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Abstract: Recently, there has been a growth in the number of studies addressing the automatic
processing of low-resource languages. The lack of speech and text data significantly hinders the
development of speech technologies for such languages. This paper introduces an automatic speech
recognition system for Livvi-Karelian. Acoustic models based on artificial neural networks with
time delays and hidden Markov models were trained using a limited speech dataset of 3.5 h. To
augment the data, pitch and speech rate perturbation, SpecAugment, and their combinations were
employed. Language models based on 3-grams and neural networks were trained using written texts
and transcripts. The achieved word error rate metric of 22.80% is comparable to other low-resource
languages. To the best of our knowledge, this is the first speech recognition system for Livvi-Karelian.
The results obtained can be of a certain significance for development of automatic speech recognition
systems not only for Livvi-Karelian, but also for other low-resource languages, including the fields
of speech recognition and machine translation systems. Future work includes experiments with
Karelian data using techniques such as transfer learning and DNN language models.

Keywords: low-resource languages; automatic speech recognition; audio data augmentation; time
delay neural network; hidden Markov models; long short-term memory
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1. Introduction

Current systems for automatic natural language processing (speech recognition [1],
speech classification [2,3], sentiment analysis [4], and machine translation [5]) are developed
with the use of machine learning technologies that require large datasets. However, the
number of idioms with big language resources is very limited. According to various
estimates, there exist between 5000 to 7000 languages in the world, and only about 20
of them can be considered as having sufficient data resources [6-8]. The overwhelming
majority of the world’s languages are poorly described and documented, and their linguistic
data is often difficult to obtain. Any application of modern natural language processing
methods to these languages, usually labeled as low-resource languages, is hindered. This
problem has been repeatedly addressed in scientific publications [9-12]. Another important
issue regarding natural speech processing is the choice of optimal training algorithms
and data augmentation. The present paper provides an example of the application of
speech technologies to low-resource languages. Among other research problems, data
collection and preparation for use in speech recognition systems (and more broadly, in
natural language processing) are discussed.

Our contributions are outlined as follows. Firstly, the speech and text corpora of Livvi-
Karelian were collected and processed. Secondly, acoustic and language models for Livvi-
Karelin speech recognition were developed. To the best of our knowledge, this is the first
research endeavor on training a Livvi-Karelian speech recognition system. The information
about this project is available on the website: https:/ /hci.nw.ru/en/projects/25, accessed
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on 28 June 2023. The paper’s structure is as follows: following this introduction, the issues
of low-resource speech recognition are discussed in Section 2, and up-to-date methods for
speech signal augmentation are reviewed. In Section 3, the collected Livvi-Karelian speech
corpus is presented, and the augmentation procedures applied to these data described in
detail. Section 4 provides a brief overview of speech recognition systems, and explicitly
describes the developed Livvi-Karelian speech recognition system. The following Section 5
provides the reader with the results of experiments, which are further discussed in Section 6.
A summary of the paper can be found in the last section, Section 7.

2. Low-Resource Languages: Data Scarcity Challenge
2.1. Low-Resource Speech Recognition

The Karelian language belongs to the Balto-Finnic group the Uralic language family.
Linguists distinguish three main dialects of Karelian: Karelian Proper, Livvi-Karelian, and
Luudi-Karelian [13]. It is worth mentioning, however, that Luudi-Karelian is treated as
a separate language (Ludian) in some works [14]. Since today Livvi-Karelian is the most
widespread dialect of Karelian [15], being widely represented in the Karelian media, the
authors of this paper only focused on Livvi-Karelian data.

Livvi-Karelian falls within the category of the “low-resource languages”. Under the
term “low-resource languages” (or “under-resourced languages”) are meant languages
with a limited number of electronic resources available. This term was first introduced
in [16,17]. A set of criteria was proposed to classify a language as low-resource, among
which were a writing system, availability of data on the Internet, descriptive grammars,
electronic bilingual dictionaries, parallel corpora, and others. In the following works [18],
the notion of low-resource languages was further expanded to consider factors such as
a low social status of a language and its limited study. Nowadays, however, the main
criterion for classifying a language as low-resource is the scarcity of electronic data available
to researchers [19].

Low-resource languages hold significance not solely for linguists due to their role as
means of communication in many societies. Currently there exist about 2000 low-resource
languages spoken by more than 2.5 billion people in Africa and India alone. Developing
tools for natural communication with speakers of these languages can help address a wide
range of economic, cultural, and environmental issues.

The scarcity of language data is a complex problem that impacts various aspects of
language processing: phonetic, lexical, and grammatical [20]. In simple terms, lack of data
hampers the direct application of “classical” approaches to automatic speech recognition
and translation, which usually imply the use of acoustic, lexical, and grammatical (lan-
guage) models. Usually, an automatic speech recognition (ASR) system (the “standard”
approach) consists of an acoustic model (AM) that establishes the relationship between
acoustic information and allophones of a language at issue [21], a language model (LM)
necessary for building hypotheses of a recognized utterance, and a vocabulary of lexical
units with phonetic transcriptions. The training of acoustic models involves utilizing a
speech corpus, while the development of the language model draws upon probabilistic
modeling using available target language texts (as illustrated in Figure 1).

A speech recognition system operates in two modes: training and recognition. In
the training mode, acoustic and language models are created, and a vocabulary of lexical
units with transcriptions is built up. In the recognition mode, the input speech signal is
converted into a sequence of feature vectors, and the most probable hypothesis is found
using pretrained acoustic and language models [22]. For this purpose, the maximum
probability criterion is employed:

Whyp = argmﬁxP(O|W)P(W), 1)

where O represents a sequence of feature vectors from a speech signal and W is a set
encompassing all potential sequences of words. The probability P(O | W) is calculated with
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AM, while the probability P(W) is derived through LM. Hidden Markov models (HMM)
can be used as AM, with each acoustic unit being modeled by one HMM, typically with
three states. In this case acoustic probability is computed using the following formula [23]:

O|W ZP O|q' q|W) NHI;‘aXT[ q0 H”m MtHP Of|qt) (2)
=1 t=0

where g is a sequence of HMM states, 7(go) and a,,_,4, are the initial state probability and
state transition probability, respectively, determined by the HMM, and g; is a state of HMM
at time ¢.
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Figure 1. Outline of the Karelian Speech Recognition System.

Nowadays deep neural networks (DNNs) are widely used for training both the acous-
tic and language models. For acoustic models, DNN are combined with HMM, forming
the so-called hybrid DNN/HMM models. In this case, DNN are employed to derive the
posterior probability of HMM, wherein HMM capture long-term dependencies and DNN
contribute discriminant training capabilities. At the decoding stage, posterior probability
P(O¢ 1 g¢) should be converted to the likelihood [23]:

P(Olg) = TEZTO, ®

where P(Oy) is independent of the word sequence and therefore it can be ignored. Thus, for
the decoding pseudo-likelihood is used:

POl = T, @

LMs are typically developed using either a statistical n-gram methodology or a recur-
rent NN (RNN) approach. In RNN, the hidden layer stores all preceding history, in contrast
to feedforward NN which can store context only of restricted length.

The main methods for acoustic and language modeling are summarized in Table 1.

Despite the recent widespread use of the end-to-end [24] approach to speech recogni-
tion, the standard approach remains the preferred choice for low-resource languages due
to its requirement for less training data. For example, the hybrid DNN/HMM approach
was used in [25] for speech recognition in the low-resource Sinhala language. The results
obtained by the authors show that the use of hybrid DNN/HMM acoustic models outper-
forms HMM based on Gaussian mixture models (GMM) by 7.48 in terms of word error rate
(WER) on the test dataset.
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Table 1. The main methods for acoustic and language modeling.

Methods Advantages Disadvantages

Acoustic modeling

Poor discriminative power

Easy to implement e  Sequencies of observation

e Ability to process vectors are consider to be
variable-length inputs statistically independent but it is

HMM e  Effective modeling both not the case for speech signal
temporal and spectral e  Cannot take into account
variations of speech long-term dependencies
e  Require the usage of LM and
vocabulary

e  Combine advantages of o

HMM and DNN with e Need more training data than
; HMM
HMMs supporting .
DNN/HMM long-term dependencies and Require the usage of LM and

DNN providing vocabulary
discriminative training

¢ Do not require LM and e  Need much more training data

End-to-end vocabulary (thousand hours of speech)
e  Higher decoding speed
Language Modeling
Easy to implement e  Poorly capturing long distance
n-gram e Canbe used directly at context

decoding

e  Allows to take into account ~ ®  High computation complexity
Recurrent DNN long distance context Difficult to use directly at

decoding

In [26], the results of experiments on multilingual speech recognition of low-resource
languages (10 languages from the set proposed as part of the OpenASR20 contest, as well as
North American Cree and Inuit languages) were presented. The authors experimented with
factorized time delay neural networks (TDNNs)—TDNN-F in hybrid DNN/HMM acoustic
models and have shown that this architecture outperforms long short-term memory (LSTM)
neural networks (NNs) in terms of WER. A similar conclusion was made in [27] for the
Somali language data.

In a range of studies addressing the Russian language, it has also been shown that hybrid
acoustic models based on TDNN are superior to HMM, or hybrid DNN/HMM [28,29].

Based on these examples, the authors of this paper decided to adopt the standard
approach in developing their speech recognition system for Livvi-Karelian, and to choose
hybrid DNN/HMM acoustic models.

2.2. Speech Data Augmentation: Main Approaches

As previously mentioned, one of the most important prerequisites for an ASR system
development is the availability of training data (audio and text corpora). This holds
particular significance for the Karelian language. An effective approach to the data scarcity
problem is data augmentation. Data augmentation refers to a set of methods used to create
additional data for training models, either by modifying data or by adding data from
external databases. It is well known that augmentation techniques can solve overfitting
problems and improve the performance of ASR systems [30] to the audio spectrogram.
By employing these augmentations, the dataset is effectively expanded due to numerous
variations of input data. One can list the following methods for data augmentation: speech
signal modification, spectrogram modification, data generation.
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2.2.1. Speech Signal Modification

Speech signal modification can be performed by changing voice pitch, speech rate,
and speech volume, adding noise, and modifying features extracted from the speech
signal. An illustrative example of speech signal modification through augmentation is
presented in [31], where the authors changed speech rate by multiplying the original
speed by coefficients of 0.9, 1.0, and 1.1. The effect of these transformations was a 4.3%
reduction in WER. Augmentation by adding random values to speech features is presented
in [32]. Some researchers combine several types of augmentation. For example, a two-stage
speech data augmentation is proposed in [33]. In the first stage, random noise was added
and speech rate was modified in order to enhance the robustness of acoustic models. In
the second stage, feature augmentation was performed on the adapted speaker-specific
features.

Voice conversion technology can also be classified as an augmentation technique,
involving modification of the speaker’s voice (source voice) so that it sounds like another
speaker’s (target voice) while linguistic features of the speech remain unchanged [34].
Generative Adversarial Networks (GANs) are commonly used for this purpose [35], along
with their variants, such as Wasserstein GAN and StarGAN. In [36], a method called VAW-
GAN is proposed for non-parallel voice conversion, combining a conditional variational
autoencoder (C-VAE) and Wasserstein GAN. The former models the acoustic features of
each speaker; the latter synthesizes the voice of another speaker. The StarGAN architecture
is used in [37], which presents the StarGAN-VC method for voice conversion. Several
types of data augmentation were applied in the work [38] for Turkish speech recognition.
The authors explored different augmentation techniques, such as speech rate modification,
volume modification, joint modification of speech rate and volume, and speech synthesis
(investigating Google’s speech-to-text conversion system and an integrated system for
synthesizing Turkish speech based on deep convolutional networks). Additionally, various
combinations of the described methods were employed. The best result was achieved by
jointly applying all methods, resulting in a 14.8% reduction in WER.

Mixup [39] is another speech augmentation method that creates new training samples
with linear interpolation between pairs of samples and their corresponding labels. Mixup
generates a new training sample by taking a weighted average of the input features and
labels for two randomly selected samples and their labels. This encourages the model to
learn from the combined characteristics of multiple samples, leading to better generalization.
Mixup has been widely used in image classification tasks, but can also be effectively applied
to other domains, such as audio processing.

The SamplePairing technique [40] involves pairing samples from the training set in
random order. For each pair, the features are combined by taking an average value, in a
way similar to the Mixup technique. The labels of the paired samples are typically ignored
during training, and the model is trained to predict an average output. This method
enhances robustness by exposing the model to diverse combinations of samples.

Mixup with label preserving methods is another augmentation approach [41] which
extends Mixup by incorporating label preserving. It applies modifications to the input
features while preserving the original labels. This results in model learning invariant
features while maintaining the correct class assignments.

2.2.2. Spectrogram Modification

SpecAugment [42] operates on the spectrogram representation of audio signals; the
main idea behind this technique is applying a range of random transformations to the
spectrogram during training. These transformations include time warping, frequency
masking, and time masking.

Time warping in SpecAugment involves stretching or compressing different segments
of the spectrogram in the time domain. It introduces local temporal distortions by warping
the time axis of the spectrogram. This transformation helps the ASR model handle varia-
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tions in speech speed, allowing it to be more robust to different speaking rates exhibited by
different speakers.

Time masking technique allows selecting anchor points along the time axis of the
spectrogram and warping the regions between them. The anchor points are randomly
chosen, and the regions between them are stretched or compressed by a certain factor.
Stretching or compressing introduces local temporal distortions, simulating variations in
speech speed.

Frequency masking transformation masks consecutive frequency bands in the spectro-
gram. The model becomes more robust regarding variations in pitch and speaker characteris-
tics due to randomly masking a range of frequencies, while time masking transformation
masks consecutive time steps in the spectrogram. By randomly masking out segments of the
audio signal, the model learns to be invariant to short-term temporal variations.

Vocal Tract Length Perturbation (VILP) [43] is a method of spectrogram transformation
using random linear distortion by frequency measurement. The main idea is to apply
normalization, not to remove variations but, on the contrary, to add variations to audio. This
can be obtained by normalizing to an arbitrary target instead of normalizing to a canonical
mean. For VTLP, a deformation coefficient is generated for each sample, and the frequency
axis is deformed so that the frequency (f) is mapped to the new frequency (f’). VILP is
typically applied by modifying the speech features, such as the mel-frequency cepstral
coefficients (MFCCs) or linear predictive coding (LPC) coefficients. The perturbation is
achieved by scaling the feature vectors along the frequency axis, mimicking the effects of
different vocal tract lengths on the spectral envelope of the speech signal.

2.2.3. Data Generation

Another method of speech data augmentation is speech synthesis. Recently, among the
most successful models are WaveGAN and SpecGAN [44,45]. The main difference between
WaveGAN and SpecGAN lies in the domain in which they generate audio data. WaveGAN
is a GAN used for the synthesis of high-fidelity raw audio waveforms. WaveGAN consists
of two main modules: a generator and a discriminator. The generator network takes
random noise as input and generates synthetic audio waveforms. The discriminator
network tries to distinguish between the real audio samples from the dataset and the
generated samples from the generator. In order to capture the temporal dependencies
WaveGAN uses a convolutional neural network (CNN) architecture for both the generator
and discriminator networks. The generator progressively upsamples the noise input using
transposed convolutions to generate longer waveforms, while the discriminator performs
convolutions to analyze and classify the input waveforms.

SpecGAN, also known as Spectrogram GAN, is a GAN architecture network specifi-
cally designed for the generation of audio spectrograms. It generates audio by synthesizing
spectrograms and is trained on spectrograms extracted from real audio data.

The Tacotron 2 generative NN model [46] developed by Google is used for speech
synthesis. For instance, this method was used in the work [47] for synthesizing child
speech in the Punjabi language. Furthermore, in this study, augmentation was achieved
by modifying formants in the speech recordings of an adult speech corpus. In [48], speech
synthesis was employed for augmenting speech data in the development of an integrated
speech recognition system, significantly reducing WER. Additionally, SpecAugment was
applied, resulting in further WER reduction. A drawback of this method is a requirement
for training speech data. Insufficient training data may result in unsatisfactory synthesized
speech quality. An illustrative case is [49], where the incorporation of synthesized data
during the training of acoustic models failed to enhance recognition accuracy. In their work,
the researchers employed statistical parametric speech synthesis techniques. Despite their
efforts, they encountered challenges in achieving satisfactory quality when synthesizing
speech through Tacotron 2 and WGANSing models (a speech synthesizer utilizing GANSs).
The authors attributed the poor synthesis quality to a lack of training data.

The main approaches to speech data augmentation are presented in Table 2:
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Table 2. Speech Data Augmentation Methods.

Augmentation Method Modified Features Short Description
Tempo [31] Modlﬁcatlgn of sp.e?ch rate by
certain coefficients
. . Adding random values to speech
Speec.h. Slg_nal Feature Perturbation [32] features
Modification

Mixup [39]
SamplePairing [40]
Mixup with label preserving
methods [41]

Taking a weighted average of the
input features
mentation

Warping the features, masking

SpecAugment [42] blocks of frequency channels, and
Spectrogram Modification masking blocks of time steps
VTLP [43] Random linear distortion by
frequency
WaveGAN [44] GAN architecture for voice and
Data Synthesis SpecGAN [45] spectrogram augmentation

Tacotron 2 [47] Encoder-decoder architecture

Overall, the best augmentation technique or combination of techniques depends on
the specific ASR task, available training data, and desired improvements in performance. It
is often beneficial to experiment with multiple techniques and assess their impact on the
ASR system’s performance. For example, speech signal modification must not make speech
data linguistically implausible. Voice conversion requires parallel training data, where the
source and target voices are aligned, which may limit its application in some scenarios. The
quality of voice conversion may vary depending on the training data and the similarity
between source and target speakers. Spectrogram modification usually requires fine-tuning
to strike a balance between data diversity and maintaining speech quality. The effectiveness
of Mixup and SamplePairing techniques, as well as data generation, may vary drastically
depending on dataset, potentially resulting in unsatisfactory speech quality.

Concluding the review of related work, it should be noted that DNN-based ASR
systems are typically trained using tens and hundreds of hours of speech data. The current
research aimed to investigate the feasibility of training DNN models for an ASR system on
very limited training data, approximately 3 h of speech, and explore data augmentation
methods to enhance speech recognition results. Moreover, despite a long-standing literature
tradition and current interest of linguists to the language and folklore of the Karelians,
Karelian remains an under-resourced language. The survey of related work has shown that
there is no ASR system for Karelian language.

3. Speech Corpus Preparation
3.1. Karelian Data

To collect Karelian speech data, recordings of radio broadcasts were employed, includ-
ing interviews featuring two or more Karelian speakers (a total of 15, of which 6 were men
and 9 were women). Utterances which were found as unfit for processing were removed
from the corpus. The primary reasons for utterance exclusion were instances of speech
overlap between different speakers, code-switching from Livvi-Karelian to Russian, and
the significant presence of background noise or music. Notably, the research focus did not
encompass noise reduction techniques or code-switching, and hence these samples were
removed from the dataset. The final corpus volume is 3.5 h; the total number of recorded
utterances was 3819. The data were subsequently partitioned into a training subset, which
comprises 90% of the utterances, and a separate test subset, encompassing 10% of the
utterances (Table 3).
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Table 3. Karelian Speech Corpus.

Corpus Features Value
Number of Speakers 15 (6 male, 9 female)

Total Duration 35h

Total Data Volume 2.2Gb

Number of Utterances 3819

Sampling Frequency 16,000 Hz
Quantization 16 Bit
Training/ Testing Datasets Ratio 9:1

3.2. Speech Data Augmentation

In order to enlarge the volume of training speech data, augmentation was conducted.
Pitch and speech rate perturbation, along with SpecAugment and their combinations
were employed. To perform pitch and speech rate perturbation, SoX toolkit (http:/ /sox.
sourceforge.net/sox.html, accessed on 28 June 2023) was used. The pitch was altered on
the number of semitones obtained randomly from uniform distribution in range [—2, 2].
Speech rate perturbation was achieved using the tempo command in SoX, which modifies
the tempo without affecting the pitch. The tempo was adjusted by a coefficient randomly
chosen from a uniform distribution in the range of [0.7, 1.3]. Additionally, simultaneous
modification of both pitch and speech rate were performed, resulting in three modified
copies of the speech data.

For spectrogram modification, SpecAugment implemented in the Kaldi [50] toolkit
was used as the “component spec-augment-layer”. This technique involves time and
frequency masking operations. In Kaldi, SpecAugment is applied randomly on-the-fly
during each epoch, ensuring that the volume of the training data remains unchanged. The
authors of this study set the maximum proportion of frequency frames to be zeroed out as
0.5, the proportion of time frames to be zeroed out as 0.2, and the maximum length of a
zeroed region in the time axis to 20 frames.

4. Karelian Speech Recognition System
4.1. Acoustic Models

The task of acoustic models involves predicting the sequence of phonemes based
on the audio input. To initiate this process, the selection of an appropriate phoneme set
becomes of high importance. In the context of this paper, it is necessary to briefly introduce
some concepts which had been developed within Karelian studies, viz. treatment of long
and short phonemes. The distinction in duration is fundamental within the Balto-Finnic
phonological systems, and all researchers have identified long and short phonemes.

In the descriptions of Karelian, up to four consonant duration degrees are present:
extra-short (glides in borrowings from Russian), short, half-long (a geminated consonant
after a sonorant in closed syllables) and geminates proper [51,52]. As [15] argues, in
fact, these degrees are hardly observed without special equipment, often being results of
allophonic alternations. Thus, the most promising solution, chosen as a guideline within
the present paper, is identifying short and long consonants (geminates) only, especially
since this opposition is further supported by minimal pairs.

As for duration degrees of the Balto-Finnic vowels, most grammars introduce the basic
opposition of short and long phonemes. In some applied research papers, however, long
vowels are treated as geminated ones [53], but the main reason for this solution seems to be that
detection of long duration degrees is not easy from a technical point of view, since it requires
observation of such prosodic features as neighboring syllables and word structure [54]. In this
paper, the traditional approach is used, and long and short vowels are treated as different.

In the phoneme set used, stressed and unstressed vowels were distinguished; additionally,
the back row allophone of the /i/ phoneme was considered as an independent phoneme, and
hard and soft variants of consonants were distinguished. Long vowels were treated as separate
phonemes. Long consonants were treated as reduplicated phonemes of the given phoneme.
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For acoustic modeling hybrid DNN/HMM models with TDNN-Fs proposed in [55]
were used. TDNN is 1-demensional Convolutional Neural Networks (1-d CNNs). TDNN-F
is the TDNN with layers compressed via Singular Value Decomposition (SVD). As shown
in [55], when applying SVD on m x n weight matrix A, one gets:

Am><n - memDmanan/ (5)

where D is a diagonal matrix with singular values of matrix A on the diagonal in decreasing
order and Q and G are orthogonal matrixes.

Thus, the idea of TDNN-F consists in taking the existing TDNN topology and factoriz-
ing it into products of two smaller matrices with the following discarding of the smaller
singular values. Then parameters of the network are fine-tuned.

Acoustic models were developed using the chain model from the Kaldi s5c recipe.
In the Kaldi recipe, the initial step involves training GMM/HMM models using 13-
dimensional MFCC features, along with their first and second derivatives. Subsequently, a
series of iterative techniques are applied, including Linear Discriminant Analysis (LDA),
Maximum Likelihood Linear Transform (MLLT), Speaker Adaptive Training (SAT), and
feature space Maximum Likelihood Linear Regression (fMLLR). The resulting fMLLR
models are then utilized to generate force-alignment for NN training. The architecture of
the neural network is illustrated in Figure 2.

The network takes acoustic features that consist of 40-dimensional MFCC features
and 100-dimensional i-vectors as input. For the application of SpecAugment, the MFCCs
are converted to Mel filterbanks using inverse discrete cosine transform (DCT). DNN
architecture comprises three TDNN-F blocks. The first block consists of three TDNN-F
layers and processes the input vectors with a time context of {—1, 0, 1}. The second block
consists of a single TDNN-F layer without splicing. The third block consists of ten TDNN-F
layers operating with a time context of {—3, 0, 3}. Each TDNN-F layer has a dimension
of 1024 and a bottleneck dimension of 128. Within each TDNN block, a TDNN layer is
followed by a rectified linear unit (ReLU) activation function and batch normalization. Skip
connections, as introduced in [55], are utilized in the TDNN layers, where the output of each
layer (except the first layer) is appended to the output of the previous layers with a scale
factor of 0.66. The TDNN-F layers are followed by a linear layer with a dimension of 256.

The training process was conducted using the lattice-free maximum mutual informa-
tion (LF-MMI) criterion as the objective function [56]. In contrast to traditional MMI where
word-level LM is used, LF-MMI employs a phone-level LM. The LE-MMI criterion modifies
the equation for MMI criteria by excluding the acoustic scaling factor and dividing by the
prior. Thus, the LE-MMI criterion is defined as follows [57]:

d Ou MS /9 u
- R

where U is the set of all utterances, u is an utterance, O,, and s, are the acoustic feature
vector sequences and their corresponding phone sequences of the u-th training utterance,
M, is the numerator graph that is utterance specific, M, is the denominator graph that is
a finite-state transducer (FST) graph that includes all possible sequences of words, and 6
is the model parameter. The network has two output blocks that are the block based on
LE-MMI criteria (chain) and the block which uses cross-entropy (CE) criteria (Xent) [56].
LF-MMI and CE criteria are combined with weighted sum [58]:

L funal(x) = Lipmmr (x) + aLcg(x)

Lee(x) = =Y djlogg; @
j

where Ly ppmr is LE-MMl loss, Leg is CE loss, « is interpolation weight, d is reference output,
and the network output for each training step is j.
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Figure 2. DNN architecture for acoustic modeling.

During the training stage, both the LF-MMI and CE criteria are employed for loss
computation. This approach helps prevent overtraining and improves the generalization of
the model. However, during the decoding stage, only the LE-MMI criterion is utilized.
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The learning rate is adjusted dynamically throughout the training process. It starts at
0.0005 and gradually decreases to 0.00005. In the selected implementation of Kaldi, early
stopping utilizing a validation set is not employed; instead, a fixed number of epochs is
utilized. The specific number of epochs was determined through preliminary experiments.
The training was conducted for a total of eight epochs. The number of training epochs was
increased when applying SpecAugment, as recommended in [42]. In this case, the training
was extended to 48 epochs to account for the augmented data and enhance the model’s
performance. The batch size was 64. Training was carried out on Nvidia GeForce GTX 1080
Ti GPU with CUDA.

4.2. Language and Lexical Models

For LM training and vocabulary creation, a text corpus was collected, consisting of
various sources. These data include texts from the open corpus of Veps and Karelian
languages “VepKar” (http:/ /dictorpus.krc.karelia.ru/ru, accessed on 28 June 2023), Livvi-
Karelian periodicals, and transcriptions from the training speech corpus. The corpus
comprises approximately 5 million words. The text corpus was divided into training and
validation parts in a ratio of 9:1.

In order to develop the vocabulary for the system, all the words from the transcriptions
in the training data were included, along with words from other texts that appeared in
the corpus at least twice. This solution was chosen due to abundance of texts in PDF
format, which were converted to text using semi-automatic text recognition tools, thereby
introducing the possibility of errors. By excluding words that occurred only once, the
final dictionary size was reduced to 143.5 thousand words. Phonemic transcriptions were
generated automatically using a software module that performed grapheme-to-phoneme
conversion for a given Karelian word list. The process of automatic transcription consists
of the following steps:

1.  the first vowel in the word is marked as stress vowel;
2. marking palatalization of the consonant preceding front vowels;
3.  processing the long phonemes.

Two types of LMs were created: a statistical n-gram LM (SLM) used for the decoding
stage and an NN-based LM employed for 500-best list rescoring. The statistical word-based
n-gram LM predicts the probability of a word (w;) given a sequence of n-1 preceding

words [59]:
N

p(wi,wy, ..., wy) = [ | p(wilwiws ... w_q) (8)
t=1
During the research, 3-gram LM were created with Kneser-Ney discounting using the
SRI language modeling toolkit (SRILM) [60].
The neural LM utilized in the system is based on an LSTM network. A LSTM unit
consists of a cell that stores information and gates that regulate the flow of information [61].
Within a basic LSTM, there are three gates: the input gate, the forget gate, and the
output gate. The input gate determines which information should be stored in the cell,
the forget gate determines which information should be discarded from the cell, and the
output gate controls which information should be output from the cell. This architecture
enables the LSTM network to effectively capture and retain long-term dependencies in the
input data [61]. The LSTM model is defined as follows:

it = o(Wyixe + Wyily 1 + b;)
fr = U(foxt + Wiphi—1 + bf)
o = 0(Wioxt + Wyoht 1 + by) )
¢t = froci_q + i o tanh(Wiexy + Wychy—1 + be)
hy = ot o tanh(cy)


http://dictorpus.krc.karelia.ru/ru
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where x; is the input vector at time ¢, /; is the vector of hidden state at time ¢, i, oy, f;
are vectors of the input, output, and forget gate, respectively, W;, W,, and Wrare weight
matrices of the input, output, and forget gate, respectively, W}, is the weight matrix of
recurrent connection, b is bias, ¢ is sigmoid activation function, tanh is hyperbolic tangent
activation function, and o is element-wise product.

LSTM-based LM was trained using TheanoLM toolkit [62] and consists of the projec-
tion layer with the size of 500, two LSTM layers with the size of 512 with dropout of 0.5,
and the softmax layer. the optimization criterion was Nesterov momentum. Batch size was
equal to 16. The scheme of LSTM-based LM is presented in Figure 3.

W1 W Wi+l
v v v
Projection Projection Projection
layer layer layer
v v v
— LSTM layer LSTM layer —> LSTM layer
v v v
Droput Dropout Dropout
— LSTM layer LSTM layer —> LSTM layer
A A A
Softmax Softmax Softmax
PWiawia ...w1)  PWdwi1 ...ow1) POWiflw,wiey ..., w1)

Figure 3. Architecture of LSMT-based LM.

Additionally, a linear interpolation of 3-gram and LSTM-based LMs was made. In this
case, the probability score was computed as follows [63]:

Prat mnt(wi|wy—1, ..., w1) = APrstm(we|wi—1, ..., w1) + (1 — A)Pspp(we|wi—o, wi—1), (10)

where Py srpp(wy 1wt _1,. . .,wp) is a probability computed by the LSTM-based LM; Pgypq(w; | wi_p,
w;_1) is a probability computed by the statistical 3-gram model; and A is an interpolation
coefficient.

NN-based LM is typically incorporated in a two-pass decoding approach. In this
scenario, the initial decoding occurs using an n-gram model, resulting in the generation of
an N-best list. Subsequently, during the second pass, the N-best list undergoes rescoring
through the utilization of the NN-based model. The procedure for speech recognition with
N-best list rescoring is illustrated in Figure 4.

In the case of application of N-best rescoring, ASR system generates a list of hypotheses
ranked based on their probabilities computed by the acoustic and n-gram LMs. The higher
value of hypothesis’s probability, the higher the hypothesis’s position in N-best list. Each
hypothesis’s probability is further calculated using the LSTM language model (LSTM LM),
or in the general case, the LSTM LM interpolated with the n-gram LM. Subsequently, the
probabilities computed by the n-gram LM are replaced with new values computed by
the neural (or interpolated) LM and combined with AM score. Then argmax is computed
over hypothesis in N-best list according to Equation (1). This results in a re-ranking of the
hypotheses by their value of probability computed by NN-based LM, and the hypothesis
with the highest probability (top ranked hypothesis) is selected as the best hypothesis.



Mathematics 2023, 11, 3814 13 of 21

Pronounced
Phrase

y

ASR system

Hypothesis 1 Whyp = POIW)P sLu(W)
> N-best List Hypothesisk Wy, = POI)Priu(W)
W Hypothesis N Iy, = PXOIWN)PY sum(W)
’ v Computation new

k
w probabilitcs Piat e = Psai9)

'

N-best list rescoring
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Figure 4. The scheme of N-best list rescoring.

5. Results of Speech Recognition Experiments

Speech recognition was performed using Kaldi’s decoder based on weighted finite-
state transducers (WFST). Kaldi computes HCLG graphs created by composing other
graphs: Ho (Co (LoG)), where G is the language model, L is the lexicon, C represents the
context-dependency, and H contains the HMM definition [50].

The performance of the developed system was evaluated using WER, which is deter-
mined by aligning the reference transcription with the recognized sequence of words using
the Levenshtein distance algorithm. The WER is computed as follows [64]:

WER = LIT)H -100%, (11)

where T is the number of words in reference transcription, and S, D, and I are the number
of substituted, deleted, and inserted word respectively.
Evaluation of decoding speed was performed using Real Time Factor (RTF) [65]:

RTF = ? (12)

where P is the time taken by the system to process the input and ] is speech input duration.
LMs are evaluated in terms of perplexity. Perplexity can be thought as average number

of equally probable words following any given words, and it is computed as it is shown
in [63]:

1
PP =} 1
\/P(w1,wz,...,ww) 19

Perplexity should be computed using unseen text data. In this study, transcriptions of
the test portion of the speech corpus were employed for this purpose.

At first experiments were performed using 3-gram language model. The value of
perplexity of 3-gram model was 4030. Out-of-vocabulary (OOV) rate (the number of words
from the test corpus that were absent in the vocabulary) was 5%. WER obtained with
GMM/HMM and DNN/HMM AMs trained on not augmented data are presented in
Table 4. Application of DNN/HMM models results in relative WER reduction of 39%
compared to the triphone model and 30% compared to the fMLLR model.
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Table 4. Experimental results obtained using not augmented data.

Type of AM WER (%)
Triphone 44.57
LDA + MLLT 41.71
fMLLR 38.78
DNN/HMM 27.28

The results obtained with DNN/HMM models trained on data with different augmen-
tation methods are presented in Table 5 as well as in Figure 5.

Table 5. Experimental results obtained using different types of augmentation.

Training Data Data Duration WER (%)
Natural 3 h 8 min 27.28
Natural + SpecAugment 3 h 8 min 27.48
Natural + Pitch Augmentation 6 h 16 min 27.44
Natural + Pitch Augmentation + SpecAugment 6 h 16 min 28.59
Natural + Tempo Augmentation 6 h 24 min 25.57
Natural + Tempo Augmentation + SpecAugment 6 h 24 min 27.64
Natural + Pitch + Tempo Augmentation 9 h 32 min 25.77
Natural + Pitch + Tempo Augmentation + SpecAugment 9 h 32 min 27.48
Natural + Combo Augmentation 6 h 24 min 26.80
Natural + Combo Augmentation + SpecAugment 6 h 24 min 26.37
Natural + Pitch + Tempo + Combo Augmentation 12 h 48 min 26.53
Natural + Pitch + Tempo + Combo Augmentation + 12 h 48 min 28.79
SpecAugment
30
29
28
27
26
N
© 25
= 24
23
22
21
20
P & FFEFSE TS
N S R & 8 & S & o
F & F & F & F & F & 5
& & & & & & & & & & &
R W R W R W R o R W R
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Figure 5. The Histogram of WER obtained using different types of augmentation.
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Perplexity

As can be seen from Table 5 and Figure 5, the best result was obtained for data with
tempo augmentation. The change in fundamental frequency did not lead to a decline in the
WER value, possibly because the testing and training parts of the dataset were recorded with
assistance of the same informants. On the whole, the use of SpecAugment did not result in
an improvement in ASR performance. The decoding speed was measured at 0.1 RTE.

The AM trained on both unmodified data and data modified with tempo augmentation
was used in the following experiments on 500-best list rescoring and choosing the best
recognition hypothesis with the help of the NN-based model. Additionally, rescoring was
performed using interpolated models. The results obtained from these experiments are
presented in Table 6. An interpolation coefficient of 0 indicates that only the 3-gram model
was utilized, while an interpolation coefficient of 1.0 implies that only the LSTM-best LM
was employed. Furthermore, Table 6 presents the perplexity values of the NN-based LMs.
Graphs depicting the correlation between perplexity values and word error rate (WER)
based on the interpolation coefficient of the NN-based model are illustrated in Figure 6.

Table 6. Experimental results obtained with NN-based LMs (%).

Interpolation Coefficient 0 0.5 0.6 0.7 1.0
Perplexity 4030 519 504 496 582
WER 25.57 23.04 22.80 22.88 23.67
5000 26
26
4000
25
3000 e 25
2000 o2
2=
1000 23
0 23
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Coefficient Interpolation Coefficient
(a) (b)

Figure 6. The graphs of perplexity and WER versus interpolation coefficient of NN-based LM:
(a) The graphs of perplexity versus interpolation coefficient. (b) The graphs of WER versus interpola-
tion coefficient.

The table and graphs clearly reveal that LSTM-based language models exhibit signif-
icantly lower perplexity values compared to the 3-gram LM. Moreover, interpolation of
LSTM-based model with 3-gram model gave additional reduction of perplexity. N-best list
rescoring with the help of LSTM-based LM results in reducing the WER, and the application
of interpolated models led to additional performance improvement. The best result was
achieved with LSTM LM interpolated with n-gram LM with interpolation coefficient 0.6. In
this case, WER was equal to 22.80.

6. General Discussion

Development of a speech recognition system for a low-resource language, as was
emphasized in this paper, is a tricky task. That is why the results presented in this study
should be compared with the results obtained for other low-resource languages, and not
these of high-resource languages.

The authors of this paper believe that their results can be improved, but the aim of their
work was to explore possibility to train the DNN-based ASR system on very limited data
and research methods for data augmentation for improving performance of the system.
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First of all, it is obvious that in order to improve the quality of speech recognition (as
well as to increase the relevance of the collected corpus for linguistic research from a wider
area), it is necessary to continue work on the collection and processing of speech and texts
in the Karelian language. Mainly, it concerns speech data:

1.  Imbalance of speakers: There are more female speakers than male in the corpus; in
addition, the corpus contains recordings mainly of middle-aged and older speakers.
This situation is caused, apparently, by the sociolinguistic realities in Karelia: the
number of speakers among young people is quite limited [66,67].

2. Imbalance of the speakers regarding the number of utterances: It is necessary to
achieve an equal representation of speakers in the collected data.

As can be seen from the presented paper, the standard speech recognition system,
which implies the use of several modules—acoustic, linguistic and lexical—generally works
for low-resource languages. As Table 6 illustrates (Section 5), utilizing an LSTM-based
LM for N-best list rescoring allows an effective reduction in WER. The introduction of
interpolated models further enhanced performance as well. The most favorable outcome
was obtained by combining the LSTM LM with the n-gram LM using an interpolation
coefficient of 0.6. As a result, the WER reached a value of 22.80%.

It should be recognized that the results of augmentation remained not completely
clear. On the one hand, it is clear that data augmentation helped to solve the problem
of data scarcity; on the other hand, the features of the data do not allow an unequivocal
answer to the question of which type of augmentation is the most promising. It is evident
from Table 5 (Section 5), however, that the best results were obtained when utilizing data
with tempo augmentation. It is worth mentioning that altering the fundamental frequency
did not lead to a decrease in WER. This could be attributed to the fact that both the testing
and training portions of the dataset were recorded with assistance of the same speakers.
Furthermore, the implementation of SpecAugment did not result in a reduction in the WER.

The Karelian data presents several characteristics that contribute to an increase in
recognition errors. Firstly, in Karelian spontaneous speech there are many loanwords
from the Russian language and dialect-specific words. However, texts are mostly literarily
processed, resulting in the limited presence of such words. This results in increasing
the OOV rate and degradation of ASR performance as a consequence. Moreover, the
pronunciation of proper names typically follows Russian phonetic rules; therefore, proper
names were often recognized incorrectly. Furthermore, Karelian, being an agglutinative
language, constructs words by attaching affixes to a stem. As a result, numerous word-
forms have very similar phonemic representation, differing only in endings (affixes). In
spontaneous speech, endings of words are often reduced, and this causes the ASR system
to produce incorrect word-forms where the stem is accurate.

Thus, this study allows framing a set of new questions:

1.  How would the standard ASR system used in this research perform if enriched with
transfer-learning methods?

2. How will improvement of data quality (speakers’ age, gender, and number) affect the
results in reference to augmentation method used in this study?

3. How will improvement of data quality (balancing the number of utterances spoken by
each speaker) affect the results in reference to augmentation method used in this study?

These questions will form the guideline for future works within the framework of
this project.

7. Conclusions

This paper presents an automatic speech recognition system for Livvi-Karelian. The
biggest challenge the authors met was the scarcity of Karelian data. In order to increase
the accuracy of the system, speech data was augmented, and NN-based LM as well as
NN-based LM interpolated with 3-gram LM were used for N-best list rescoring. The WER
value obtained during the experiments was 22.80%, which can be considered as a good
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result for a low-resource language. For the purpose of comparison, the results obtained by
other studies for different low-resourced languages are presented in Table 7.

Table 7. Comparison of the results obtained for other low-resourced ASR system.

Related Work Methods Training Dataset WER, %
GMM/HMM, DNN/HMM,
[25] TDNN/HMM, TDNN + 22 h of Sinhala speech 35.87~42.64
LSTM/HMM

TDNN-F/HMM in unilingual 71 h of Kurmanji

[26] d multili  traini Kurdish, 101 h of Cree, 48~69.6
and multilingual training 78 h of Inuktut
CNN-TDNN-BLSTM/HMM, .
[27] TDNN-EF/HMM 17.55 of Somali speech 49.59~53.75
[68] TDNN/HMM + transfer 20 h of Amharic 24.50~28.48
learning
20-29 h of Amharic,
[69] TDNN-F/HMM Tigrigna, Oromo, and 32~23

Wolaytta

It is important to highlight that a direct comparison of ASR results across different
languages is impossible due to a dependency of the results not only on the used models,
but on training and test data as well. Nevertheless, a conclusion can be drawn that the
obtained results are at the level of word results for other low-resourced languages.

Another important outcome of this study was the collection of a training dataset
that includes speech recordings in Karelian, their transcriptions, and a text corpus. In the
presented study, the dataset was used to train language and acoustic models, but it can be
used in other studies on the Karelian language regarding natural language processing tasks.

Despite all the results achieved, there is a need for further research and improvement
of the developed system. For example, the problem of code-switching remained outside
the scope of this study. In general, increasing the training dataset will significantly improve
the performance of the developed system. In the future, it is planned to apply the methods
of transfer learning to acoustic model training and to use other DNN-based approaches for
acoustic and language models training as well as to investigate the methods for addressing
code-switching phenomena.

Author Contributions: Conceptualization, LK. (Irina Kipyatkova) and LK. (Ildar Kagirov); method-
ology, LK. (Irina Kipyatkova); software, LK. (Irina Kipyatkova); validation, I.K. (Irina Kipyatkova);
investigation, I.K. (Irina Kipyatkova) and LK. (Ildar Kagirov); resources, LK. (Irina Kipyatkova)
and LK. (Ildar Kagirov); writing—original draft preparation, I.K. (Irina Kipyatkova) and I.K. (Ildar
Kagirov); writing—review and editing, I.K. (Irina Kipyatkova) and LK. (Ildar Kagirov); visualiza-
tion, LK. (Irina Kipyatkova); supervision, L.K. (Irina Kipyatkova); project administration, I.K. (Irina
Kipyatkova); funding acquisition, LK. (Irina Kipyatkova). All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number Ne 22-21-00843,
https:/ /rscf.ru/en/project/22-21-00843/, accessed on 28 June 2023.

Data Availability Statement: In this work, the following large-scale publicly available dataset was
used: open corpus of Veps and Karelian languages “VepKar”—http://dictorpus.krc.karelia.ru/ru
accessed on 28 June 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:


https://rscf.ru/en/project/22-21-00843/
http://dictorpus.krc.karelia.ru/ru

Mathematics 2023, 11, 3814 18 of 21

AM Acoustic Model

ASR Automatic Speech Recognition
C-VAE Conditional Variational Autoencoder
CE Cross-Entropy

CNN Convolutional Neural Network

DCT Discrete Cosine Transform

DNN Deep Neural Networks
fMLLR Feature Space Maximum Likelihood Linear Regression

FST Finite-State Transducer

GAN Generative Adversarial Networks
GMM Gaussian Mixture Models

GPU Graphics Processing Unit

HMM Hidden Markov Models

LDA Linear Discriminant Analysis

LF-MMI  Lattice-Free Maximum Mutual Information
MMI Maximum Mutual Information

LM Language Model

LST™M Long Short-Term Memory

LPC Linear Predictive Coding

MLLT Maximum Likelihood Linear Transform
MFCC Mel-Frequency Cepstral Coefficients
NN Neural Network

ooV Out-of-vocabulary

ReLu Rectified Linear Unit

SAT Speaker Adaptive Training

SLM Statistical LM

SRILM SRI Language Modeling Toolkit

SVD Singular Value Decomposition

TDNN Time Delay Neural Network

TDNN-F  Factorized Time Delay Neural Network
VTLP Vocal Tract Length Perturbation

WER Word Error Rate

WEST Weighted Finite-State Transducers
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