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Abstract: In the paper, quasi-exponentiated normal distributions are introduced for any real power
(exponent) no less than two. With natural exponents, the quasi-exponentiated normal distributions
coincide with the distributions of the corresponding powers of normal random variables with zero
mean. Their representability as scale mixtures of normal and exponential distributions is proved.
The mixing distributions are written out in the closed form. Two approaches to the construction
of asymmetric quasi-exponentiated normal distributions are described. A limit theorem is proved
for sums of a random number of independent random variables in which the asymmetric quasi-
exponentiated normal distribution is the limit law.
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1. Introduction—History of the Problem and Motivation

This paper was motivated by a suggestion by Yu. V. Prokhorov that he made in the mid-
1980s. He suggested that the distributions of all odd powers of a normal random variable
with zero mean belong to the class of normal scale mixtures. The validity of this suggestion
was announced in the short paper [1] by E. Bagirov, PhD student of Yu. V. Prokhorov.
This suggestion was proved in Bagirov’s PhD thesis. However, the corresponding mixing
distributions were not specified. Some recent results concerning the properties of normal
mixtures and related topics (see the references in the lemmas below) have made it possible
to give a more or less complete description of the mixture properties of the distributions of
real powers of normal random variables with zero mean (to be formally correct, here, we
have to speak of ‘quasi-powers’, since the normal random variables take values of both
signs). It is this description that the present paper deals with.

Here, we give an extended solution of Prokhorov’s suggestion and introduce quasi-
exponentiated normal distributions for any real power (exponent) no less than two. With
odd natural exponents, the quasi-exponentiated normal distributions coincide with the
distributions of the corresponding powers of the normal random variables with zero
mean. It is shown that all these distributions belong to the class of normal scale mixtures.
The distributions of mixing (scaling) random variables are written out in a closed form,
so that it is possible to describe their properties. For example, it is proved that all the
mixing distributions are mixed exponential, so actually, all quasi-exponentiated normal
distributions are scale mixtures of the Laplace (double-exponential) distributions and are
infinitely divisible.
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Two approaches are described to the construction of asymmetric generalizations of
quasi-exponentiated normal distributions. The first of them, called R-asymmetrization (ran-
domized asymmetrization), is based on the representation of the corresponding asymmetric
quasi-exponentiated normal distribution as the discrete Bernoullian mixture of the distribu-
tion of the absolute value of the quasi-power of the normal random variable and that of the
reflection of such a random variable with different parameters to the negative axis. These
R-asymmetric models are rather artificial, and can hardly be seriously substantiated when
they are applied to describe real statistical regularities.

The second approach, called M-asymmetrization, is based on the representation of
the symmetric quasi-exponentiated normal distribution as the normal scale mixture, and
consists of extending the mixing to the normal variance-mean mixture with the same
mixing distribution as is used in the symmetric case. The notion of a normal variance-
mean mixture was proposed by O. E. Barnorff-Nielsen and his colleagues in [2]. These
mixtures proved to provide excellent fit with many statistical regularities observed in
various applied problems. In paper [3], this circumstance received a reasonable theoretic
explanation. It was proved in that paper that normal variance-mean mixtures appear as
limit laws in rather general limit theorems for random sums of independent identically
distributed random variables with finite variances. Hence, normal variance-mean mixtures
appear to be good asymptotic approximations. This circumstance makes M-asymmetric
quasi-exponentiated normal distributions promising candidates for their application as
models of some statistical regularities. To illustrate this, we present the corresponding limit
theorem, in which the M-asymmetric quasi-exponentiated normal distribution appears as
the limit law.

Although the motive to write this paper was rather theoretical—to extend and gen-
eralize the Prokhorov–Bagirov suggestion concerning the mixture representability of the
exponentiated normal random variable—we dare say that the presented results also have
practical importance.

First, as it will be demonstrated in Section 3, the distribution of the exponentiated
absolute value of the normal random variable is a special case of the one-sided general-
ized gamma distribution. The literature on the applications of the generalized gamma
models to real data in various fields is almost immense. Moreover, recently, some papers
have appeared dealing with two-sided generalizations of the gamma distribution (see,
e.g., [4–9]), in which the application of the so-called bilateral gamma distributions to the
problems of financial mathematics, including modelling returns and risks distributions
and option pricing, is discussed. The bilateral gamma distributions are defined there as
the convolutions of (symmetric) two-sided gamma distributions. In paper [10], another
approach to the construction of the bilateral generalization of the gamma distributions was
proposed, according to which the (in general, asymmetric) bimodal generalized gamma
distribution defined on the whole real axis is defined as the Bernoullian mixture of two
gamma distributions where the weighting Bernoulli random variable takes values +1 and
−1. In that paper, some examples were given of fitting this bimodal generalized gamma
distribution to real datasets. So, in the present paper in accordance with the first, random-
ized, approach mentioned above, we actually introduce a similar model with more flexible
tail behaviour by the Bernoullian mixing of two generalized gamma distributions.

Second, along with generalizing the generalized gamma model by Bernoullian mix-
ing, as was already said, we propose another approach to the construction of two-sided
generalizations based on the normal variance-mean mixture representability of the quasi-
exponentiated normal distribution. In applied probability, there is a convention that a
model probability distribution can be considered as well justified or adequate if it is an
asymptotic approximation, that is, if it is possible to suggest a more or less simple limit setting
(say, within schemes of maximum or summation of random variables) and a corresponding
limit theorem in which the distribution under consideration is a limit law. Apparently, this
convention goes far back to the book [11]. For further discussion of this convention, see [12].
The existence of such limit setting can provide a better understanding of real mechanisms
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that generate observed statistical regularities. The normal variance-mean mixture repre-
sentability of the asymmetric quasi-exponentiated normal distribution makes it possible to
formulate and prove a rather simple limit theorem (see Section 6 below) presenting ‘if and
only if’ conditions for the asymmetric quasi-exponentiated normal distribution to be a limit
law for random sums of independent identically distributed random variables. Actually,
this theorem describes the limit behaviour of a randomly stopped random walk. Hence,
this theorem presents some arguments in favour of the possible utility of the asymmetric
quasi-exponentiated normal distribution for modelling data that may be assumed to have
an additive structure.

The paper is organized as follows. Section 2 contains auxiliary definitions and notation.
Symmetric quasi-exponentiated normal distributions are introduced in Section 3. Some
scale mixture representations for this distribution are also proved here. In Section 4, we
introduce the R-asymmetric two-sided quasi-exponentiated normal distribution as the
Bernoullian scale mixture of two special generalized gamma distributions and present
formulas for the moments of this distribution. In Section 5, the M-asymmetric two-sided
quasi-exponentiated normal distribution is introduced as a special normal variance-mean
mixture, and the formulas for its moments are presented. In Section 6, we formulate and
prove a version of the central limit theorem for random sums in which the M-asymmetric
two-sided quasi-exponentiated normal distribution is a limit law. Here, we also give an
example of the ‘doubly stochastic’ geometric distribution of the number of summands
that provide the validity of the random-sum version of the central limit theorem men-
tioned above.

2. Auxiliary Definitions and Notation

It is assumed that all the random variables are defined on the same probability space
(Ω,A, P). In the present paper, we keep to the way of reasoning that can be regarded
as arithmetical in the space of random variables. Under this approach, instead of the
operation of scale mixing and the corresponding operation of integration of distributions,
we consider the operation of multiplication of random variables provided the multipliers
are independent. However, speaking of random variables, we actually deal with their
distributions. This approach noticeably simplifies the reasoning.

The multiplication of independent random elements is denoted by the symbol ◦. The

symbols d
= and =⇒ denote the coincidence of distributions and convergence in distribution,

respectively. The end of the proof is marked be the symbol �. The indicator function of a
set A will be denoted IA(z): if z ∈ A, then IA(z) = 1, otherwise IA(z) = 0.

A random variable with the standard exponential distribution will be denoted as W1:

P(W1 < x) =
[
1− e−x]I[0, ∞)(x).

For x > 0 and r > 0, the (lower) incomplete gamma-function will be denoted as
Γ(r; x):

Γ(r; x) =
∫ x

0
zr−1e−zdz.

Let Γ(r) def
= Γ(r; ∞) be the “usual” Euler’s gamma-function.

A random variable having the gamma distribution with shape parameter r > 0 and
scale parameter λ > 0 will be denoted as Gr,λ,

P(Gr,λ < x) =
∫ x

0
g(z; r, λ)dz, with g(x; r, λ) =

λr

Γ(r)
xr−1e−λxI[0, ∞)(x),

Obviously, in this notation, G1,1 is a random variable with the standard exponential distri-
bution: G1,1 = W1.
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By generalized gamma distribution, we will mean the absolutely continuous distribu-
tion defined by the density

ggr,α,µ(x) =
|α|µr

Γ(r)
xαr−1e−µxαI[0, ∞)(x) (1)

with α ∈ R, µ > 0, r > 0. Generalized gamma distributions were introduced as a separate
class in [13]. A random variable with the density ggr,α,µ(x) will be denoted Gr,α,µ. It is easy
to see that

Gr,α,µ
d
= G1/α

r,µ
d
= µ−1/αG1/α

r,1
d
= µ−1/αGr,α,1. (2)

Let γ > 0. The distribution of the random variable Wγ:

P
(
Wγ < x

)
=
[
1− e−xγ]I[0, ∞)(x),

is called the Weibull distribution with shape parameter γ. It is easy to see that

W1/γ
1

d
= Wγ

d
= G1,γ,1. (3)

The standard normal distribution function and its density will be, respectively, denoted
Φ(x) and ϕ(x),

ϕ(x) =
1√
2π

e−x2/2, Φ(x) =
∫ x

−∞
ϕ(z)dz.

A random variable with the standard normal distribution will be denoted by X.
By ψα,θ(x), we will denote the probability density of the strictly stable law with

characteristic exponent α and parameter θ defined by the characteristic function

gα,θ(t) = exp
{
− |t|α exp

{
− iπθα

2
signt

}}
, t ∈ R, (4)

with 0 < α ≤ 2, |θ| ≤ θα = min{1, 2
α − 1} (see, e.g., [14]). A random variable with

characteristic function (4) will be denoted Sα,θ . It is easy to see that S2,0
d
=
√

2 X.
If θ = 1 and 0 < α ≤ 1, the corresponding strictly stable distribution is concentrated on

the nonnegative halfline. If α = 1 and θ = ±1, then the corresponding stable distributions
are degenerate in ±1, respectively. All the other strictly stable distributions are absolutely
continuous. There are no explicit representations for stable distributions in terms of
elementary functions with four exceptions: the normal distribution (α = 2, θ = 0), the
Cauchy distribution (α = 1, θ = 0), the Lévy distribution (α = 1

2 , θ = 1), and the
distribution symmetric to the Lévy law (α = 1

2 , θ = −1). Expressions for stable densities in
terms of generalized Meijer G-functions (Fox functions) can be found in [15,16].

Let α > 0. The symmetric exponential power distribution is an absolutely continuous
distribution defined by its Lebesgue probability density:

pα(x) =
α

2Γ( 1
α )
· e−|x|α , −∞ < x < ∞. (5)

To simplify the notation and calculation, here and in what follows, we will use a single
parameter α in representation (5), since this parameter is in some sense characteristic and
determines the shape of distribution (5). Any random variable with probability density
pα(x) will be denoted Qα. With α = 1, relation (5) defines the classical Laplace distribution

p1(x) = 1
2 e−|x|, x ∈ R
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with zero mean and variance 2. With α = 2, relation (5) defines the normal (Gaussian)
distribution with zero mean and variance 1

2 :

√
2 Q2

d
= X.

The class of distributions (5) was introduced and studied in 1923 in paper [17] by
M. T. Subbotin. For more detail concerning the properties of exponential power distribu-
tions, see [18,19] and the references therein.

It is easy to make sure that

|Qα|α
d
= G1/α,1. (6)

In paper [20], it was shown that any gamma distribution with a shape parameter no
greater than one is mixed exponential. Namely, the following statement holds.

Lemma 1 ([20]). Let r ∈ (0, 1]. Then, the density g(x; r, µ) of a gamma distribution can be
represented as

g(x; r, µ) =
∫ ∞

0
ze−zx p(z; r, µ)dz,

where

p(z; r, µ) =
µr

Γ(1− r)Γ(r)
·
I[µ, ∞)(z)
(z− µ)rz

. (7)

Moreover, a gamma distribution with shape parameter r > 1 cannot be represented as a mixed
exponential distribution.

Lemma 2 ([21]). If r ∈ (0, 1), µ > 0 and Gr, 1 and G1−r, 1 are independent gamma-distributed
random variables, then the density p(z; r, µ) defined by (3) corresponds to the random variable

Zr,µ =
µ(Gr, 1 + G1−r, 1)

Gr, 1

d
= µZr,1

d
= µ

(
1 + 1−r

r R1−r,r
)
, (8)

where R1−r,r is the r.v. with the Snedecor–Fisher distribution defined by the probability density

f (x; 1− r, r) =
(1− r)1−rrr

Γ(1− r)Γ(r)
·

I(0, ∞)(x)
xr[r + (1− r)x]

. (9)

In other words, if r ∈ (0, 1), then

Gr, µ
d
= W1 ◦ Z−1

r, µ. (10)

Lemma 3 ([22]). If γ ∈ (0, 1), then the Weibull distribution with parameter γ is mixed exponential:

Wγ = W1 ◦ S−1
γ . (11)

Let r1 > 0, r2 > 0. The Snedecor–Fisher distribution with parameters (r1, r2) is
defined as the distribution of the random variable

Pr1,r2 = Gr1,r1 ◦ G−1
r2,r2

.

The probability density pr1,r2(x) of the Snedecor–Fisher distribution has the form

pr1,r2(x) =
rr1

1 rr2
2

B(r1, r2)
· xr1−1

(r1x + r2)r1+r2
,
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where B(a, b) is the beta-function:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

, a > 0, b > 0.

3. Symmetric Quasi-Exponentiated Normal Distributions

In this section, we introduce quasi-exponentiated normal distributions as the distribu-
tions of normal random variables raised to some power, the exponent being an additional
parameter.

Since a normal random variable takes values of both signs, it is impossible to formally
define the power of this random variable with arbitrary positive exponent no less than two.
In paper [1], it was stated that the distributions of all odd powers of the standard normal
random variable belong to the class of normal scale mixtures. However, in that paper,
the corresponding mixing distributions were not specified. In this subsection, we show
that it is possible to give an unambiguous definition of the ‘quasi-power’ of the normal
random variable (and the corresponding ‘quasi-exponentiated’ normal distribution) for
any positive exponent no less than two that coincides with formal powers of the normal
random variables with odd exponents and their distributions. Moreover, the corresponding
scaling random variables will be defined explicitly. In the next subsection, this notion will
be extended to the asymmetric case.

To begin with, consider the random variable |X| (recall that the notation X is used for
any random variable with the standard normal distribution). Let γ > 0. It is obvious that

P(|X|γ < x) = 2Φ(x1/γ)− 1, x ≥ 0, (12)

so the probability density vγ(x) of the random variable |X|γ has the form

vγ(x) =
√

2
γ
√

π
· x1/γ−1e−

1
2 x2/γ

, x ≥ 0. (13)

It is easily seen that the density vγ(x) defined by (13) belongs to the class of generalized
gamma distributions. Moreover,

vγ(x) = gg1/2, 2/γ, 1/2(x), x ∈ R.

In other words,
|X|γ d

= G1/2, 2/γ, 1/2
d
= Gγ/2

1/2, 1/2,

that is, the distribution of |X|γ coincides with that of the power of a chi-square distributed
random variable. In what follows, the distribution of the random variable |X|γ will be called
exponentiated folded normal distribution. It should be noted that for the sake of simplicity,
by the term ‘exponentiated folded normal distribution’, we mean the distribution of the
exponentiated random variable with the folded normal distribution, although in probability
theory and statistics, by ‘exponentiated distribution’, it is customary to understand the
exponentiated distribution function.

As this is so, from Lemma 2, it follows that

|X|γ d
= 2γ/2Z−γ/2

1/2, 1 ◦Wγ/2
1

d
= 2γ/2Z−γ/2

1/2, 1 ◦W2/γ, (14)

where Z1/2,1 is a random variable with probability density

f (x; 1/2, 1) =


1

πx
√

x− 1
, x > 1,

0, x ≤ 1,

or, equivalently,
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Z1/2, 1
d
= 1 + P1/2, 1/2,

where P1/2, 1/2 is a random variable with the Snedecor–Fisher distribution defined by
the density

p1/2,1/2(x) =


1

π(1 + x)
√

x
, x > 0,

0, x ≤ 0.

Now, assume that γ ≥ 2. Continuing (14) under this assumption with the use of
Lemma 3, we arrive at the representation

|X|γ d
= 2γ/2(Zγ/2

1/2, 1 ◦ S2/γ, 1
)−1 ◦W1. (15)

This means that the following statement holds.

Proposition 1. Let γ ≥ 2. Then, the distribution of the random variable |X|γ is mixed exponential,
that is,

P(|X|γ ≥ 2γ/2 x) =
∫ ∞

0
e−zxhγ(z)dz,

where the probability density hγ(z) has the form

hγ(z) =
2

πγz

∫ ∞

z

y1/γψ2/γ, 1(y) dy√
z2/γ − y2/γ

. (16)

In other words, with the account of (12), we can conclude that hγ(z) solves the inte-
gral equation ∫ ∞

0
e−zxh(z)dz = 2

(
1−Φ(

√
2x1/γ)

)
with respect to h(z), or, equivalently, the function 2

(
1−Φ(

√
2x1/γ)

)
is the Laplace trans-

form of hγ(z).
In [21], it was proved that if the parameters r and α of the generalized gamma dis-

tribution (see (1)) satisfy the condition αr > 1, then the representation of the generalized
gamma distribution as mixed exponential is impossible (see Theorem 3 in that paper). In
the case, under consideration condition, αr > 1 reduces to γ < 1. This means that if γ < 1,
then representation of the distribution of |X|γ as mixed exponential is impossible.

Corollary 1. Let γ ≥ 2. Then, the distribution of the random variable |X|γ is infinitely divisible.

Proof. This statement follows from the result of [23], stating that the product of two
independent nonnegative random variables is infinitely divisible, if one of the two is
exponentially distributed.

Corollary 2. Let γ ≥ 2. Then, the distribution of the random variable |X|γ is a scale mixture of
the folded normal distribution:

|X|γ d
=
√

Yγ ◦ |X|,

where
Yγ

d
= 2γ+1Z−γ

1/2, 1 ◦ S−2
2/γ, 1 ◦W1. (17)

Proof. This statement follows from the easily verified representation W1
d
=
√

2W1 ◦ |X|.
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It can be said that the random variable Yγ solves the ‘equation’ |X|γ d
=
√

Y ◦ |X| with
respect to the random variable Y within the class of nonnegative random variables.

As regards the scaling random variable Yγ, we immediately notice that its distribution
is again mixed exponential. Moreover, the following statement holds.

Proposition 2. Let γ ≥ 2. Then, the distribution of the random variable Yγ is mixed exponential,

P(Yγ ≥ 2γ+1 x) =
∫ ∞

0
e−zxh∗γ(z)dz, x ≥ 0,

where

h∗γ(z) =
1

γπz

∫ ∞
√

z

y1/γψ2/γ, 1(y) dy√
z1/γ − y2/γ

. (18)

Proposition 2 and the result of [23] mentioned above imply the following statement.

Corollary 3. Let γ ≥ 2. Then, the distribution of the random variable Yγ is infinitely divisible.

The random variable Yγ is nonnegative. Therefore, we can formulate the following
definition.

Definition 1. Let γ ≥ 2. The random variable

Xγ
def
=
√

Yγ ◦ X (19)

will be called the quasi-exponentiated standard normal random variable with exponent γ. Corre-
spondingly, the distribution of Xγ will be called quasi-exponentiated standard normal.

It should be noted that again, for the sake of simplicity, we use one and the same term
‘quasi-exponentiated normal’ with respect to both the random variable and its distribution.

It can be easily seen that if γ is an odd natural number, γ ≥ 3, then Xγ
d
= Xγ.

From the formal definition of Xγ it follows that the probability density function qγ(x)
of Xγ has the form

qγ(x) =
∫ ∞

0

1√
z

ϕ
( x√

z

)
dP(Yγ < z) =

1√
2π

∫ ∞

0

1√
z

exp
{
− x2

2z

} ∫ ∞

0
ye−yzh∗γ(y)dy dz,

where the function h∗γ was defined in (18).
However, this expression can be simplified considerably if this problem is approached

from another point. Namely, let I1/2 be the Bernoulli random variable: P(I1/2 = 1) = 1
2 =

1− P(I1/2 = 0). Then, the random variable 2I1/2 − 1 takes two values: 1 and −1, with
probability 1

2 each. It can be easily verified that

Xγ
d
= (2I1/2 − 1) ◦ |X|γ d

= (2I1/2 − 1) ◦
√

Yγ ◦ |X|
d
= (2I1/2 − 1) ◦ G1/2, 2/γ, 1/2. (20)

Hence,

qγ(x) = 1
2 vγ(|x|) =

1
γ
√

2π
· |x|1/γ−1e−

1
2 |x|

2/γ
, x ∈ R.

Obviously, qγ(x) is symmetric and unimodal with the mode in zero. If γ ≥ 2, then the
vertex of qγ(x) is infinite.
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Proposition 3. Let γ ≥ 2. Any quasi-exponentiated standard normal distribution with exponent
γ is a scale mixture of Laplace distributions:

Xγ
d
=
√

Y∗γ ◦Q1,

where
Y∗γ

def
= 2γZ−γ

1/2, 1 ◦ S−2
2/γ, 1

From Definition 1, Corollary 3, and a well-known result that a normal scale mixture
is infinitely divisible, if the mixing distribution is infinitely divisible (see, e.g., [24], Chapt.
XVII, section 3), we obtain the following statement.

Proposition 4. All quasi-exponentiated normal distributions with γ ≥ 2 are infinitely divisible.

From (14) and the representation W1
d
=
√

2W1 ◦ |X|, it follows that

|X|γ d
= 2γ/2Z−γ/2

1/2, 1 ◦Wγ/2
1

d
= 23γ/4Z−γ/2

1/2, 1 ◦Wγ/4
1 ◦ |X|γ/2. (21)

This means that there holds the following statement, which can be regarded as an analogue
of the ‘multiplication theorem’.

Proposition 5. Let γ ≥ 2. Then, the exponentiated folded normal distribution with parameter γ is
a scale mixture of the exponentiated folded normal distribution with half the parameter:

|X|γ d
=
√

Ȳγ ◦ |X|γ/2,

where
Ȳγ

d
= 23γ/2Z−γ

1/2, 1 ◦W2/γ.

Consider some properties of the scaling random variable Yγ in (19).

Proposition 6. Let γ ≥ 2. Then, for any β > − 1
γ

EY2β
γ = 2β(γ−1)/2 Γ( γβ+1

2 )

Γ( β+1
2 )

.

By virtue of identifiability of normal scale mixtures (see [25]), Corollary 6 and Proposi-
tion 2 imply the following statement, which can be regarded as an analogue of Proposition
5 for the random variables Yγ.

Proposition 7. Let γ ≥ 4. Then,

Yγ
d
= Ȳγ ◦Yγ/2.

Corollary 4. Let γ ≥ 2, β > − 1
γ . Then,

EȲ2β
γ = 2βγ/4 Γ( βγ+1

2 )

Γ( βγ+2
4 )

.

From Proposition 7 and Definition 1, we directly obtain the following ‘multiplication
theorem’ for quasi-exponentiated normal distributions.

Corollary 5. Let γ ≥ 4. Then,

Xγ
d
=
√

Ȳγ ◦ Xγ/2.
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4. R-Asymmetric Quasi-Exponentiated Normal Distributions

In order to construct asymmetric generalizations of the quasi-exponentiated normal
distribution, at first, we will consider the R-asymmetric (randomized asymmetric) distribu-
tions. The starting point is representation (20). The two-parameter asymmetrization of the
quasi-exponentiated normal distribution reduces to the replacement of the probability 1

2
in (20) by an arbitrary probability p ∈ [0, 1]. Let Ip be the Bernoulli random variable such
that P(Ip = 1) = p = 1− P(Ip = 0). Then, the random variable 2Ip − 1 takes two values: 1
and −1, with probabilities p and 1− p. Then, a simple two-parameter R-asymmetrization
of the quasi-exponentiated normal distribution is defined as

Xp, γ
d
= (2Ip − 1) ◦ |X|γ d

= (2Ip − 1) ◦
√

Yγ ◦ |X|
d
= (2Ip − 1) ◦ G1/2, 2/γ, 1/2. (22)

Along with (22), Xγ, p can be represented as

Xp, γ = Ip ◦ |X|γ − (1− Ip) ◦ |X|γ
d
= Ip ◦ G1/2, 2/γ, 1/2 − (1− Ip) ◦ G1/2, 2/γ, 1/2. (23)

Let p ∈ [0, 1], γ1 ≥ 2, γ2 ≥ 2, σ1 > 0, σ2 > 0. The general R-asymmetrization
Xp,γ1,γ2,σ1,σ2 of the quasi-exponentiated normal distribution is defined as

Xp,γ1,γ2,σ1,σ2
d
= σ1 Ip ◦ G1/2, 2/γ1, 1/2 − σ2(1− Ip) ◦ G1/2, 2/γ2, 1/2.

As this is so,
√

πEXβ
p,γ1,γ2,σ1,σ2 = p2βγ1/2σ

β
1 Γ( βγ1+1

2 )− (1− p)2βγ2/2σ
β
2 Γ( βγ2+1

2 ),

√
πE|Xp,γ1,γ2,σ1,σ2 |β = p2βγ1/2σ

β
1 Γ( βγ1+1

2 ) + (1− p)2βγ2/2σ
β
2 Γ( βγ2+1

2 )

for β such that β min{γ1, γ2} > −1.
The R-asymmetrization of the quasi-exponentiated normal representation is for-

mal. This circumstance noticeably hinders the substantiation of R-asymmetric quasi-
exponentiated normal models in practical problems of descriptive statistics.

5. M-Asymmetric Quasi-Exponentiated Normal Distributions

Another approach to the de-symmetrization of the quasi-exponentiated normal distri-
bution is based on mixture representations of this distribution. Let α ∈ (0, 2]. The starting
point here is Definition 1. According to that definition, the quasi-exponentiated normal
distribution is a normal scale mixture:

Xγ
d
=
√

Yγ ◦ X.

Following the general lines of the construction of normal variance-mean mixtures (see,
e.g., [2], two more scalar parameters responsible for scale and asymmetry are introduced:
σ > 0 and a ∈ R. Define the M-asymmetric (Mixture-asymmetric) quasi-exponentiated
normal distribution as

Fγ,a,σ(x) def
= P(Xγ,a,σ < x) =

∫ ∞

0
Φ
( x− au

σ
√

u

)
dP(Yγ < u), x ∈ R. (24)

This distribution function corresponds to the random variable

Xγ,a,σ = σ
√

Yγ ◦ X + aYγ.
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Find the moments of the random variable Xγ,a,σ. From Proposition 5, it follows that

EXγ,a,σ = aEYγ = a2(γ−1)/4 ·
Γ( γ+2

4 )

Γ( 3
4 )

.

Further, since Yγ and X are assumed independent, EX = 0 and EX2 = 1, from Proposition 5,
it follows that

EX2
γ,a,σ = E(σ

√
Yγ ◦ X + aYγ)

2 = σ2EYγ + 2σE
√

YγEX + a2EY2
γ

= σ2EYγ + a2EY2
γ = σ22(γ−1)/4 ·

Γ( γ+2
4 )

Γ( 3
4 )

+ a22(γ−1)/2Γ( γ+1
2 ).

Hence,

DXγ,a,σ = EX2
γ,a,σ − (EXγ,a,σ)

2 = 2(γ−1)/4σ2 ·
Γ( γ+2

4 )

Γ( 3
4 )

+ 2(γ−1)/2a2 ·
[

Γ( γ+1
2 )−

(
Γ( γ+2

4 )

Γ( 3
4 )

)2]
.

As regards the higher-order moments of the M-asymmetric quasi-exponentiated nor-
mal distribution, consider arbitrary n ∈ N, n ≥ 3. Using the binomial formula, it is not
difficult to show that

EXn
γ,a,σ = n!

n

∑
k=0

Ck
nσkan−kEXk · EYn−k/2

γ

= 2γn/4+1n!
[n/2]

∑
k=0

2k(1−γ/8)σ2kan−2k

(2k)!(n− 2k)!
·

Γ(k + 1
2 )Γ(

γ(2n−k)
8 + 1

2 )

Γ( 2n−k
8 )

.

6. M-Asymmetric Quasi-Exponentiated Normal Distribution as a Limit Law for
Random Sums

Among many possible mixture representations for the quasi-exponentiated normal
distribution, the normal mixture model seems most promising for the construction of
asymmetric generalizations, since it presents the opportunity to formulate a rather simple
limit theorem (more exactly, a transfer theorem) for random sums of independent identically
distributed random variables in which the M-asymmetric quasi-exponentiated normal
distribution acts as the limit law. Moreover, the conditions imposed on the distribution of
the summands are rather loose. For example, the summed random variables may have
finite variance and may even be bounded. The corresponding statement is based on the
transfer theorem for random sums in the ‘if and only if’ form (see, e.g., [12]) and the
identifiability of normal variance-mean mixtures ([3]).

Let {Xn,j}j≥1, n = 1, 2, . . . be a double array of row-wise (that is, for each fixed n)
independent and identically distributed random variables. Let {Nn}n≥1 be a sequence of
nonnegative integer-valued random variables such that for each n ≥ 1, the random vari-
ables Nn, Xn,1, Xn,2, . . . are independent. Denote Sn,k = Xn,1 + . . . + Xn,k. For definiteness,
we assume ∑0

j=1 = 0. In the statement below, the convergence is meant as n→ ∞.

Lemma 4 ([3]). Assume that there exists a sequence of natural numbers {kn}n≥1 and numbers
a ∈ R and b > 0 such that

P
(
Sn,kn < x

)
=⇒ Φ

( x− a
b

)
. (25)

Assume that Nn → ∞ in probability (that is, P(Nn ≥ K) → 0 for any K ∈ (0, ∞)). The
distributions of random sums SNn converge to some distribution function F(x):

P
(
Sn,Nn < x

)
=⇒ F(x),
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if and only if there exists a distribution function H(x) such that H(0) = 0,

F(x) =
∫ ∞

0
Φ
( x− az

b
√

z

)
dH(z), (26)

and
P(Nn < xkn) =⇒ H(x).

It is easily seen that expression (24) defining the M-asymmetric quasi-exponentiated
normal distribution coincides with (26), where H(z) = P(Yγ < z). Hence, Lemma 4 directly
yields the following result.

Theorem 1. Assume that there exists a sequence of natural numbers {kn}n≥1 and numbers a ∈ R
and b > 0 such that condition (25) holds. Assume that Nn → ∞ in probability. The distributions of
random sums SNn converge to the M-asymmetric quasi-exponentiated normal distribution function
Fγ,a,σ(x) (see (24)),

P
(
Sn,Nn < x

)
=⇒ Fγ,a,σ(x),

if and only if
P(Nn < xkn) =⇒ P(Yγ < x). (27)

Theorem 1 may serve as the theoretic explanation of the possible utility of the M-
asymmetric quasi-exponentiated normal distribution as a model of statistical regularities
observed in some real phenomena in which the additive structure of the observed process
can be assumed. In [26], we have already discussed this question. Although the form of the
distribution of Yγ is rather curious, there are no serious objections against the possibility
of application of this distribution for modelling the poorly predictable (or unpredictable)
regularities of, say, information flows in financial markets. For more details, see [26].

Consider an example of a random index Nn which satisfies (27). This example is
connected with special mixed geometric distributions. First, consider mixed geometric
random sums.

Let p ∈ (0, 1) and Vp be a random variable having the geometric distribution with
parameter p:

P(Vp = k) = p(1− p)k−1, k = 1, 2, . . . .

This means that

P(Vp > m) =
∞

∑
k=m+1

p(1− p)k−1 = (1− p)m

for any m ∈ N. Let (πn)n≥1 be a sequence of positive random variables taking values in
the interval (0, 1), and moreover, for each n ≥ 1 and all p ∈ (0, 1), the random variables πn
and Vp are independent.

For each n ∈ N, let Nn = Vπn . Hence,

P(Nn > m) =
∫ 1

0
(1− z)m dP(πn < z) (28)

for any m ∈ N. The distribution of the random variable Nn is called πn-mixed geometric (for
more detail, see [27]).

In [27], a generalization of the famous Rényi theorem was proved (see Theorem 1
there), stating that if the random variables πn in (28) are infinitesimal in the sense that
there exist a random variable M such that P(0 ≤ M < ∞) = 1 and a sequence of natural
numbers {kn}n∈N such that

knπn =⇒ M



Mathematics 2023, 11, 3797 13 of 14

as n→ ∞, then

lim
n→∞

sup
x≥0

∣∣∣∣P(Nn

kn
≥ x

)
−
∫ ∞

0
e−uxdP(M < u)

∣∣∣∣ = 0. (29)

Now it suffices to make use of representation (17) and let M = 2−(γ+1)Zγ
1/2, 1 ◦ S2

2/γ, 1. Then,
in accordance with (17) and (29), the mixed geometric random variables Nn defined by (28)
will satisfy (27).

7. Conclusions

In the paper, quasi-exponentiated normal distributions were introduced for any power
(exponent) no less than two. With natural exponents, the ‘quasi-exponentiated’ normal
distributions coincide with the distributions of the corresponding powers of the normal
random variables with zero mean. Their representability as scale mixtures of normal
and exponential distributions was proved. The mixing distributions were written out in
the closed form. Two approaches to the construction of asymmetric quasi-exponentiated
normal distributions were described: one based on randomization, the other based on the
representation of the corresponding asymmetric quasi-exponentiated normal distribution
as a variance-mean normal mixture. The limit theorem was proved for sums of a random
number of independent random variables in which the asymmetric quasi-exponentiated
normal distribution is the limit law. An example is given, illustrating that in order to
provide the validity of the conditions required for the convergence of the distributions
of random sums to the asymmetric quasi-exponentiated normal distribution, the random
number of summands may be special mixed geometric. The presented results are valid,
if the exponent of the quasi-exponentiated normal distribution is no less than two. It is
known that if it is less than one, then it is impossible to represent the asymmetric quasi-
exponentiated normal distribution as mixed exponential. The study of mixture properties
of quasi-exponentiated normal distributions with the exponent lying in the interval (1, 2)
is still an open problem.
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