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Abstract: The tortuosity of retinal blood vessels is an important phenomenon, and it can act as a
biomarker in the diagnosis of several eye diseases. The study of abnormalities in the tortuosity of
retinal arteries and veins provides ophthalmologists with important information for disease diagnosis.
Our study aims to compare the tortuosity relation between retinal arteries and veins by quantifying
the vessels’ tortuosity in the retina using 14 tortuosity measures applied to the AV-classification retinal
dataset. Two feature sets are created, one for arteries and the other for veins. The comparison between
the tortuosity of arteries and veins is based on a two-sample T-test statistical method, a regression
analysis between the quantified tortuosity features, principal component analysis at the dataset level,
and the introduction of the arteriovenous length ratios concept to compare the variations in these
new ratios to see the tortuosity behavior in each image. The methods’ results have shown that the
tortuosity of retinal arteries and veins is similar. The result of the two-sample T-test supports the
research hypothesis, as the P-value obtained was greater than 0.05. Furthermore, the regression
analysis between arteries and veins features showed a high correlation (r2 = 89.39% and 89.11%) for
arteries and veins, respectively. The study concludes that the retinal vessel type has no statistical
significance in the tortuosity calculation results.

Keywords: retinal images; retinal blood vessels; skeletonization; tortuosity; inflection count metric;
six sigma; linear regression analysis; two-sample T-test; principal component analysis; arteriovenous
length ratio (AVLR)

MSC: 68U10; 92C55; 65D18

1. Introduction

The human retina fundus images, where the blood arteries and veins are readily visible,
are crucial for identifying many eye illnesses and vessel morphology changes. It is also
evident that the vessel morphological changes in the retinal vessels indicate the worsening
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of eye diseases. For example, the twistedness and the vessel thickness changes are signals
of eye disease severity such as diabetic retinopathy [1,2], hypertensive retinopathy [3],
central retinal vein occlusion (CRVO) [4], retinopathy of prematurity (ROP) [5,6], systemic
hypertension [7], and the plus disease. Tortuosity is also linked to gender, hypertension,
aging, and other cardiovascular risk factors [8]. The tortuosity patterns as explained
in [9] are as follows:

• Looping: when the vessel is S- or C-shaped with a multivessel symmetry sign.
• Coiling: when the vessel is chapped with a 360 deg turn in the vessel itself.
• Kinking: when it manifests arterial angulation in acute levels.

Many studies have reviewed and surveyed the tortuosity phenomenon. For example,
in [10], the tortuosity measures have been grouped as curvature-based, distance-based,
and a combination of the two, with a considerable description level of each algorithm and
their formulas. The therapeutic use of the tortuosity measurements has been thoroughly
evaluated by [11]. In contrast, Ref. [12] comprehensively analyzed the relationship between
diabetic retinopathy and vascular tortuosity.

Several researchers have assessed and evaluated Tortuosity Metrics. For example, to
calculate the length increase between two vessel points, Ref. [13] calculated the arc-to-chord
ratio of a vessel segment. However, the drawback of this method is its insensitivity to the
segment shape. The same approach was implemented in [14] and enhanced in [15,16] by
applying a weighted scheme approach to ROP patients. The distance metric measure was
enhanced by Grisan et al. [17], who improved the distance metric measure by considering
the width of the curvature and the number of bends.

According to Wallace et al., [18], who used the ROP tool to a predefined array of
pixels along the arteries and veins, the degree of tortuosity between two pixels is defined
as the ratio of the length of the fragment curve divided by the length of the straightened
curve joining these pixels. Although unaffected by the vessel’s number of curve bends, this
method is user-dependent.

It should be highlighted that the results of arc-to-chord-based tortuosity measuring
methodologies must be more accurate since they are not sensitive to vessel fragments’
morphological changes. Chandrinos et al.’s [19] study provided curvature-based tortuosity
measure methodologies, in which the local average angle change approach is used, and the
direction change of the segment curve is introduced. The method’s drawback is that vessel
branching with identical courses will not impact the tortuosity measurement. Integrals
were used by Hart et al. [20] to determine the overall curvature; this approach is not
sensitive to variations in the convexity of the vessel fragment curvature. On the other
hand, Ref. [21] employed the pixels of the vessel fragment centerline and the addition of
the second derivatives of the centerline coordinates. This method’s performance relies on
the vessel centerline’s localization stage. When applied to type 1 diabetes cases, Ref. [22]
defines tortuosity as the accumulation of angle changes throughout the length of a vessel,
utilizing Hart’s integral of the ’total square curvature (TSC)’ in diabetes of type 1 [1]. In [23],
a unique angle-variation-based tortuosity measure was developed using computer vision
methods to extract the centerline of the image vessel tree and Gabor filters to segment the
vessel tree and calculate the tortuosity using curvature metrics like the mean curvature by
unit length and standard curvature deviation. The following works provide summaries of
the hybrid tortuosity measures. Wavelet and fractal metrics were used in [24] to create a
multiscale analysis tortuosity detection method. The vessel was estimated by Dougherty
and Johnson [25] using a polynomial spline fitting. The precision of this method depends on
the size of the data ball (dataset). The retinal vessel tortuosity level was calculated in [26,27]
by building a resilient matrix based on the curvature and the chain coding scheme. This
method requires the curvature k-value to be correctly determined. Chakravarty utilized a
Quadratic Polynomial Decomposition, and Sivaswamy [28] utilized a Quadratic Polynomial
Decomposition to create ’the tortuosity index (TI)’. The method can distinguish between
the vessel bend’s relative shape, orientation, and size, although their algorithm accuracy
could have been better than the approach in [29].
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By employing machine learning techniques, Ref. [30] suggested a technique that
identifies the global tortuosity for clinical assessment. An eight-dimensions feature vector
was initially generated by calculating the tortuosity and extracting the features after data
processing. The top four features were then selected using a feature-selection technique
based on the classification correlation. Finally, images from the databases were utilized
to evaluate the performance of the approach. The highest sensitivity was provided by
this method, which made use of the support vector machine (SVM) classifier. The feature
selection approach also lowered the computational complexity and enhanced the overall
sensitivity. Increased sensitivity was attained with this unique featured classifier. An
observation noticed during the AV classification dataset preparation ignites this research’s
incentive: the arteries are tortuous in certain retinal images in the AV classification dataset.
At the same time, the veins are normal, while in others, the veins are tortuous while the
arteries are normal, and in other images, both the arteries and veins are tortuous or normal.

Although many studies measure the tortuosity of retinal vessels, no formula indicates
if the tortuosity is in the arteries, veins, or both. This quantification represents a fresh area
for future ophthalmic research, as it is studied for the first time in the field. Furthermore,
the existing tortuosity calculation formulas in the literature generally measure tortuosity.

In this work, we investigated the tortuosity behavior difference between arteries and
veins, and we assessed the tortuosity of all artery and vein segments in every retinal
image (504 images) using the AV classification dataset. Then, we established formulas
that statistically showed that, from a geometric aspect, the tortuosity of the arteries and
veins are similar. The authors see this quantification as a unique area for future study
on diagnosing pathological eye diseases related to arteries and veins using retinal image
processing that will help give a clear path toward medical application.

This study aims to study the relationship between the arteries’ and veins’ tortuosity
and address the research question, “Do the tortuosity metrics provide the same results if
calculated for arteries or veins?”

Our strategy involves using 14 tortuosity measures on 504 colored retinal pictures
from the AV classification database. These measures are applied to the arteries and veins.
This formulates two feature sets, one for arteries and another for veins. Linear regression
techniques and a two-sample T-test are used to support the research claim.

The main contributions of this work are as follows:

• Employs the optimized unsupervised machine learning method [31] to segment the
vessels from the retina and deep learning to segment the arteries from the veins [32].

• Extracts the enhanced vessel segments using our approach in [33].
• The tortuosity is calculated using 14 measures for a large-scale AV classification dataset

containing 504 retinal images with arteries and veins labels.
• Identifies the most strongly correlated components that reduced dimensionality via

the correlation matrix and principal component analysis (PCA).
• A statistical hypothesis is introduced and statistically proved using two statistical

methods: the two-sample T-test and linear regression models.
• A new arteriovenous length ratio (AVLR) is introduced to emphasize the above-

concluded result at the image-level tortuosity.
• The research findings will help build an auto-diagnosing decision support system for

localizing the tortuosity in arteries only, veins only, or even in one of the two eyes.

The remainder of this research work is composed of four main sections. Section 2
covers the creation of the materials and proposed methods to prove the research claim.
Section 3 covers the results of the statistical techniques that proved the research claim.
Finally, Sections 4 and 5 cover the discussions and the conclusion, respectively.

2. Methods and Materials
2.1. Materials

The authors used the AV classification dataset from [32]. The dataset is ideally suited
for solving the challenges of vascular segmentation and AV classification, two forms of
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retinal image processing using deep learning algorithms (see Figure 1). The 504 original
colored images of fifty middle-aged participants were scanned using non-mydriatic fundus
cameras (Topcon) at a resolution of 2002 × 2000 pixels to build the dataset, which was then
labeled with two different types of ground truth information. The right and left eye images
were both collected. There are limited publicly available datasets for experimenting with
retinal image processing. These datasets, such as the DRIVE dataset (20 images), the STARE
dataset (60 images), and the CHASEDB dataset (28 images), are very small. To address this
issue, the AV classification dataset has been introduced. All 504 retinal images were used to
calculate tortuosity metrics values for each vessel segment in the AV classification dataset
images. Across 504 images, there were a total of 64,244 segments. The dataset is vast and
can be utilized to assess any morphological transformations in a retinal image or observe
other phenomena in the retinal vasculature.

Figure 1. The AV classification dataset.

2.2. Method

In order to support the research claim, the approach in this study used statistical
inferential analysis to calculate the tortuosity using 14 tortuosity measures and to create
two feature sets, one for arteries and the other for veins. The specific methods are shown in
Figure 2.

2.3. Feature Engineering

A row in the feature set was produced for each of the 504 photos in the materials
dataset, as shown in Figure 3. An unsupervised machine learning method that classifies
each pixel in a retinal image as a vessel pixel (white) or background pixel (black) is pro-
posed [31]. This method uses a learned function, denoted as f (), which takes the grayscale
color of the pixel as input and produces a binary output pixel y = f (x) that classifies each
pixel whether it is in the vessel pixel or background pixel. We segmented the vasculature
tree for each retinal image using [31]. In the black and white vessels segmented image, a
process was conducted of iteratively thinning to skeletonize the vascular tree. The vessel
segments were extracted after the intersection/bifurcation points were found, where each
vessel fragment linked to two endpoints or intersection/bifurcation points in the skeleton.
Each vessel segment was classified as an artery or vein segment using a deep learning
method that utilized a fully connected convolutional neural network [32]. The deep neural
network consisted of 96 internal deep layers that enhanced the model’s performance. The
learned model took the pixel of the retinal image as input and classified it as either Artery,
Vein, or background. The output pixel y = g(x) was obtained using a learned function, g(),
which takes the pixel color as input and produces a colored output pixel (red for the artery,
blue for the vein, and yellow for the background).
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Figure 2. The method workflow.

The fourteen tortuosity Formula (1) through (14) shown in Table 1 were used to
compute the vessel tortuosity for each vessel segment for each vessel fragment retrieved
from the retina. The resulting features of each vessel segment were added to the feature set.
The description of each tortuosity measure is summarized in Table 1.
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Table 1. Tortuosity metrics used in the feature set.

Metric Measure Description Equation

Chord: The shortest distance between the two segments ends (a1, b1),
(a2, b2).

Chord =
√
(a2 − a1)2 + (b2 − b1)2 (1)

Arc: The maximum non-infinite quasi-Euclidean spacing between the two
ends of the segment’s centerline skeleton, the arc-length separating between
the segment’s endpoints, the Separation in terms of the geodesics.

d(γ(t2)− γ(t1)) = v ∗ |t2− t1| (2)

Distance Metric (DM): The ratio of dividing the arc over chord. It is the
most common measure in the scientific literature [34].

DM =
Arc

Chord
(3)

Tortuosity density (TD): The sum is computed by splitting the segment
into sub-segments and selecting sample points (n). TD =

n− 1
n

1
Arc

n

∑
i=1

[
Lcsi
Lxsi

− 1] (4)

The curvature at point p(a,b): C(p) =
a′(p) ∗ b′′(p)− b′(p) ∗ a′′(p)

(a′(p)2 + b′(p)2)
3
2

. (5)

τ1: Characterized by TD-1. τ1 = TD− 1 (6)

τ2: Integral sum of C(p). τ2 =
∫ tn

to

C(p)dt (7)

τ3: Integral sum of C(p)2 τ3 =
∫ tn

to

C(p)2dt (8)

τ4: Integral sum of C(p)/Arc τ4 =
∫ tn

to

C(p)
Arc

dt (9)

τ5: Integral sum of C(p)
Arc τ5 =

∫ tn

to

C(p)2

Chird
dt (10)

τ6: Integral sum of C(p)/Chordlength τ6 =
∫ tn

to

C(p)
Chord

dt (11)

τ7: Integral sum of C(p) ∗ C(p) / Chordlength τ7 =
∫ tn

to

C(p)2

Chord
dt (12)

SOAM: The summation of the angles between the two vectors created by
three segment points at the segment skeleton in succession. The length of
the segment is used to obtain the normalized sum of these orientations
along the segment [34].

SOAM =
n

∑
i=1

(180− αi)

Arc
(13)

ICM: The multiplication of the segment’s inflection points count by the
distance metric.

ICM = (In f lection_points + 1) ∗ Arc
Chord

(14)

In the feature set that contains the 14 tortuosity measures calculated for the vessel
segment, the results of those computations are inserted as a line. After creating image-wise
tortuosity summary statistics to complete the images-level feature set, quantified tortuosity
measurements were computed for each vessel segment based on the results to complete
the fragment-wise feature set (see Figure 4).

Tortuosity Metrics and Feature Set Preparation

The features extracted for each segment were the straight-line distance, the geodesic
distance, and a collection of other distance- and curvature-based tortuosity measurements.

The ERD diagram in Figure 4 shows the tables where the details of the images and
their segments are recorded. Two feature sets were formed, one at the segment level and
the other at the image level.
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Figure 3. Snapshot of the retinal image at each step: (a) the colored retina; (b) the segmented vessels;
(c) cross-section/branching points removal; (d) the vasculature tree skeleton; (e) vessel fragments;
(f) calculation of vessel tortuosity.

Figure 4. Entity relationship diagram for the generated features. It displays three prepared feature
sets, which can be viewed as three Excel sheets or tables. The first table contains the names of all
504 retinal images, while the second table provides image-wise statistical summaries (Min, Max,
Average, sum) of each tortuosity metric for each image (with 504 rows in total), which comprises
76 columns. The third table contains segment-wise statistical details. To view a sample of the segment-
wise table data, please see the results section. These three tables are filled separately for arteries and
veins, with the same Tortuosity metrics calculations are applied to both.

Figure 5 visually represents a few tortuosity metrics. The tortuosity attributes for each
vessel are intended to be recorded in a record that will establish a row for each fragment in
the segment-level feature set. Each image’s totals were summed and grouped to form the
imagewise summaries.
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Figure 5. Visualization of four tortuosity metrics: (a) Tortuosity-index or Distance Metric;
(b) Tortuosity-density; (c) SOAM; (d) ICM.

2.4. Feature Selection

Feature selection was achieved using correlation analysis and principal component
analysis.

2.4.1. Correlation Analysis

The correlation analysis is used as a statistical method to find the relationship signifi-
cance and strength between two variables [35]. The equation used in our study is ’Pearson’s
Product-Moment Correlation [36] for calculating the correlation coefficient (15).

ρab =
n ∑ aibi −∑ ai ∑ bi√

(n ∑ a2
i − (∑ ai)2)

√
(n ∑ b2

i − (∑ bi)2)
(15)

The closer the correlation coefficient result is to (1) or (−1), the stronger the increasing
or decreasing relationship between the variables, respectively [36]. Hence, the research
question that the correlation is examining here is as follows: Is there a statistically significant
difference between Tortuosity_Metric_a results when the segment is an artery and when
the same segment is a vein?

2.4.2. Principal Component Analysis

PCA is a linear dimensionality reduction method that operates in an unsupervised
manner. Its objective is to reduce the number of variables that are correlated with each other
to a smaller number of independent variables without losing its impact on the dependent
variables and effectively capture the primary causes of variability present within the dataset.
It provides an overview of linear relationships between inputs and variables and visualizes
this linear relationship (Note: visualized in Section 3.2).

The technique is extensively employed for the purpose of feature extraction and data
compression, and it can also serve as a valuable tool for exploratory data analysis or as
a preliminary step in the application of machine learning algorithms. The components
that emerge from the analysis are ordered based on the extent to which they account
for the variance in the data. These components can be employed for data visualization,
interpretation, clustering, or classification. In this research work case, after having it
ordered, the top six components were used to reduce the tortuosity metrics to the top
six and verify it with the correlation results to confirm the dimensionality reduction and
features finally selected that contribute to building the regression formulas.
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2.5. Hypothesis Research Claim

By employing inferential analysis and hypothesis testing, we derived the research null
hypothesis and its alternative hypothesis as follows:

Ho : µICMArteries = µICMveins (16)

H1 : µICMArteries 6= µICMveins (17)

where µICMArteries and µICMVeins are the average results of ‘In f lection_count_metric_Normal’
of the vein fragments and artery fragments, respectively.

We are checking that there is no significant difference in the means of the arteries
µICMArteries and veins µICMVeins datasets. In a Two-sample T-test, the null hypothesis is
always the claim that the means are equivalent, while the alternative hypothesis claims
otherwise. This way, the null hypothesis is accepted if the p-value is greater than the critical
value (0.05); otherwise, the null hypothesis is rejected [37].

Aiming to find the optimal tortuosity measure, we have calculated the correlation
matrix that measures the significant mutual relationship between every two measures to
identify which measure has the dominant tortuosity features of the others. That character-
izes the highest tortuosity phenomena in the retinal vasculature. This statistical analysis
identified the top two tortuosity measures and the optimal set of other correlated mea-
sures. This helped in selecting the highest correlated six tortuosity metrics to be selected to
proceed in the analysis.

2.6. The Research Question

To find the answer to the research question: “Is there a difference in tortuosity behavior
between arteries and veins?” the authors split the segment-wise feature set into two
sets. The first contained the artery segments’ tortuosity-features details, and the second
contained the vein segments’ tortuosity-features details.

The research question is answered using 1—linear regression, 2—two sample T-test,
3—principal component analysis (PCA), 4—correlation analysis, and 5—the introduction
of arteriovenous length ratio.

Through PCA and correlation analysis, dimensionality reduction was achieved, which
helped identify the six highest correlated tortuosity metrics out of the total of fourteen.
These metrics were then used in the following analysis steps. The regression analysis
was performed on each feature set to find the tortuosity formula of each feature set and
to compare the R-Sq values. Likewise, the two-sample T-test was performed on the two
feature sets. The first sample contained the ‘Inflection count metric normal’ values for
arteries records, and the second contained the ’Inflection count metric normal’ for veins
records.

2.7. Image-Level Statistical Analysis for Tortuosity Behavior between Arteries and Veins

In one retinal image of a specific patient, the tortuosity may appear in arteries alone,
veins alone, or both. On the other hand, if there is no tortuosity, the vessels branch smoothly
from the optic disc until the smallest vessel branch appears in the retina. The tortuosity
shape is generally similar to arteries and veins when it occurs. To compare the tortuosity
behavior of arteries and veins at the image level, averaging summaries were collected for
all artery segments, and the same was applied to vein segments to generate the formulas in
Table 2.

Formulas (18) and (19) were generated to study the characteristics of the ratio of
artery length to vein length for each image of the AV classification dataset. Similarly,
Formulas (20)–(26) were generated to study the characteristics of the mean tortuosity metric
for the arteries over the same mean tortuosity metric for the veins (DM, ICM, ICMb, SOAM,
CL, NC, and SDAC) for each image of the AV classification dataset.
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Table 2. Introduced Arteriovenous Length Ratios.

Introduced Length Ratio Description Equation

Arteriovenous Chord Length Ratio: The ratio of all
arteries’ mean Euclidean distance over all veins’ mean
Euclidean distance in the retinal image.

AV_Chord_Length_Ratio =
Mean(Artery_Chord_Length)
Mean(Vein_Chord_Length)

(18)

Arteriovenous Arc Length Ratio: The ratio of the mean
geodesic distance of all arteries over the mean geodesic
distance of all veins in the retinal image.

AV_Arc_Length_Ratio =
Mean(Artery_Arc_Length)
Mean(Vein_Arc_Length)

(19)

Arteriovenous Distance Metric Ratio: The ratio of all ar-
teries’ mean tortuosity distance metric over the mean tor-
tuosity distance metric of all veins in the retinal image.

AV_DM_Length_Ratio =
Mean(Artery_DM_Length)
Mean(Vein_DM_Length)

(20)

Arteriovenous Inflection Count Metric Ratio: The ratio
of the mean tortuosity Inflection Count Metric of all ar-
teries over the mean tortuosity Inflection Count Metric
of all veins in the retinal image.

AV_ICM_Length_Ratio =
Mean(Artery_ICM_Length)
Mean(Vein_ICM_Length)

(21)

Arteriovenous Inflection Count Metric Binomial Ratio:
The ratio of the mean tortuosity Inflection Count Metric
Binomial of all arteries over the mean tortuosity Inflection
Count Metric Binomial of all veins in the retinal image.

AV_ICMb_Length_Ratio =
Mean(Artery_ICMb_Length)
Mean(Vein_ICMb_Length)

(22)

Arteriovenous Sum of Angles Metric Ratio: The ratio
of the mean tortuosity Sum of Angles metric of all arter-
ies over the mean tortuosity Sum of Angles metric of all
veins in the retinal image.

AV_SOAM_Length_Ratio =
Mean(Artery_SOAM_Length)
Mean(Vein_SOAM_Length)

(23)

Arteriovenous Norm of Curvature Ratio: The mean of
the curvature of all artery segments over the mean cur-
vature of all vein segments in the retinal image.

AV_NC_Length_Ratio =
Mean(Artery_NC_Length)
Mean(Vein_NC_Length)

(24)

Arteriovenous of Standard Deviation of Average cur-
vature Ratio: The ratio of the average-curvature stan-
dard deviation of all arteries over the mean of average
curvature of the standard deviation of all veins in the
retinal image.

AV_SDAC_Length_Ratio =
Mean(Artery_SDAC_Length)
Mean(Vein_SDAC_Length)

(25)

Arteriovenous of Centerline Length Ratio: The ratio of
the mean Centerline Length of all arteries over the mean
Centerline Length of all veins in the retinal image.

AV_CL_Length_Ratio =
Mean(Artery_CL_Length)
Mean(Vein_CL_Length)

(26)

Those ratios should be normally distributed and within the accepted range when the
retinal image is healthy. Meanwhile, for a specific image, such formulas will vary to above
or below the mean of the measure for all the vessel segments in the image if there is a
tortuosity in the retinal veins alone or the retinal arteries alone.

3. Results

By generating the tortuosity feature set of the calculated fourteen tortuosity measures
(see Table 3), it becomes possible to analyze this feature set to answer the research questions
and statistically prove the similarity of the tortuosity phenomena for arteries versus veins.
The feature set is split into two subsets, one for arteries and the other for veins.

3.1. Feature Selection Using Correlation Analysis/Principal Component Analysis

The feature selection, dimensionality reduction, and analysis of the generated feature
set’s tortuosity measures were performed by a correlation study and principal component
analysis (PCA) to determine and visualize the relations between the features.

In the Table 4 correlation matrix values, each cell represents the correlation ρxy between
the corresponding row feature x and column feature y. It represents high significance
whenever the values are close to 1 or (−1).
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Table 3. Sample segments tortuosity results.

Image
No.

Seg.
No.

1-A
2-V Arc Chord DM SOAM ICMn ICMb SDavc Navc τ1 τ2 τ3 τ4 τ5 τ6 τ7

2 42 2 0.1200 0.0900 0.0001 0.1300 0.0007 0.0008 0.0100 0.0014 0.0006 0.0100 0.0003 0.1200 0.1000 0.0050 0.0000

2 44 2 0.1800 0.1400 0.0002 0.3600 0.0011 0.0009 0.0100 0.0022 0.0011 0.0100 0.0001 0.1200 0.1000 0.0050 0.0000

2 46 2 0.0600 0.0400 0.0002 0.1300 0.0003 0.0002 0.0100 0.0009 0.0014 0.0800 0.0500 0.2500 0.3000 0.0090 0.0040

3 2 2 0.0800 0.0500 0.0002 0.1900 0.0002 0.0003 0.0200 0.0015 0.0011 0.0100 0.0001 0.1200 0.1000 0.0050 0.0000

3 4 2 0.3200 0.2700 0.0009 0.1300 0.0024 0.0024 0.1000 0.0041 0.0020 0.1400 0.1400 0.1700 0.2000 0.0060 0.0020

3 5 1 0.0200 0.0100 0.0002 0.0800 0.0001 0.0002 0.0100 0.0004 0.0009 0.0100 0.0001 0.1200 0.1000 0.0050 0.0000

44 117 1 0.2000 0.1600 0.0012 0.0800 0.0008 0.0012 0.0100 0.0021 0.0017 0.2600 0.2600 0.2800 0.3000 0.0100 0.0050

44 119 1 0.0030 0.0073 0.0300 0.0100 0.0011 0.0005 0.0059 0.0001 0.0700 0.0700 0.0600 0.5300 0.5000 0.0600 0.0600

45 1 1 0.1000 0.0700 0.0001 0.1300 0.0006 0.0006 0.0100 0.0014 0.0009 0.0100 0.0003 0.1200 0.1000 0.0050 0.0040

45 2 2 0.0078 0.0076 0.0200 0.0200 0.0020 0.0008 0.1400 0.0017 0.0200 0.0400 0.0200 0.3200 0.3000 0.0100 0.0100

45 3 1 0.0200 0.0100 0.0011 0.2500 0.0005 0.0004 0.0300 0.0011 0.0015 0.0100 0.0004 0.1300 0.1000 0.0050 0.0000

45 4 2 0.0200 0.0079 0.0002 0.0500 0.0000 0.0000 0.0200 0.0004 0.0012 0.0100 0.0000 0.1100 0.1000 0.0050 0.0000

Note: See the abbreviations list on Table 1.
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Table 4. Correlation matrix for the fourteen tortuosity measures.

(1) vessel type 1.00

(2) Chord normalized 0.00 1.00

(3) distance metric 0.00 0.15 1.00

(4) SOAM −0.01 0.48 −0.23 1.00

(5) SOAM radian −0.01 0.48 −0.23 1.00 1.00
(6) inflection count
metric normal 0.00 0.44 0.78 −0.09 −0.09 1.00

(7) inflection count
metric Binomial 0.00 0.24 0.52 −0.04 −0.04 0.71 1.00

(8) Centerline length
(ARC normalized) 0.00 0.30 0.71 −0.10 −0.10 0.86 0.77 1.00

(9) standard deviation
of curvature mean 0.00 0.11 0.53 −0.24 −0.24 0.40 0.24 0.38 1.00

(10) normalized curvature 0.00 0.19 0.56 −0.05 −0.05 0.72 0.41 0.60 0.60 1.00
(11) τ1 0.00 −0.02 0.34 −0.15 −0.15 0.10 0.06 0.08 0.15 0.06 1

(12) τ2 0.00 0.03 0.12 −0.14 −0.14 0.05 0.03 0.05 0.11 0.04 0.10 1.00

(13) τ3 0.00 0.04 0.12 −0.13 −0.13 0.05 0.04 0.06 0.12 0.04 0.10 0.98 1.00

(14) τ4 0.00 −0.11 0.06 −0.19 −0.19 −0.01 −0.01 −0.01 0.05 −0.01 0.17 0.71 0.69 1.00

(15) τ5 0.00 −0.11 0.06 −0.19 −0.19 −0.01 −0.01 −0.01 0.05 −0.01 0.17 0.71 0.69 1.00 1.00

(16) τ6 0.00 −0.04 0.09 −0.07 −0.07 0.00 0.00 0.00 0.02 0.00 0.51 0.25 0.24 0.40 0.40 1.00

(17) τ7 0.00 −0.05 0.09 −0.09 −0.09 0.00 0.00 0.00 0.03 0.00 0.51 0.30 0.30 0.46 0.46 0.99 1
↑Tortuosity Metrics→ (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

Note: The arrows indicate that the numbers in the last row correspond to tortuosity metrics in the first column.
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The PCA is an approach used to reduce the dimensionality where the top repre-
sentative components with high variance are selected, and the rest are ignored. In our
case, the first six dimensions are the strongly correlated tortuosity metrics after being
converted to a normal distribution (Box–Cox transformed). The correlation matrix in
Table 4 shows that the ‘In f lection count metric normal’ feature is highly correlated with the
five features ‘In f lection count metric Binomial’, ‘Centerline length’, ‘Norm o f curvature’,
‘Distance metric’, and ‘Chord normalized’. On the other hand, the ‘Distance metric’ is highly
correlated with the ‘In f lection countmetric normal’, ‘In f lection count metric Binomial’,
‘Centerline-length’, and ‘Norm o f curvature’. Similarly, using the principle component
analysis, the same six metrics are identified among the 14 tortuosity metrics as they are the
highest correlated. All the above six highly correlated features are selected from the two
arteries and veins tortuosity feature sets, while the rest of the features are eliminated.

The results of the regression analysis performed on the feature sets via Minitab and
the generated residual plots showed an R-squared of 89.11% for the veins and 89.39%
for the arteries (refer to Figures 6 and 7). These results indicate that the vessel type is
not a significant factor impacting the tortuosity measures, and they match the previous
correlation matrix in Table 4. Column (4) shows that ρxy equals 0 or is very close to zero,
indicating the non-existence of any linearity or significant relationship between the vessel
type feature and the other analyzed tortuosity metrics.

Figure 6. Artery segments linear regression analysis results for tortuosity metrics data taken from all
the AV classification dataset images. Regression analysis Minitab output and the residual plots.
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Figure 7. Vein segments linear regression analysis results for tortuosity metrics data taken from all
the AV classification dataset images, Minitab output for regression analysis, and the residual plots.

The two composite formulas to calculate tortuosity are very similar, with high R-Sq
89.39% and 89.12%, indicating a strong correlation between the right-hand side variables
and the left-hand side of each tortuosity equation. Furthermore, both show that the
regression model strongly explains the tortuosity behavior regarding ICM, whether the
segment is an artery or vein. The two-sample T-test further statistically supports those
findings in the next experiment.

3.1.1. Linear Regression Analysis

Linear regression analysis was performed for the ’Inflection count metric normal’
with the highest correlated metrics columns (Inflection count metric binomial, length of
centerline, norm of curvature, and the standard deviation of average curvature). Minitab
statistical tool [38] was used for this analysis. The analysis was repeated twice, once for the
artery segments and the second for the veins segments, to check whether the vessel type
significantly impacts the tortuosity.

3.1.2. Two Sample T-test

Two sample T-test was applied on the two samples for the arteries and the veins
data: the ‘Inflection count metric normal’ (ICMarteries) column data of artery segments
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vs. ‘Inflection count metric normal’ (ICMveins) for vein segments for all the images in the
AV classification dataset. The research null and alternative hypotheses are Ho and H1 in
Equations (16) and (17).

The research claim states, "when measuring the tortuosity (Ho), ophthalmologists will
achieve almost equivalent results in measuring the tortuosity for arteries versus measuring
the tortuosity for veins”.

The two sample T-test was applied in Minitab on the arteries’ and veins’ ‘inflection
count metric normal’ columns. Figure 8 illustrates a box plot that clearly shows the similar-
ity in the tortuosity results for arteries and veins. Finally, to validate the research claim,
the authors checked the results of the two-sample T-test and reported the P_value = 0.701.
As P_value is greater than 0.05, the null hypothesis Ho is accepted, implying no difference
between the average ICMarteries and the average ICMveins. This implies that the research
claim is proven.

Figure 8. Two sample T-test results of averagofICM-arteries and avgofICM-veins for artery segments
vs. vein segments in all the AV classification dataset images. The Minitab two sample T-test analysis
output and the box plot for AvgofICM-arteries vs. AvgofICM-veins box plots.

3.2. Visual Representation of the Linear Regression Using Dimensionality Reduction

To visualize the regression tortuosity equations for arteries and veins on a two-
dimensional plot, PCA was used to map five tortuosity variables at the right-hand side
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of the tortuosity equation to one variable. It is named the “Principal component of five
tortuosity metrics, and the resulting principal component of the five tortuosity metrics”
and is plotted in Figures 6 and 7. PCA was used as it is commonly used for dimensionality
reduction. For example, Figure 9 illustrates both regression formulas in one plot using the
PCA and the regression plot. The five variables were collectively correlated to represent
the data 100% in the generated one principal component data, which was used eventually
as the vector of the x-axis in Figures 9 and 10.

Figure 9. Illustration of the regression line plot for the arteries tortuosity data points where the
arteries are represented in blue circles and the veins are represented as red squares (PCA linearity
visualization).
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(a) (b)

Figure 10. Regression line plot for (a) arteries and (b) veins data that predicts the tortuosity in
terms of inflection count metric normal from one principle component derived from the five metrics:
Distance metric, Inflection count metric Binomial, Length of Centerline, Standard deviation of average
curvature, and Normal curvature.

3.3. Image-Level Arteriovenous Length Ratios Analysis

Arteries are thinner than veins [38]. It is known that arteries may become tortuous
earlier than veins in some patients’ retinas (See Figure 11). However, if tortuosity happens,
it will manifest in either the arteries, veins, or both. Nevertheless, in all of them, the possible
twistedness shapes have the same morphological manifestation in both arteries and veins.

Figure 11. Visualization of the stages to extract the arc and the chord segments to calculate the
arteriovenous length ratios formulas. (a) Original image, (b) vessels segmentation, (c) arteries,
(d) veins, (e) arteries segments that are measured by arc or chord length, (f) veins segments that are
measured by arc or chord length, for each image in AV classification dataset.
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This fact emphasizes the above statistical conclusions, and to further analyze this arte-
riovenous tortuosity artery–vein relation, we calculate those ratios image-wise across the
504 images in the AV classification dataset. For each image, the arteriovenous chord length
ratio in Equation (18) and arteriovenous arc length ratio in Equation (19) are generated
in addition to the ratio of the mean of retinal arteries tortuosity metric over the mean of
retinal veins tortuosity metric for each of the following tortuosity formulas (SOAM, ICM,
ICMb, DM, CL, SDAC, NC).

Figure 12 shows two box plots of the vessel length ratios, one for the arc length ratio,
which is the arteries’ mean arc length divided by the veins’ mean arc length, and the chord
length ratio, which is the arteries mean chord length divided by the veins mean chord
length. Those two ratios attribute each image in the AV classification dataset of the mean
length of the arteries compared to the mean length of the veins in this specific retina. This
identifies the healthiness of the vessels, whether they are tortuous or not, and how severe
the deviation can be noticed in each fundus image of the AV classification dataset from
those two ratios.

Figure 12. Box plot of arteriovenous arc length ratio and arteriovenous chord length ratio for each
image in the AV classification dataset.

The box plot in Figure 12 shows that the arteriovenous chord length ratio (18) and
arteriovenous arc length ratio (19) are normally distributed for all the 504 images in the AV
classification dataset. The following facts can be concluded:

• As the distributions of the two box plots are comparable, both ratios show the same
tortuosity behavior for artery length relative to vein length. These data support the
statistical conclusion that the morphological behavior of tortuosity in arteries and
veins is the same.

• The median is the straight line in the center of both box plots with a value of around,
while the mean is the ’x’ symbol in the plot immediately above the median with a
value of 0.83. It implies that the average arc length of the artery is shorter than the
average arc length of the vein. As the artery is narrower than the vein, it is less likely
to present itself at the retinal surface.
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• When both arteries and veins grow tortuous, their lengths rise. Hence, the ratio should
equal 1. However, we can infer why the median diverged from 1 to 0.82 based on
the fact of the difference in the width of the artery compared to the width of the vein
and its relationship to being less apparent at the retinal surface, which was discussed
before.

• Whenever the mean length of the arteries is greater than the mean length of the veins,
the ratio deviates to the top portion of the box plot. The greater the length difference,
the more the retinal image point above the median appears in the box plot. Fifty
percent of the data from the normally distributed plot are of this kind.

• Whenever the mean length of both arteries is less than that of both veins, the ratio
deviates to the bottom portion of the box plot. The more the length difference reduces,
the more the retinal image point below the median appears in the box plot. In addition,
based on the normal distribution plot, 50% of the data are of this kind.

• As both ratios exhibited a normal distribution, the arc and chord lengths may be
utilized interchangeably to determine the nature of the discrepancy between the artery
and vein lengths.

The box plot in Figure 13 shows that the arteriovenous tortuosity ratios in (20)–(26)
are skewed right away from (above) the mean and median for some images in the AV
classification dataset. We can conclude the following facts:

• The arteriovenous SOAM ratio is regularly distributed with a mean of 1 and a median
of 1. This demonstrates how the curvature angle influences the computation and
maintains the results inside the y-axis’s narrow range by causing numbers to oscillate
between 0 and 360. Nevertheless, since the y-axis range is so small, it may not reveal
any possible differences between arteries and veins.

• When both arteries and veins have the same degree of tortuosity, both lengths rise, and
the ratio approaches 1. In AV SOAM Ratio and AV SDAC Ratio, the mean and median
are 1, whereas the rest of the tortuosity ratios have medians and means between 1
and 0.7. Once again, this deviation can be explained by the difference in the artery’s
width compared to the vein’s width and its relationship to being more apparent on
the retinal surface in each image.

• Whenever the mean length of arteries exceeds the mean length of veins, the ratio
deviates to the top portion of the box plot. The greater the length difference, the higher
above the median the retinal image point is reflected in the box plot. The tortuosity
metric ratios are skewed towards the arteries, suggesting that the arteries in the retinal
picture are much more tortuous than the veins.

• Whenever the mean length of both arteries is less than that of both veins, the ratio
deviates to the bottom portion of the box plot. The greater the length difference, the
more the retinal image point below the median is reflected in the box plot. In the box
plots shown in Figure 13, the vein tortuosity does not differ significantly from the
median, showing fewer instances in which vein tortuosity appears in veins alone.
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Figure 13. Box plots of the generated AV tortuosity metrics ratios of the arteries mean over the veins
mean for each image across the AV classification dataset. The AV tortuosity ratios are generated for
the metrics ICM, DM, SOAM, NC, ICMb, SDAC, and CL.

4. Discussion

To summarize the findings of this study, fourteen tortuosity measures were analyzed,
correlated, discussed, and implemented on 504 images of our AV classification dataset to
generate tortuosity metrics image-level and vessel-segment-level feature sets. The image-
level feature set was split into arteries and veins feature sets. Statistical methods were
applied to the arteries and veins feature sets. Correlation analysis suggests that the most
significant observed variables are the ‘Inflection count metric’ and the ‘distance metric’,
which correlate with the study’s largest count of other tortuosity metrics. The six tortuosity
features, ‘Inflection count metric normal’, ‘Inflection count metric Binomial’, ‘Centerline
length’, ‘Norm of curvature’, ‘Distance metric’, and ‘Chord normalized’, were selected
based on principal component analysis and correlation analysis.

The linear regression analysis derived the linear relation between the ‘distance metric’
and the five selected metrics. The R-Sq of the generated linear regression formula was
61.6%, which is very low compared to the formulas generated for ICMn that report 89.39%
and 89.11% for arteries and veins, respectively. Hence, the ICMn was selected to be the
independent variable—the y side of the regression formula. The distance metric was moved
to the other side as one of the independent variables in the linear regression formula.

Regression analyses and two sample T-tests were carried out to study further the effect
of the ‘vessel type’ on the results of quantifying the tortuosity metrics. It was found that
the ‘vessel type’ has no significant effect on the tortuosity calculation, as, when applied to
the two-sample T-test on the veins and arteries feature sets, the p-value > 0.05 proved that
the null hypothesis in (16) is correct and indicates that the mean of the tortuosity of arteries
and the veins are the same. In contrast, the R-Sq values reported in the linear regression
analysis for arteries and veins were 89.39% and 89.11%, respectively. This indicates that the
linear regression formulas for both arteries and veins represent 89% of the data under study,
which are equivalent and strong in both formulas. Hence, the measurement of tortuosity
geometric phenomena using ICM is the same for arteries and veins.

The principal component analysis machine learning method was used to identify
that ‘inflection count metric normal’ is the most strongly correlated with each compo-
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nent/tortuosity metric to finalize the feature selection and the visualization of the linear
regression formulas in the 2-dimensional space.

Several experiments were examined using PCA, trying to reach a higher R-Sq value to
maximize the linear regression model; as a result, the R-Sq value increased from 83.7% to
89.39% for arteries and from 84.4% to 89.11% for veins. It is worth emphasizing that, in all
the experiments, the R-Sq linear regression of two formulas for arteries and veins increase
together and remain almost close to each other, indicating that the average of ICMarteries
and the average of ICMveins are similar.

In this study, we have introduced a new formula that can determine if the tortuosity
is in the arteries, veins, or both. Since this quantification is being investigated for the first
time, it represents a brand new avenue for research in identifying eye disorders associated
with arteries and veins, utilizing retinal image processing. The authors believe that this
quantification presents a unique opportunity for future research that will help to create a
clear road toward medical application.

In general, we can conclude from analyzing the above arteriovenous length and
tortuosity ratios that the findings above are in line with the statistical analysis results that
reported that the tortuosity in the arteries is the same for the veins. This study introduces a
new concept called AVLR for diagnosing eye vascular changes automatically. This formula
is an open area of research in medical image processing and the medical field. It includes
the relation between artery/vein tortuosity, which may require further investigation from
the medical field. This concept has not been used in the medical field before. The authors
are researching the implementation of AVLR on specific regions of interest within the retina
for upcoming studies.

The results of this study are applied to classify the AV classification large-scale datasets,
which enables making broad generalizations on any set of retinal images. However, to
obtain a more specific outcome, it is advisable to incorporate more images from diverse
sources, including geographical, age, and gender variations that contain severe diabetic
retinopathy or hypertensive retinopathy cases. Further research is required to delve deeper
into this study’s results to avoid any potential limitations in the results.

5. Conclusions

In this work, statistical tests have been performed to test the hypothesis that the
tortuosity behavior in the arteries of the retina is the same as in the veins. To prove it,
new arteriovenous length ratios are introduced for the first time in the field. The ratios are
used to create a feature set to compare the tortuosity in each image while comparing the
tortuosity behavior for arteries and veins and proving the hypothesis. Two feature sets
are prepared: one for the tortuosity of arteries segments only and the other for the veins
segments only, from all the 504 images of the AV classification dataset. The two sample
T-tests and the regression analysis have statistically proven that measuring the tortuosity
phenomenon in the fundus images of the eye using ICM is the same for arteries and veins
from a geometric point of view. The R-Sq value of the linear regression model has marked
the value of 89.11% and 89.39% for veins and arteries results, respectively. The two sample
T-test is used to validate the research claim—the results of the two-sample T-test = 0.701.
As the p-value > 0.05 , the Ho research claim is accepted, and hence there is no difference
between the arteries’ and the veins’ average inflection count metric normal (ICMn). If we
look at the variations that may happen on the tortuosity at the image level, a set of ratios is
introduced that divide the average length of artery segments over the average length of the
vein segments, and the result supports the statistical findings with some variations specific
to the images. A future area of research is to link the medical literature on retinal vessel
tortuosity with the statistical results reached in this study.
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The following abbreviations are used in this manuscript:

R-sq R Square
AV A for Artery, V for Vein
CRVO Central retinal vein oclusion
AVLR Arteriovenous length ratio
AVR Arteriovenous ratio
CN Chord normalized
DM distance metric
ICMb Inflection count metric Binomial
ICMn Inflection count metric normalized
SDavc Standard deviation of average curvature
SOAM Sum of Angles metric
SVM Support vector machine
Navc Norm of average curvature
NoC Norm of curvature
PCA Principal component analysis
ROP Retinopathy of pre-maturity
TSC Total squared curvature
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