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Abstract: In the past, numerous stratovolcanoes worldwide witnessed catastrophic flank collapses.
One of the greatest risks associated with stratovolcanoes is a massive rock failure. On 18 May 1980,
we witnessed a rock slope failure due to a volcano eruption, and a 2185.60 m high rock slope of
Mount St. Helens was collapsed. Thus, from the serviceability perspective, this work presents an
effective computational technique to perform probabilistic analyses of Mount St. Helens situated in
Washington, USA. Using the first-order second-moment method, probability theory and statistics
were employed to map the uncertainties in rock parameters. Initially, Scoops3D was used to perform
slope stability analysis followed by probabilistic evaluation using a hybrid computational model
of artificial neural network (ANN) and firefly algorithm (FF), i.e., ANN-FF. The performance of the
ANN-FF model was examined and compared with that of conventional ANN and other hybrid
ANNs built using seven additional meta-heuristic algorithms. In the validation stage, the proposed
ANN-FF model was the best-fitted hybrid model with R2 = 0.9996 and RMSE = 0.0042. Under seismic
and non-seismic situations, the reliability index and the probability of failure were estimated. The
suggested method allows for an effective assessment of the failure probability of Mount St. Helens
under various earthquake circumstances. The developed MATLAB model is also attached as a
supplementary material for future studies.

Keywords: reliability analysis; rock slope stability; Scoops3D; artificial neural network; swarm
intelligence

MSC: 68T09; 68T20

1. Introduction

Volcanic edifices have slope failures that range from small rocks falling to massive
collapses. Enormous flank (with volume > 0.1 km3) slides have significantly changed over
200 stratovolcanoes across the globe [1] and are among the most sudden, damaging, and
potentially hazardous volcanic events. As a result of catastrophic side collapses, many vol-
canoes and stratovolcanoes have changed in big ways worldwide [2]. The most significant
volcanic collapses in history, such as those observed at Bandai (Japan), Mount St. Helens
(USA), and Bezymianny (Russia), were initiated by the movement along extensive curved
failure surfaces [3]. In the United States, Mount St. Helens had a terrible fall in 1980 [4].
Debris avalanches, which can later mobilize into debris disasters, pose major threats to
the structure and areas further downslope or downstream when these enormous collapses
occur, often involving more than 0.1 km3 of material. Moreover, a significant number of
approximately 700 stratovolcanoes found on Earth present a potential hazard to individuals
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residing in developing nations. As a result, methods for rapid and cost-effective hazard
evaluations are particularly important. In the past, approximately 20,000 individuals have
lost their lives by flank collapses [5]. There exist numerous processes that can lead to the in-
stability of edifices [3]. The collapse of such structures can be attributed to volcano-specific
factors such as magma intrusion, hydrothermal alteration, and thermal pressurization
of pore fluids [6]. Alternatively, it can be caused by more universally recognized factors
associated with slope instability, such as increased pore fluid pressures. Mount St. Helens
has experienced multiple flank collapses, making it an ideal site for a comprehensive
assessment of its stability.

In the past, slope stability assessments have been performed in two dimensions, with
the assumption that plane strain conditions are true. Since the 1930s, there has been a
lot of interest in slope stability studies [7]. However, it is important to mention that a
three-dimensional (3D) slope assessment procedure would generate accurate results [8].
This is especially the case when the geometry of the slopes varies widely. In addition,
two-dimensional (2D) plane strain assumptions become invalid near the corners of a finite
slope [9]. For simple hillslope shapes, 2D slope stability assessments typically produce
lower factor of safety (FOS) values than 3D approaches; however, the variations between
these two approaches are often in the range of 10% to 20% [10,11]. In the recent past,
researchers have investigated 3D slope stability [8,12,13]. Hungr [14] proposed a method for
estimating the FOS of 3D slopes using the 2D Bishop’s approach [15]. Based on the general
limit equilibrium method and as per the work of Lam and Fredlund [16], Fredlund and
Krahn [17] also proposed a 3D approach. However, several techniques have been devised
for analyzing slope stability. The limit analysis method [18], the limit equilibrium method
(LEM) [19], and the strength reduction method (SRM) [18] are the common approaches.
Among these methods, the LEM and SRM are deterministic because they use predetermined
values for individual soil properties to infer the stability of a slope.

Despite providing a conservative analysis, FOS-based approaches have been stated to
be ineffective in several cases [20]. The deterministic approach has a significant drawback
when accounting for uncertainties in soil parameters. Specifically, parameters such as
cohesion (c), angle of internal friction (φ), bulk density (γ), and external loads are not
explicitly considered in the FOS approaches [20]. Furthermore, the determined value of
the FOS is frequently employed for a specific objective, such as assessing the long-term
stability of slopes, irrespective of the uncertainty associated with the estimation. However,
it is not practical to apply the same FOS to several scenarios with varying uncertainty
levels. Notably, soil materials are highly complex because of their non-linear stress-strain
correlations, elastoplastic behavior under different loading conditions, and time-dependent
stress-strain responses [21]. Thus, it is imperative to conduct a thorough investigation
of geotechnical parameters to consider the inherent uncertainties associated with soils
during slope stability assessments, and reliability analysis (RA) is considered to be deemed
appropriate in such circumstances [22].

Using probability theory and statistics, uncertainties in soil parameters are rationally
comprised of geotechnical analyses [23]. Reliability index (β) and probability of failure
(POF) are commonly employed measures for assessing the performance of geotechnical
designs. The probability of not meeting performance standards is known as the POF [23].
RA of geotechnical structures can be performed using a variety of methodologies, includ-
ing direct first-order second-moment method (FOSM) [23], first-order reliability method
(FORM) [24], and Monte Carlo simulation (MCS) method [25]. The aforementioned tech-
niques employ probabilistic assessments of soil characteristics and sub-soil stratigraphy as
input variables and yield the output β and/or POF for a pre-established structures [23].
Nevertheless, limited attention has been given to the application of these techniques in the
context of mitigating mountain slope instability.

Previous approaches have also addressed the use of implicit performance functions.
The response surface method (RSM) is one of them [26]. The implicit performance functions
are approximated by RSM using a polynomial function. A fairly precise approximation
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of β can be generated if the selected polynomial functions fit the limit state well [27]. In
contrast, several machine learning (ML) techniques have previously been employed for
slope stability analysis in soil, including multivariate adaptive regression splines (MARS),
relevance vector machine (RVM), artificial neural network (ANN), support vector machine
(SVM), extreme learning machine (ELM), and various others [28]. ML algorithms are
capable of efficiently simulating slope reliability difficulties by approximating implicit
performance functions [22,23].

Numerous ML methods, such as ANN, MARS, RVM, and ELM, have previously
been employed to tackle various engineering issues [28], including RA of different soil
slopes [22]. Radial basis function networks and ANNs were utilized by Deng [29] and Deng
et al. [30], respectively, for structural RA. Cho [31] used RSM based on ANN to carry out
probabilistic slope analyses. Erzin and Cetin [32] used ANN to calculate the FOS of a soil
slope. Several researchers have also examined slope reliability analysis using RVM, SVM,
MARS, and other ML approaches [23]. Kang et al. [33] employed replacement models with
updated SVMs and two swarm intelligence methods, viz., particle swarm optimization
(PSO) and artificial bee colony (ABC) algorithms. Zhao [20] used SVM for slope RA. RA
of soil slopes using RVM-based RSM, multi-kernel RVM, and enhanced FOSM were also
performed [34].

Nonetheless, it should be noted that earthquakes can trigger a considerable number of
earth and rockslides, leading to an extensive destruction of prominent structures such as
hills, hill-highways, railway tracks, dam reservoirs, etc. Note that, the stability of a slope
is significantly influenced by the geometry of its shape and the physical properties of the
existing soils. Slope failures can cause ground deformation, which in turn can damage
structures. Instability is a common problem in hilly areas because of their geodynamic
and structural makeup and the effects of factors like extreme rainfall, urbanization, and
other influences [35]. High-quality roads and highways are desperately needed in these
mountainous areas to facilitate easier travel, more visitors, and risk-free development
efforts. The significance of performing slope stability analyses that consider the spatial
variability of geotechnical characteristics inside a prominent volcanic formation like Mount
St. Helen is of utmost relevance.

Furthermore, existing literature exhibits no prior utilization of high-performance ML
approaches for probabilistic evaluations of Mount St. Helens in seismic and non-seismic
conditions. Thus, considering the above points, probabilistic assessments of Mount St.
Helens were carried out in this study using a hybrid intelligence approach of ANN and
a meta-heuristic approach. For this purpose, the details of slope geometries provided
by Reid et al. [36] were used for modeling spherical failure surfaces using the 3D Bishop
approach. For estimating FOS, Scoops3D, an open-source platform, was used, followed by
probabilistic assessments in seismic and non-seismic conditions.

2. Research Significance

Numerous studies have emphasized the use of ANNs in the domains of engineering
and science [28]. The ability of ANNs to represent non-linear problems without considering
a functional relationship between input and output is a significant advantage over other
ML algorithms. Furthermore, the output generation is unaffected by one or more corrupted
cells. Despite these advantages, ANN possesses notable limitations, including challenges
related to the entrapment in local minima and the occurrence of overfitting. Moreover,
the challenge of accurately determining the precise global minimum can lead to unfavor-
able outcomes [28]. To address these issues, researchers employed various optimization
algorithms (OAs), including PSO, ABC, and genetic algorithm (GA) [28]. Due to their
robust global search capabilities, OAs can iteratively optimize the learning parameters of
ANNs, resulting in enhanced prediction performance. Over the past decade, there has
been a significant increase in the utilization of hybrid ANNs, such as ANN-ABC, ANN-GA,
ANN-PSO, etc., for addressing various problems [28,37]. Tun et al. [38] used GA to assess
3D slopes with several failure regions. Nevertheless, it should be noted that there is a lack
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of research on the reliability of slope analysis for the Mount St. Helens utilizing hybrid
ANNs. Moreover, no study has been conducted on the evaluation of hybrid ANNs that are
built using different groups of OAs for slope stability analysis in cone-shaped terrains.

Thus, this study aims to address the gap in the literature by using hybrid ANNs
built with different groups of OAs to perform a probabilistic analysis of Mount St. He-
lens. Specifically, eight distinct OAs viz., ALO, BBO, CPA, DE, EO, FF, GA, and PSO
(see Section 5.2 for details) were used to optimize weights and biases ANNs, resulting in
eight hybrid ANNs, viz., ANN-ALO, ANN-BBO, ANN-CPA, ANN-DE, ANN-EO, ANN-
FF, ANN-GA, and ANN-PSO. The computational findings were used to select the most
effective hybrid ANN model for performing RA of Mount St. Helens under seismic and
non-seismic conditions. The outcomes of the current study were compared to the findings
of Tun et al. [38] and evaluated in the subsequent sections.

3. Study Area

This study investigates RA of Mount St. Helens, located in Skamania County, Washing-
ton, USA, approximately 55 km west of Mount Adams in the western part of the Cascade
Range, experienced a catastrophic eruption on 18 May 1980 [4]. Notably, the failure surfaces
may be readily apparent for basic geometrical aspects of a slope (such as polygonal or
polyhedral-shaped slopes), but this may not be the case for more complex/real topogra-
phies like Mount St. Helens. Thus, the present study utilizes the details of Mount St.
Helens (obtained from Google Earth) to conduct probabilistic slope analyses. The use of
Google Maps and Google Earth images has facilitated the depiction of Mount St. Helen’s
geographical location and topographical features, presented in Figure 1.

Before the tragic collapse of Mount St. Helens, rock strength and density distributions
in 3D were unknown. After the collapse, Voight et al. [4] and Glicken [39] used geologic
sections provided by Hopson and Melson [40] to recreate the inner geology structure. The
mountain’s core comprises earlier dacite dome lavas and flank breccias hydrothermally
altered. This unit was covered by andesitic, basaltic, and tephra lava flows. Summit and
Goat Rocks domes were built with more modern dacite. The dacitic crypto-dome intruded
on each of these components in the year 1980.
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4. Methodology

Theoretical detail of the deterministic analysis to calculate the FOS using Bishop’s
simplified method is presented in this section, followed by the details of probabilistic
analysis to conduct reliability analyses.

4.1. Deterministic Analysis
The FOS of slope failure in 3D was calculated using Scoops3D, a computer software

that employs Ordinary and Bishop simplified methods. As stated above, Bishop’s simplified
method was employed in this study, wherein spherical failure surfaces were utilized to
analyses 3D slopes. The simplified form of Bishop’s approach for calculating FOS in the
absence of groundwater is given:

FOS =
∑ Rj,k(cj,k Aj,k + Wj,ktan φj,k)/mαj,k

∑ Wj,k

[
Rj,kmz + keqej,k

] ; mαj,k= cos ε j,k + tan φ’dmz and mz = sin αj,k (1)

where cj,k is the effective cohesion; φj,k is the effective internal friction angle; Rj,k is the
distance from the j, k column’s trial slip region to its axis of rotation, Aj,k is the column’s
trial surface area, Wj,k is the column’s weight; ej,k is the horizontal driving force moment
arm. A free-body diagram of the j, k column is shown in Figure 2. Note that, for a 3D
formulation, it is also assumed that the combined normal and shear forces acting along the
sides of the columns be zero in both the x and y axes.
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In Figure 2, W denotes the column’s weight; Exj,k and Eyj,k denote inter-column normal
forces in x and y axes, respectively; Hxj,k and Hyj,k are horizontal shear forces in y-z plane;
Xxj,k and Xyj,k denote inter-column shear forces occurring in the x-z plane; Nj,k and Uj,k
denote effective normal force and pore water force at the base, respectively; Sj,k denotes
mobilized shear force on the base; αj,k denotes x–y plane slide angle, and αx and αy denote
the base inclination of the middle column in the x-z and y-z planes, respectively.

4.2. Digital Elevation Modelling

A digital representation of the topographic relief is commonly called a digital elevation
model (DEM) [41]. Notably, regular grids are the most commonly encountered type of
DEMs, and they are offered in various forms [42]. DEM is widely used in geomorphology,
representing various landscape features and offering other benefits, including efficient
data storage and processing power. The accuracy of a DEM is influenced by various
factors pertaining to the topography, such as landforms, elevations, texture, ruggedness,
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and vegetation. The accuracy is also influenced by the methods employed for collecting
elevation data, the specific process for generating the DEM, the type of grid employed
for the DEM, and the resolution of the DEM [43]. Also, the liDAR-DEM (light detection
and ranging-DEM) to the DEM was created using 1 × 1 m horizontal resolution and 0.2 m
vertical precision from data collected using airborne laser scanning (ALS) [44–48]. In
addition, remote sensing allows for massive mountain ranges, deep valleys, and ocean
floor magnetic striping [49].

The United States Geological Survey (USGS) developed a free software package,
Scoops3D, to analyze the 3D stability of slopes based on DEM [36]. To begin with, precise
calculations of the terrain’s topography are required. As a result, because DEM can
easily employ spatial and picture data from geographic information systems (GIS), it
may be used to develop a 3D model for slope concerns [50]. In the context of probabilistic
analyses, it is adequate to consider the variations in material properties along with the
slope geometry. Also, with the increasing use of satellite images and aerial photography,
DEM representations are more accessible than ever. Reid et al. [36] used 100-m resampled
DEMs to accurately compute the stability of potential failures with a volume > 0.1 km3.
However, the DEM provided by Reid et al. [36] was used in this study, generated from
photographs taken on 12 May 1980 (see Figure 3). Additionally, Figure 4 depicts the DEM
profile of Mount St. Helens and necessary information was extracted from the work of Reid
et al. [36] for this study.
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4.3. Probabilistic Analysis

Inaccuracies in modelling, subsurface stratigraphic uncertainty, and intrinsic spatial
variability of soil and rock characteristics are some of the uncertainties that can affect a slope
stability analysis. Using probability theory and statistics, the intrinsic spatial variability of
soils and rocks and other soil and rock characteristics uncertainties can be considered in
geotechnical analysis and/or design. This gives a balanced way to avoid these uncertainties
in the analysis of slope stability study [23,24]. The reliability of a slope is explained as the
probability that the performance standards will not be met. In other terms, the POF is the
probability that the minimum FOS is less than one, i.e., POF = P(FOS < 1).

Assume that g(x) is a performance function used to determine the FOS, and that
g(x) has a series of random variables x = [x1, x2, x3, . . . . . . , xk] denoting uncertain model
parameters. Thus, the value of β is given by:

β =
µFOS − 1

σFOS
(2)

where µFOS and σFOS denote the mean and standard deviation of the FOS, respectively.
The µFOS signify the value of g(x) at mean values of µ1, µ2, . . . . . . , µK random variables
x1, x2, x3, . . . . . . , xk, given by:

µFOS = g(µ1, µ2, . . . . . . , µK) (3)

The σFOS is defined as:

σFOS =

√√√√ k

∑
i=1

σ2
i

(
∂g
∂xi

)2
+

k

∑
i=1

k

∑
j 6=1

ρi,jσiσj
∂g
∂xi

∂g
∂xj

(4)

where σi denotes the random variable’s standard deviations xi; ρi,j denotes the correlation

coefficient between the two distinct unknowable variables, xi and xj;
∂g
∂xj

are the perfor-
mance function’s partial derivatives with respect to xi. Hence, the Pf of slope can be
obtained using POF = 1− Φ(z), where Φ represents cumulative standard distribution
function with µ = 0 and σ = 1.

5. Overview of Employed Models

This section provides a comprehensive overview of the computational models utilized
in the present study. Firstly, a concise introduction to ANN, followed by a brief overview
of meta-heuristic algorithms. Following this, the methodology for constructing a hybrid
ANN is described and explained

5.1. Artificial Neural Network

ANNs are a subset of ML models that are constructed based on the principles of neu-
ronal organization observed in biological neural networks found in animal brains. ANNs
acquire information from the given dataset and produce predictions in response. ANN con-
sists of one input layer, one or more hidden layers, and one output layer
(see Figure 5). Neurons that are not computational collect information in the input layer,
whereas computational neurons execute linear/non-linear computations in the hidden
and output layers. Notably, weighted connections connect each and every neuron in the
input, hidden, and output layers. The hidden and output layers both have biases that
are proportional to the number of respective neurons. Input and output layers have a
relationship between their respective numbers of input and output variables and their
number of neurons. The number of hidden neurons varies from problem to problem and is
selected through trial and error.
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In ANN, weights and biases are calculated iteratively to reduce the discrepancy
between estimated and real values. The fitness function most frequently employed is the
root mean square error (RMSE) index. Multiple training techniques, including conjugate
gradient, gradient descent, Levenberg-Marquardt functions, etc., are used during the
training of ANN and to adjust weights and biases. Application of ANNs in different
engineering domains can be seen in the literature [51–55].
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5.2. Overview of OAs

The complexity and difficulty of solving challenges in the actual world have increased
during the past few decades. As a result, optimization techniques, especially meta-heuristic
algorithms, have become important. These techniques, which approximate optimal so-
lutions, rely on randomness. The optimization strategy determines the optimal decision
variables through minimizing or maximizing the objective function. Due to their sim-
plicity and ease of implementations, meta-heuristic algorithms have been deployed as
an alternative solution. OAs are calorized into two main groups: (a) pop-based, which
considers the entire population, and (b) single-solution-based, which considers only one
possible solution [56]. Notably, most of the pop-based OAs have been derived from natural
phenomena. Figure 6 presents a classification of different kinds of pop-based OAs.
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The categorization of pop-based OAs can be based on their sources of inspiration,
which include algorithms inspired by swarm intelligence (SI), algorithms based on human
behavior, algorithms derived from evolutionary algorithms (EAs), and physics-based
algorithms. SI algorithms replicate the social behaviors of organisms residing in swarms,
flocks, and herds. The class of SI algorithms includes various approaches such as ALO [57],
CPA [58], FF [59], GWO [60], PSO [61], and SSA [62], among others. The second group of OA
pertains to human-based algorithms derived from the collective behavior and collaborative
problem-solving approaches exhibited by individuals working in groups. The algorithms
encompassed within this category include FDO [63], HS [64], ICA [65], TLBO [66], etc.
EAs simulate natural evolutionary processes like mutation, selection, and recombination.
BBO [67], DE [68], ES [69], and GA [70] are some of the examples of this group. The final
category of popular algorithms draws inspiration from the rules of physics. BBBC [71],
EO [72], GSA [73], and SA [74] are some examples of physics-based OAs. As stated above,
eight OAs (viz., ALO, BBO, CPA, DE, EO, FF, GA, and PSO) from different groups were
considered in this study, which are widely used in different engineering domains. Notably,
detailed working principles of these OAs are not presented in this study because they are
well established, and the original works of ALO [57], BBO [67], CPA [58], DE [68], EO [72],
FF [59], GA [70], and PSO [61] can be referred to for more details.

5.3. Hybridization Procedure of ANN and OAs

Numerous studies have been done in the previous few decades on how to use
multiple OAs to enhance the performance of conventional ANNs. The ANN may not
perform well in some cases since back-propagation isn’t great at locating precise global
minima [51,75]. ANNs are susceptible to becoming trapped in local minima, unlike OAs,
which can adjust their learning parameters to overcome this obstacle. OAs have the flexi-
bility to perform exploration and exploitation techniques and generate optimal values for
ANN weights and biases. The construction process of hybrid ANNs involves the following
steps: (a) initialization of ANN; (b) selection of hyper-parameters, i.e., the number of
hidden layers (NHL) and the number of hidden neurons (NH); (c) random generation of
weights and biases; (d) initialization of deterministic parameters for the OA, such as popu-
lation/swarm size (NS), maximum number of iterations (itrmax), upper and lower bounds
(ub and lb), etc.; (e) training of ANN using training dataset; (f) evaluation of fitness; (g) gener-
ation of learning parameters when termination criteria are met; (h) validation of ANN; and
(i) formation of final ANNs with optimized weight and bias values. Figure 7 is a flowchart
depicting the aforementioned steps. The given equation can be utilized to compute the
overall count of optimized weights and biases, (Ow+b), Ow+b = r× NH + NH + NH + o,
with r and o representing the number of input and output neurons, respectively.
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6. Data Description and Modelling

The geology of Mount St. Helens appeared more consistent before it collapsed due to
volcanic eruptions than that of surrounding stratovolcanoes. Voight et al. [4] described the
physical properties of debris avalanche materials. Intact edifice rock was found to have an
average unit weight of 24 kN/m3, and average values of φ and c were 40◦ and 1000 kN/m2,
respectively. This information was used to perform the slope stability analysis. Following
the normal distribution sampling technique, a total of 100 samples were generated using
mean values of c = 1000 kN/m2, φ = 40◦; and γ = 24 kN/m3. Subsequently, the FOS of the
slope was determined using Scoops3D for the generated samples with five distinct values
of seismic coefficient (ke), viz., 0 (for non-seismic case), 0.05, 0.10., 0.15, and 0.20, referred
to as Set 1 to Set 5, respectively. Descriptive details of the 500 samples (i.e., 100 samples
against each ke value) are presented in Table 1. The present study incorporates certain
simplifications, including the assumption of homogenous material properties, intact rock
mass, the exclusion of groundwater effects, and the inclusion of seismic loading. However,
according to Table 1, the parameter c varies from 809.77 kN/m2 and 1195.17 kN/m2. The
ranges for the remaining parameters, φ, γ, and ke are 35.18◦ to 49.40◦, 22.02 kN/m3 to
25.99 kN/m3 and 0 to 0.20, respectively. The other descriptive details can be seen in Table 1.

Stage I: After FOS estimations, the primary database of 500 records was finalized.
This database was normalized randomly between 0 and 1 and then divided into training
and testing subsets. Using 5-fold cross-validation, 80% of the entire dataset was used for
training, i.e., 400 samples, whereas the remaining 20%, i.e., 100 samples, were used for
testing. Notably, the training subgroup was used to construct hybrid ANNs, while the
testing subgroup was used for validation. After model construction, multiple performance
matrices, namely mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE), performance
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index (PI), coefficient of determination (R2), RMSE, and weighted mean absolute percentage
error (WMAPE), were determined and assessed. Subsequently, the best-forming hybrid
ANN was selected for the probabilistic assessment of Mount St. Helens.

Stage II: Subsequent to the selection of the best-performing model, RA was performed
in seismic and non-seismic conditions. This was achieved by producing different sets
of input parameters with different coefficient of variation (COV) values. The following
stage involves the normalization of the new dataset based on the original input variables
(see Table 1). The best-obtained paradigm was then used to generate FOS, followed by a
probabilistic assessment of the slope. Figure 8 shows the entire process of FOS estimation
and probabilistic analyses of Mount St. Helens.

Table 1. Descriptive details of the generated dataset.

Index c (kN/m2) φ (◦) γ (kN/m3) ke

Min. 809.77 35.18 22.02 0.00
Mean 1000.00 40.00 24.00 -
Max. 1195.17 49.40 25.99 0.20

Stnd. Dev. 117.31 4.21 1.17 0.08
Stnd. Error 11.73 0.04 0.01 0.02

Kurtosis −1.26 −1.20 −1.25 −1.20
Skewness −0.08 −0.09 0.16 0.00
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7. Results and Discussions

This section provides comprehensive assessment of the results obtained from the
slope stability analyses, the performance evaluation of hybrid ANNs, and the probabilistic
analysis conducted on the slope. However, before presenting the outcomes of probabilistic
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assessment, the outcomes of slope stability analysis and parametric configurations of hybrid
ANNs are presented and discussed.

7.1. Slope Stability Analysis

As stated above, the slope stability of Mount St. Helen was carried out using the
Scoops3D computer program. For each 100 samples, the FOS was computed for five sets
of ke, i.e., Sets 1 to 5. The outcomes of slope stability assessment are demonstrated in
Figure 9. Additionally, Figure 10 displays the critical and safest FOS and their related slip
circles. Herein, the minimum and maximum FOS obtained in each set (i.e., against each
ke value) are presented against each ke case. The minimum and maximum values of FOS
were determined to be 1.901 and 2.864 for Set 1 (i.e., ke = 0); 1.720 and 2.589 for Set 2 (i.e.,
ke = 0.05); 1.565 and 2.355 for Set 3 (i.e., ke = 0.10); 1.431 and 2.152 for Set 4 (i.e., ke = 0.15),
and 1.311 and 1.975 for Set 5 (i.e., ke = 0.20). After conducting deterministic analyses, the
obtained FOS values and rock properties were utilized as input and output variables for
probabilistic evaluations of Mount St. Helen. Notably, the generated DEMs of these images
are attached via Supplementary Materials.
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7.2. Computational Modelling and Performance Assessment

The derived FOS values were used as the output variable, while the rock parameters
viz., c, φ, γ, and ke. were used as the input variables for computational modelling. It
is important to note that ANN‘s hyper-parameters (i.e., NH and NHL) must be carefully
selected to construct the best possible model. Using Levenberg-Marquardt backpropagation
and tan-sigmoid activation functions and RMSE as the fitness function, the most appropriate
value of NH was obtained as 8, i.e., NH = 8 and kept constant for other hybrid ANNs.
However, deterministic parameters of OAs, i.e., NS, itrmax, ub, and lb, were also selected
using trial-and-error approaches. Since there are four inputs, the total number of Ow+b
were determined to be 49 (i.e., 4 × 8 + 8 + 8 + 1). The values of NS, itrmax, ub, and lb were
selected as 50, 500, +1, and −1, respectively. The traditional ANN was also constructed
using the above configurations in which RMSE was used as the fitness function.

On the contrary, evaluating the performance of a hybrid model requires examining the
convergence behavior of OAs. It exhibits the ability of OAs to conquer local minimum and
arrive at a solution more quickly. Convergence curves for all the hybrid ANNs utilized to
calculate the FOS are shown in Figure 11. After 500 iterations, the computational cost of the
hybrid ANNs were estimated to be 200.72 s, 194.57 s, 437.72 s, 175.03 s, 173.56 s, 4175.92 s,
347.61 s, and 166.87 s, respectively, for ANN-ALO, ANN-BBO, ANN-CPA, ANN-DE, ANN-
EO, ANN-FF, ANN-GA, and ANN-PSO. According to Figure 11, the developed ANN-FF
achieved faster convergence than other hybrid ANNs constructed for FOS estimation.
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After model construction, the performance of the developed models was assessed
using multiple performance matrices viz., MAE, NSE, PI, R2, RMSE, and WMAPE. Among
these indices, MAE, RMSE, and WMAPE are the error indices, and NSE, PI, and R2 are
the trend-measuring indices. The use of numerous indices allowed the performance of
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the models to be assessed in various ways, including the degree of correlation/fitness,
associated error in absolute terms, variance in error, and the amount of variation between
the actual and estimated values. Notably, for a perfect prediction model, the value of these
indices should be equal to their ideal values as follows: MAE = 0, NS = 1, PI = 2, R2 = 1,
RMSE = 0, and WMAPE = 0. These indices are used widely for assessing the performance of
data-driven models [28,76,77]. The detailed mathematical expressions of these indices are
not presented in this study because they are well-established, and the studies of Bardhan
and Samui [28] and Koopialipoor et al. [75] can be referred to for more details.

Tables 2 and 3 display the outcomes of the hybrid ANNs during the training and
testing phases, respectively. As stated above, the training subset was used for model
construction, while the testing subset was for validation of the constructed models. Accord-
ing to Table 2, the developed ANN-FF realized the desired level of precision (R2 = 0.9996 and
RMSE = 0.0041) during the training phase, followed by ANN-EO (R2 = 0.9981 and
RMSE = 0.0094), ANN-CPA (R2 = 0.9970 and RMSE = 0.0117), and so on (see Table 2
for other models). Except for ANN-DE, all hybrid ANNs demonstrated a strong fit
(R2 > 0.95 or 95%), indicating a strong fit to the FOS database. Also, the employed ANN
model exhibits satisfactory performance (R2 = 0.9950 and RMSE = 0.0159). However,
among the developed ANNs, the ANN-DE was found to be the least effective model with
R2 = 0.9039 and RMSE = 0.0669.

Table 2. Model performance during the training phase.

Indices ANN-ALO ANN-BBO ANN-CPA ANN-DE ANN-EO ANN-FF ANN-GA ANN-PSO ANN

MAE 0.0087 0.0128 0.0088 0.0520 0.0067 0.0031 0.0306 0.0212 0.0124
NS 0.9968 0.9933 0.9970 0.9024 0.9981 0.9996 0.9687 0.9826 0.9949
PI 1.9814 1.9691 1.9824 1.7385 1.9868 1.9952 1.8994 1.9367 1.9738
R2 0.9968 0.9934 0.9970 0.9039 0.9981 0.9996 0.9688 0.9826 0.9950

RMSE 0.0121 0.0175 0.0117 0.0669 0.0094 0.0041 0.0378 0.0283 0.0159
WMAPE 0.0202 0.0295 0.0204 0.1206 0.0155 0.0072 0.0710 0.0490 0.0266

Table 3. Model performance during the testing phase.

Indices ANN-ALO ANN-BBO ANN-CPA ANN-DE ANN-EO ANN-FF ANN-GA ANN-PSO ANN

MAE 0.0095 0.0144 0.0102 0.0555 0.0078 0.0032 0.0342 0.0255 0.0102
NS 0.9969 0.9927 0.9963 0.8938 0.9978 0.9996 0.9551 0.9722 0.9961
PI 1.9813 1.9667 1.9791 1.7112 1.9853 1.9951 1.8634 1.9074 1.9789
R2 0.9969 0.9931 0.9964 0.8939 0.9979 0.9996 0.9563 0.9727 0.9961

RMSE 0.0124 0.0188 0.0135 0.0721 0.0103 0.0042 0.0469 0.0369 0.0133
WMAPE 0.0206 0.0311 0.0220 0.1198 0.0169 0.0070 0.0737 0.0549 0.0233

The remaining dataset, referred to as the testing subset, was utilized to assess the
model’s capacity for generalization after its construction. The performance indicators uti-
lized to evaluate the model’s performance during the training phase were also determined
for the testing subset and presented in Table 3. The outcomes reveal that the built ANN-FF
achieved the highest precision with R2 = 0.9996 and RMSE = 0.0042, followed by ANN-EO
(R2 = 0.9979 and RMSE = 0.0103), ANN-ALO (R2 = 0.9969 and RMSE = 0.0124), and so on
(see Table 3 for more details). In the testing phase, the performance of the employed ANN
was determined to be R2 = 0.9961 and RMSE = 0.0133, which is quite satisfactory compared
to some of the hybrid ANNs. Nonetheless, the developed ANN-FF model attained the
most precise performance in both phases of FOS estimation. For better demonstration,
scatterplot, error plot, and line plot between the actual and estimated FOS values are
presented in Figures 12 and 13 for the training and testing phases, respectively. Herein,
the best-performing model, i.e., ANN-FF, is only illustrated. In the following sub-section,
assessments of the POF of Mount St. Helen are presented.
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Figure 12. Illustration of (a) scatter plot, (b) error plot, and (c) line plot for the training dataset.
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Figure 13. Illustration of (a) scatter plot, (b) error plot, and (c) line plot for the testing dataset.

7.3. Assessment of POF

The results of probabilistic analyses of the volcanic slope of Mount St. Helen are
presented in this sub-section. As previously indicated, the ANN-FF model, a superior
hybrid ANN, was used to undertake the probabilistic assessments. Assuming a specific
mean (µ) for different rock parameters, the standard deviation (σ) was calculated us-
ing: σ = µ × COV. The details of COV considered in this study are presented in Table 4.
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Note that the values of COVs considered in this study is in line with the COV range pre-
sented in the existing literature. The steps of probabilistic analysis is organized as follows:
(i) determination of µ and COVs for different rock parameters viz., c, φ, and γ; (ii) compute
the σFOS of the predicted FOS values; (iii) use rock properties and their standard deviations
to produce random values; (iv) select additional input parameters such as ke; (v) dataset
finalization for five different ke values; (vi) dataset normalization as per minimum and
maximum values of actual database (as presented in Table 1); (vii) estimation of FOS using
the developed ANN-FF model, and (viii) the estimation of β and POF as per Section 4.3.

Note that, five different combinations of COV (Cases 1 to 5) were considered in
this study. The COVs of c and φ were set in the range of 10–30% by 5% and 2–10%
by 2%, respectively. However, a constant COV of 5% was considered for parameter γ.
Table 4 displays COV values for all five cases. To perform probabilistic analysis, a total of
30 samples were generated against each COV case, resulting in a total of 150 (i.e., 30 × 5)
samples. These samples were investigated against five ke values. Therefore, 25 instances
(i.e., 5 COV cases and 5 ke sets) were investigated. The results of probabilistic analyses are
presented in Table 5. Herein, the values of POF are presented in % terms. According to the
results, the values of β exhibit a range of 9.51–14.30, 5.96–9.17, 4.06–6.17, 3.42–5.45, and
2.89–4.64 for COV cases 1 to 5, respectively. Contrarily, the values of β were found to fall
within the ranges of 4.64–14.30, 4.23–13.26, 3.63–12.33, 3.44–11.06, and 2.89–9.51 against ke
sets 1 to 5, respectively. In non-seismic conditions, the values of β were determined to be
between 4.64 and 14.30, indicating lower POF and a high degree of certainty. For this case,
the POF falls in the range of 1.1 × 10−44 to 1.7 × 10−4. However, in seismic conditions,
the values of POF fall between 2.1 × 10−38 and 1.2 × 10−3 against ke = 0.05, 5.5 × 10−33

and 0.01 against ke = 0.10, 9.8 × 10−27 and 0.03 against ke = 0.15, and 9.7 × 10−20 and 0.19
against ke = 0.20. For better illustrations, Figure 14 represents the variation of β and POF
for different COV and ke values.

According to the information presented in Table 5 and Figure 14, β of the Mount St.
Helen reduces when COV and ke increase, indicating higher POF. Also, the impact of COV
on the POF was observed throughout a range of ke values. Thus, it can be stated that
the selection of appropriate values for the COVs has a major impact on the slope failure
probability. Using GA and MCS, Tun et al. [38] conducted RA of the same slope of the
Mount St. Helen. In their studies, the authors assumed material homogeneity and ignored
the pore pressure ratio and seismic loading. Using a single COV of 23% for c and 7% for φ,
Tun et al. [38] reported β = 6.14 and POF = 0.0%, i.e., very low POF.

Similarly, using the MCS approach, the β and POF values were reported as 5.89 and
0.0%, respectively. Nonetheless, details of generated samples and a sample calculation
for β and POF are presented in Appendix A. Herein, the samples generated with COV
Case 1 are only presented. However, the values of β and POF are shown for all the five
ke combinations. The details of weights and biases of the developed ANN-FF model are
given in Appendix B, which can be used to assess β and POF for other cases. Moreover, the
developed MATLAB model of ANN-FF and DEM profiles are included as Supplementary
Materials for future studies.

Table 4. Details of mean and COV cases.

Parameter Mean COV (%) Cases COV Reference

Case 1 Case 2 Case 3 Case 4 Case 5 Value/Range

c 1000 10% 15% 20% 25% 30% 23% Tun et al. [38]
φ 40 2% 4% 6% 8% 10% 7% Tun et al. [38]
γ 24 5% 5% 5% 5% 5% 3–7% Harr [78]
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Table 5. Results of probabilistic analysis.

Cases β and POF β and POF (%)

Set 1 Set 2 Set 3 Set 4 Set 5

Case 1 β 14.30 13.26 12.33 11.06 9.51
POF 1.1 × 10−44 2.1 × 10−38 5.5 × 10−33 9.8 × 10−27 9.7 × 10−20

Case 2 β 9.17 8.43 7.97 6.97 5.96
POF 2.4 × 10−18 1.7 × 10−15 3.9 × 10−13 1.6 × 10−10 1.3 × 10−7

Case 3 β 6.17 5.72 5.28 4.77 4.06
POF 3.3 × 10−8 5.4 × 10−7 5.4 × 10−6 9.2 × 10−5 2.5 × 10−3

Case 4 β 5.45 4.98 4.67 4.07 3.42
POF 2.5 × 10−6 3.2 × 10−5 2.4 × 10−4 2.4 × 10−3 3.1 × 10−2

Case 5 β 4.64 4.23 3.63 3.44 2.89
POF 1.7 × 10−4 1.2 × 10−3 0.01 0.03 0.19
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8. Summary and Conclusions

RA was carried out on the real topography of Mount St. Helens, which collapsed
in 1980 due to an eruption, and the results are described in this study. Initially, the FOS
was determined by performing a series of calculations in Scoops3D with various input
parameters, such as rock characteristics that vary with location and seismic coefficient.
The next step was to construct eight hybrid ANNs, using FOS as an output and the
corresponding rock parameters and ke as inputs. After performance assessment, the
best-performing model, i.e., ANN-FF (based on performance in the testing phase with
R2 = 0.9996 and RMSE = 0.0042), was chosen for probabilistic analyses the Mount St. Helen
in seismic and non-seismic scenarios.
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For this purpose, five distinct COV combinations were investigated for five different
ke values, varying between 0 and 0.20. According to the experimental results, the POF
varies in the range of 1.1 × 10−44 to 1.7 × 10−04 and 2.1 × 10−38 to 0.19 in non-seismic
and seismic conditions, respectively. Even at the high COV and seismic levels, the POF
was between 9.7 × 10−20 and 0.19. These results indicate that the failure probability of
the slope is negligible even at higher COV levels. Thus, it is deduced that if Mount St.
Helens does not erupt, COVs will have little effect on the POF. Given the uncertainty of rock
properties, the suggested ANN-FF-based RA is determined to be an appropriate solution
for calculating the POF of the Mount St. Helen.

Furthermore, the proposed technique demonstrates an accurate estimation of the FOS
of the slope irrespective of seismic conditions. The proposed ANN-FF has the following
advantages: (i) improved generalization, (ii) faster convergence, and (iii) higher prediction
accuracy in both phases. However, the suggested ANN-FF model has higher computational
cost than other hybrid ANNs built in this study. In addition, the above investigation
was carried out using the upper and lower ranges of rock parameters (as detailed in
Table 1). Hence, it can be deduced that the above analysis may not yield satisfactory
results beyond these values, which can be considered as one of the limitations of the
present study. However, further assessment is required for this case. Therefore, the
following points should be considered as the future scope of the study: (i) implementation
of improved mechanism to reduce the computational cost of ANN-FF paradigm; (ii) in-
depth assessment of slope failure probability at high COV and larger range of c, Ø, and γ

parameters, (iii) adoption of Mononobe-Okabe trick combined with seismic actions for an
in-depth assessment, and (iv) a comprehensive assessment of other hybrid models of ANN,
RVM, and ELM constructed with different group of OAs. Nevertheless, per the author‘s
knowledge and literature review, this study is the primary implementation of the ANN-FF
model to perform probabilistic analyses of the Mount St. Helens in seismic and non-seismic
conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math11183809/s1, The developed MATLAB model and Scoops3D
DEM profiles are attached as Supplementary Materials.

Author Contributions: Conceptualization, A.B. (Avijit Burman) and A.B. (Abidhan Bardhan); method-
ology, S.K. and A.B. (Avijit Burman); software, S.K. and A.B. (Abidhan Bardhan); formal analysis, S.K.
and A.B. (Abidhan Bardhan); validation, S.K. and A.B. (Abidhan Bardhan); writing—original draft
preparation, S.K., S.S.C., A.B. (Avijit Burman), R.K.S. and A.B. (Abidhan Bardhan); writing—review
and editing, A.B. (Abidhan Bardhan) and P.G.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Attached as Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

2D Two-dimensional
3D Three-dimensional
ABC Artificial bee colony
ALO Ant lion optimizer
ANN Artificial neural network
ANN-ABC Hybrid model of ANN and ABC
ANN-ALO Hybrid model of ANN and ALO
ANN-BBO Hybrid model of ANN and BBO
ANN-CPA Hybrid model of ANN and CPA
ANN-DE Hybrid model of ANN and DE
ANN-EO Hybrid model of ANN and EO
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ANN-FF Hybrid model of ANN and FF
ANN-GA Hybrid model of ANN and GA
ANN-PSO Hybrid model of ANN and PSO
BBBC Big Bang Big Crunch
BBO Biogeography based optimization
COV Coefficient of variation
CPA Colony predation algorithm
DE Differential evolution
DEM Digital elevation model
EA Evolutionary algorithms
ELM Extreme learning machine
EO Equilibrium optimizer
ES Evolution strategy
FDO Fitness Dependent Optimizer
FF Fire fly algorithm
FORM First-order reliability method
FOS Factor of safety
FOSM First-order second-moment method
GA Genetic algorithm
GIS Geographic information system
GSA Gravitational search algorithm
GWO Grey wolf optimizer
HS Harmony search
ICA Imperialist competitive algorithm
LEM Limit equilibrium method
MAE Mean absolute error
MARS Multivariate adaptive regression splines
MCS Monte Carlo simulation
ML Machine learning
NSE Nash-Sutcliffe efficiency
OA Optimization algorithm
PI Performance index
POF Probability of failure
PSO Particle swarm optimization
R2 Coefficient of determination
RA Reliability analysis
RMSE Root mean square error
RSM Response surface method
RVM Relevance vector machine
SA Simulated annealing
SI Swarm intelligence
SRM Strength reduction method
SSA Salp swarm algorithm
TLBO Teaching learning-based optimization
USGS United States Geological Survey
WMAPE Weighted mean absolute percentage error
Nomenclature
c Cohesion
itrmax maximum number of iterations
ke seismic coefficient
lb Lower bound
NHL Number of hidden layers
NH Number of hidden neurons
NS Population/swarm size
ub Upper bound
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φ Angle of internal friction
γ Bulk density
β Reliability index
µ Mean
σ Standard deviation
µFOS Mean of FOS
σFOS Standard deviation of FOS

Appendix A. Sample Calculation

Details of generated samples and estimation of β and POF are presented in Table A1.

Table A1. Generated parameters and estimated FOS for COV Case 1.

c φ γ
FOS at
ke = 0

FOS at
ke = 0.05

FOS at
ke = 0.10

FOS at
ke = 0.15

FOS at
ke = 0.20

1046.41 41.15 23.62 2.314 2.089 1.897 1.734 1.587
797.24 41.58 24.32 2.164 1.950 1.771 1.619 1.483

1049.63 40.14 23.84 2.248 2.030 1.846 1.687 1.542
1148.52 39.24 22.88 2.283 2.060 1.872 1.708 1.560
885.52 39.70 21.71 2.175 1.959 1.777 1.623 1.485
921.36 40.39 23.78 2.182 1.969 1.789 1.636 1.498

1038.03 40.56 23.88 2.265 2.045 1.859 1.699 1.554
940.10 38.51 25.82 2.034 1.842 1.682 1.540 1.407

1033.03 39.00 25.70 2.119 1.918 1.748 1.599 1.460
878.54 39.22 26.09 2.032 1.840 1.680 1.539 1.408
852.49 39.70 23.77 2.100 1.895 1.723 1.575 1.441
902.73 40.02 22.54 2.182 1.966 1.784 1.630 1.492

1015.86 41.65 22.80 2.347 2.118 1.922 1.757 1.609
998.84 40.78 22.61 2.288 2.064 1.873 1.712 1.567
942.17 39.21 25.13 2.091 1.891 1.724 1.577 1.443
977.59 39.21 24.06 2.141 1.934 1.760 1.610 1.472

1149.28 39.61 23.85 2.278 2.057 1.869 1.706 1.557
1170.86 39.69 25.78 2.237 2.021 1.838 1.676 1.527
865.25 40.80 22.80 2.197 1.979 1.795 1.640 1.501

1088.80 40.22 23.02 2.301 2.077 1.887 1.723 1.575
933.46 40.11 22.94 2.195 1.979 1.798 1.643 1.504

1064.66 40.38 24.35 2.258 2.040 1.855 1.695 1.549
932.30 38.96 24.87 2.078 1.879 1.712 1.567 1.433

1111.25 39.74 26.13 2.195 1.986 1.808 1.651 1.507
1010.37 39.19 25.14 2.131 1.928 1.756 1.606 1.468
1075.73 40.25 23.85 2.271 2.051 1.864 1.703 1.557
1112.64 40.15 24.03 2.283 2.062 1.874 1.711 1.563
998.55 41.15 25.07 2.242 2.026 1.843 1.686 1.543
921.31 40.47 22.52 2.221 2.001 1.816 1.659 1.519

1137.51 39.23 23.13 2.269 2.048 1.861 1.699 1.551

µFOS 2.204 1.990 1.809 1.654 1.512
σFOS 0.0842 0.0747 0.0659 0.0591 0.0539
β 14.30 13.26 12.28 11.06 9.51

POF (%) 1.1 ×
10−44

2.1 ×
10−38

5.5 ×
10−33

9.8 ×
10−27

9.7 ×
10−20

Appendix B. Details of Weights and Biases

Details of weights and biases for the developed ANN-FF model are presented below.
Input-hidden layer weights:

[1.2128 1.1998 −0.0983 0.0943 0.4363 −0.3550 −0.4031 −0.8791
1.7655 0.0843 −0.4341 0.2536 2.1245 −0.0737 1.6471 −2.0288
−0.3319 1.1062 0.0289 −0.0084 0.4660 −0.6024 1.3598 0.4425
0.9995 0.7243 0.4918 −0.2207 0.1650 −0.9283 0.2813 −1.2230]
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Hidden layer biases:

[−2.2941 −1.3986 1.4235 0.0455 0.2659 −0.8758 −1.8870 2.4074]

Hidden-output layer weights:

[−0.0643 −0.0304 −1.1639 1.3973 0.0009 0.0614 0.0022 −0.0685]

Output layer bias:

[0.7887]
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