2.66, 2.66, 2.66, 2.66, 2.66) (3.29, 3.29, 3.29, 3.29, 3.29) (262.59, 262.59, 262.59, 262.59, 262.59)
LN19 (0.45, 0.49, 0.43, 0.38, 0.40) (0.66, 0.04, 0.32, 0.57, 0.48) (2.37, 2.03, 2.78, 3.26, 2.54) (3.48, 1.46, 3.15, 5.54, 3.47) (222.47, 29.97, 271.27, 1266.19, 238.72)
GAM16 (0.38, 0.38, 0.38, 0.38) (0.55, 0.55, 0.55, 0.55) (9.11, 9.11, 9.11, 9.11) (3.12, 3.12, 3.12, 3.12) (34.44, 34.44, 34.44, 34.44)
GAM17 (0.30, 0.40, 0.42, 0.42) (0.63, 0.82, 0.46, 0.50) (4.61, 7.12, 12.70, 12.05) (2.05, 3.54, 3.40, 3.50) (11.21, 33.40, 51.42, 50.92)
GAM18 (0.43, 0.43, 0.43, 0.43, 0.43) (0.53, 0.53, 0.53, 0.53, 0.53) (9.33, 9.33, 9.33, 9.33, 9.33) (2.83, 2.83, 2.83, 2.83, 2.83) (32.44, 32.44, 32.44, 32.44, 32.44)
GAM19 (0.45, 0.49, 0.43, 0.38, 0.40) (0.55, 0.64, 0.58, 0.48, 0.54) (10.97, 4.24, 6.90, 13.74, 9.40) (3.32, 1.37, 2.29, 4.08, 3.09) (45.46, 7.65, 19.69, 66.45, 35.28)

We apply the modified Wald test on the null hypotheses LN16 and GAM16, respectively.
The test statistic is 21.65 for the log-normal mixture and 24.02 for the gamma mixture. Both
statistics are larger than the 0.05% quantile of χ2

8, which is 15.51. The null hypothesis should
be rejected at the significance level 0.05. We then move on to the case of 5 years. This time
the result becomes quite different. The test statistic for LN18 is 11.70, while that for GAM18
is 9.95, this is smaller than the 0.05% quantile of χ2

10, which is 18.3074, which means that
the null hypothesis is true at the significance level 0.05. The two simulations above indicate
that the precipitation distribution of the area was changing from 2003 to 2006, but may
have remained unchanged over 2008 to 2012.

6. Conclusions

In this paper, we propose a modified Wald test for homogeneity of the density ratio
model. Since the density functions are unknown, recent works mainly focus on the empiri-
cal likelihood ratio test, which is a nonparametric method. We transform the problem of
testing homogeneity to testing the equalities of the mean parameters of the exponential
family of distributions. Then, we propose a modified Wald test, which is a parametric
method. The simulations show that the type-I error of the modified Wald test is smaller than
that of the empirical likelihood ratio test. Since the modified Wald test statistic converges
in distribution to the χ2 distribution, it can further be applied to the semicontinuous data.
It should be noticed that for the DRM, we test hypotheses β1 = β2 = · · · = βm = 0. This
can be generalized to test hypotheses β1 = β10, β2 = β20, · · · , βm = βm0.

Author Contributions: Conceptualization, X.X.; methodology, X.X.; software, Y.W.; validation, Y.W.
and X.X.; formal analysis, Y.W. and X.X.; writing—original draft preparation, Y.W.; writing—review
and editing, Y.W.; visualization, Y.W.; supervision, X.X.; project administration, X.X.; funding acquisi-
tion, X.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
grant no. 11471030 and 11471035.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Proof of Lemma 1. We only need to prove that for two parameters β(1) and β(2), the equa-
tion m(β(1)) = m(β(2)) holds only if β(1) = β(2). Assume that β(1) 6= β(2). Let

h(t) =
(

β(2) − β(1)
)>

m
(

β(1) + t
(

β(2) − β(1)
))

.
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The derivative of h(t) is

h′(t) =
(

β(2) − β(1)
)>

I
(

β(1) + t
(

β(2) − β(1)
))(

β(2) − β(1)
)

.

Since I(0) > 0, h′(t) > 0. Then, h(t) is a strictly increasing function. However, it is easy to
compute that when m(β(1)) = m(β(2)),

h(0) =
(

β(2) − β(1)
)>

m
(

β(1)
)
=
(

β(2) − β(1)
)>

m
(

β(2)
)
= h(1).

This is a contradiction. Hence, m(β(1)) 6= m(β(2)). Then, the lemma is proved by letting
β(1) = β and β(2) = 0.

Proof of Theorem 1.

1. As n→ ∞, by Assumption 3, n0, n1 → ∞. Hence, under H0,√n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

) d−→ N
(

0,
(

I(0) 0
0 I(0)

))

By Assumption 1, I(0) > 0. Thus,

√
n
(
− 1√

n0
I−

1
2 (0),

1√
n1

I−
1
2 (0)

)√n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

)
=
√

nI−
1
2 (0)

(
q̄(1) − q̄(0)

)
d−→ N

(
0,
(

1
r0

+
1
r1

)
Id

)
.

Then,

r0r1n
(

q̄(1) − q̄(0)
)>

I−1(0)
(

q̄(1) − q̄(0)
)

d−→ χ2(d).

Again by Assumption 3 and S2 P−→ I(0),

T∗(X0, X1)
d−→ χ2(d).

2. The Taylor expansion of m(βn) is

m(βn) = m(
1√
n

h) = m(0) + I(0)
1√
n

h + O(
1
n
).

Then, √n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

) d−→ N
((

0√
r1 I(0)h

)
,
(

I(0) 0
0 I(0)

))
By Assumption 1,

√
n
(
− 1√

n0
I−

1
2 (0),

1√
n1

I−
1
2 (0)

)√n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

)
=
√

nI−
1
2 (0)

(
q̄(1) − q̄(0)

)
d−→ N

(
I

1
2 (0)h,

(
1
r0

+
1
r1

)
Id

)
.

This means that

r0r1n
(

q̄(1) − q̄(0)
)>

I−1(0)
(

q̄(1) − q̄(0)
)

d−→ χ2(d, h> I(0)h).



Mathematics 2023, 11, 3789 23 of 28

By Assumption 2, S2
1

P−→ I(0). Then,

S2 =
n0 − 1
n− 2

S2
0 +

n1 − 1
n− 2

S2
1

→ r0 I(0) + r1 I(0) = I(0).

As in the proof of (1), we have

T∗(X0, X1)
d−→ χ2(d, δ).

Proof of Corollary 1.

1. First, we show that the Bernoulli distributions can be expressed as a DRM. Let

g0(x) = px
0(1− p0)

1−x, g1(x) = px
1(1− p1)

1−x

Then,
g1(x)
g0(x)

=

(
p1

p0
· 1− p0

1− p1

)x(1− p1

1− p0

)
= exp

[
log
(

1− p1

1− p0

)
+ x log

(
p1

p0
· 1− p0

1− p1

)]
.

Thus,
g1(x) = eα+βq(x)g0(x),

where

α = log
(

1− p1

1− p0

)
, β = log

(
p1

p0

1− p0

1− p1

)
,

and q(x) = x. Thus, by Theorem 1, the binomial test converges in distribution to
χ2(1).
For the continuous test, by Assumption 3 and 0 < p0, p1 < 1,

lim
n→∞

n01 → ∞, lim
n→∞

n11 → ∞

with the probability tending to 1. Then, as in the proof of Theorem 1,

n01n11

n01 + n11
n
(

q̄(1) − q̄(0)
)>

I−1(0)
(

q̄(1) − q̄(0)
)

d−→ χ2(d).

Then, by the independence of the two test statistics, we have

Tsemi(X0, X1)
d−→ χ2(d + 1).

2. Since p1n = p0 +
k√
n , then by Theorem 1, for the binomial part,

B2 → χ2(1, δb),

where
δb = r0r1kI(0)k = r0r1k2 1

p0(1− p0)
.

Notice that for a fixed p1,

n01

n01 + n11
=

n01
n

n01+n11
n

=

n01
n0

n0
n

n01
n0

n0
n + n11

n1

n1
n
→ (1− p0)r0

(1− p0)r0 + (1− p1)r1
.
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Since p1 = p0 +
k√
n , p1 → p0. Then,

n01

n01 + n11

P−→ (1− p0)r0

(1− p0)r0 + (1− p0)r1
= r0.

Similarly,
n11

n01 + n11
→ r1.

Thus, in the same way as in the proof of Theorem 1 we can obtain

n01n11

n01 + n11
n
(

q̄(1) − q̄(0)
)>

I−1(0)
(

q̄(1) − q̄(0)
)

d−→ χ2(d, δc),

where
δc = r0r1h> I(0)h.

Then by independence,

Tsemi(X0, X1)
d−→ χ2(d + 1, δ).

Proof of Theorem 2.

1. Let

an =

(√
n0 + n1

n0
,
√

n0 + n2

n0
, · · · ,

√
n0 + nm

n0

)>
,

Λn = diag
(√

n0 + n1

n1
,
√

n0 + n2

n2
, · · · ,

√
n0 + nm

nm

)
.

(A1)

Furthermore we define

Zn =



√
n0 + n1

(
q̄(1) − q̄(0)

)
√

n0 + n2

(
q̄(2) − q̄(0)

)
...

√
n0 + nm

(
q̄(m) − q̄(0)

)

.

When the null hypothesis is true, by the independence of q̄(i) for i = 0, 1, 2, · · · , m, we
have 

√
n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

)
...

√
nm

(
q̄(m) −m(0)

)


d−→ N(m+1)p(0, W), (A2)

where W = Im+1 ⊗ I(0), Im+1 is the (m + 1)-order identity matrix and ⊗ is the
Kronecker product.
We further define

Ln = (−an, Λn)⊗ Id.

For an example of the computation, we left multiply (A2) by the first p rows in Ln.
This results in
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[(
−
√

n0 + n1

n0
,
√

n0 + n1

n1

)
⊗ Id

]√n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

)
=

(
−
√

n0 + n1

n0

)√
n0

(
q̄(0) −m(0)

)
+

(
−
√

n0 + n1

n1

)√
n1

(
q̄(1) −m(0)

)
=
√

n0 + n1

(
q̄(1) − q̄(0)

)
.

Then, left multiply (A2) by Ln and we obtain

Zn = [(−an, Λn)⊗ Id]



√
n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

)
...

√
nm

(
q̄(m) −m(0)

)

 =



√
n0 + n1

(
q̄(1) − q̄(0)

)
√

n0 + n2

(
q̄(2) − q̄(0)

)
...

√
n0 + nm

(
q̄(m) − q̄(0)

)

.

By Assumption 4, when n→ +∞, an and Λn converge to a and Λ, respectively, that is,

an → a =

(√
1 +

r1

r0
,
√

1 +
r2

r0
, · · · ,

√
1 +

rm

r0

)>
,

Λn → Λ = diag
(√

1 +
r0

r1
,
√

1 +
r0

r2
, · · · ,

√
1 +

r0

rm

)
.

Let
L = (−a, Λ)⊗ Id, (A3)

we have
Zn

d−→ Nmp(0, LWL>) = Nmp

(
0, (Λ2 + aa>)⊗ I(0)

)
.

Then,
Z>n
[
(Λ2 + aaT)−1 ⊗ I−1(0)

]
Zn

d−→ χ2(md).

Since an and Λn converge to a and Λ, respectively, when n→ ∞, the test statistic

T = Z>n
[
(Λ2

n + anaT
n )
−1 ⊗ I−1(0)

]
Zn (A4)

also converges in distribution to χ2(md) when n→ ∞.
We then show that the test statistic (A4) is equal to (24). Since(

Λ2 + aa>
)−1

= Λ−2 − 1
1 + a>Λ−2a

Λ−2aa>Λ−2.

Then, the test statistic (A4) is rewritten as

T = Z>n

[(
Λ2

n + ana>n
)−1
⊗ I−1(0)

]
Zn

= Z>n

[
Λ−2

n ⊗ I−1(0)− Λ−2
n ana>n Λ−2

n

1 + a>n Λ−2
n an

⊗ I−1(0)

]
Zn

= Z>n
[
Λ−2

n ⊗ I−1(0)
]

Zn −
1

1 + a>n Λ−2
n an

Z>n
[
Λ−2

n ana>n Λ−2
n ⊗ I−1(0)

]
Zn.

Putting Zn, Λn, and an into the formula we obtain
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T =
m

∑
i=1

{(√
n0 + ni

ni

)−2[√
n0 + ni

(
q̄(i) − q̄(0)

)]>
I−1(0)

[√
n0 + ni

(
q̄(i) − q̄(0)

)]}

− 1

1 + ∑m
i=1

(√
n0+ni

n0

)2(√ n0+ni
ni

)−2 Z>n
[
Λ−2

n an ⊗V−1/2(0)
][

a>n Λ−2
n ⊗V−1/2(0)

]
Zn

=
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)>
I−1(0)

(
q̄(i) − q̄(0)

)
− 1

1 + ∑m
i=1

ni
n0

[
m

∑
i=1

(√
n0 + ni

ni

)−2√n0 + ni
n0

√
n0 + ni

(
q̄(i) − q̄(0)

)>
V−

1
2 (0)

]

×
[

m

∑
i=1

(√
n0 + ni

ni

)−2√n0 + ni
n0

√
n0 + ni

(
q̄(i) − q̄(0)

)>
V−

1
2 (0)

]>
=

m

∑
i=1

ni

(
q̄(i) − q̄(0)

)>
I−1(0)

(
q̄(i) − q̄(0)

)
− 1

1 + ∑m
i=1

ni
n0

[
m

∑
i=1

ni√
n0

(
q̄(i) − q̄(0)

)>]
I−1(0)

[
m

∑
i=1

ni√
n0

(
q̄(i) − q̄(0)

)]

=
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)>
I−1(0)

(
q̄(i) − q̄(0)

)

− 1
∑m

i=0 ni

[
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)]>
I−1(0)

[
m

∑
i=1

ni

(
q̄(i) − q̄(0)

)]
.

2. Under the alternative, by Theorem 1,

√
n0

(
q̄(0) −m(0)

)
√

n1

(
q̄(1) −m(0)

)
...

√
nm

(
q̄(m) −m(0)

)


d−→ N(m+1)p




0√
r1 I(0)h1

...√
rm I(0)hm

, W

. (A5)

Then, left multiply (A5) by Ln we obtain

Zn =



√
n0 + n1

(
q̄(1) − q̄(0)

)
√

n0 + n2

(
q̄(2) − q̄(0)

)
...

√
n0 + nm

(
q̄(m) − q̄(0)

)


d−→ Nmp(b, LWL>), (A6)

where

b = L


0√

r1 I(0)h1
...√

rm I(0)hm

 =


√

r0 + r1 I(0)h1√
r0 + r2 I(0)h2

...√
r0 + rm I(0)hm

.

Thus,
δ = b>

[
(Λ2 + aaT)−1 ⊗ I−1(0)

]
b.
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We can obtain the expression of δ in the same way as in the proof of (1), that is

δ =
m

∑
i=1

rih>i I(0)hi −
(

m

∑
i=1

rihi

)>
I(0)

(
m

∑
i=1

rihi

)
.

Proof of Corollary 2.

1. From the construction of (28) and Theorem 2, it is easy to prove that Tb
d−→ χ2(m).

Then, by the independence of the two test statistics,

Tsemi(X)
d−→ χ2(m(d + 1)).

2. Since pin = p0 +
ki
n , then by Theorem 2,

T2
B

d−→ χ2(m, δb),

where

δb =
m

∑
i=1

rik>i Ib(0)ki −
(

m

∑
i=1

riki

)>
Ib(0)

(
m

∑
i=1

riki

)

=
m

∑
i=1

rik2
i Ib(0)−

(
m

∑
i=1

riki

)2

Ib(0).

Since
Ib(δ) =

1
p0(1− p0)

,

then

δb =
1

p0(1− p0)

 m

∑
i=1

rik2
i −

(
m

∑
i=1

riki

)2
.

As with the test statistic for the continuous part, we can prove that

ni1

∑m
j=0 nj1

=
ni1
n

∑m
j=0 nj1

n

=

ni1
ni

ni
n

∑m
j=0

( nj1
nj

nj
n

) → (1− pi)ri

∑m
j=0
(
1− pj

)
rj

.

Since pin = p0 +
ki
n , pin → p0. Then,

ni1

∑m
i=0 ni1

P−→ ri

∑m
j=0 rj

= ri.

Thus, in the same way as in proof of Theorem 2 we obtain

Tc(X) =
m

∑
i=1

ni1

(
q̄(i) − q̄(0)

)>
S−2

c

(
q̄(i) − q̄(0)

)

− 1
∑m

i=0 ni1

[
m

∑
i=1

ni1

(
q̄(i) − q̄(0)

)]>
S−2

c

[
m

∑
i=1

ni1

(
q̄(i) − q̄(0)

)]
d−→ χ2(md, δc),

where

δc =
m

∑
i=1

rih>i I(0)hi −
(

m

∑
i=1

rihi

)>
I(0)

(
m

∑
i=1

rihi

)
.
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Thus, by independence,

Tsemi(X)
d−→ χ2(m(d + 1), δ).
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