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Abstract

:

The national scale of catastrophic losses risk linked to state catastrophe bonds (SCB) is enormous. It can reduce investors’ interest in buying them because the capital required and the loss probability are also significant. To overcome this, the SCB can be made on a smaller regional scale, known as a regional catastrophe bond (RCB). Through RCBs, the catastrophic loss risk investors bear becomes smaller, which can increase investors’ interest in buying them. Unfortunately, RCB issuance faced a fundamental obstacle, where its complex pricing model needed further study. Therefore, this study aims to model it. The model uniquely involves the inflation rate modeled using the Fisher equation and the nonbinary scheme of coupon and redemption value payments modeled by a compound Poisson process. In addition, the model is applied to Indonesia’s catastrophe data, resulting in all provinces’ RCB price estimation and the effects of several variables on RCB price. This research can guide the RCB pricing process of the country’s regions. The estimated RCB prices can be used by Indonesia’s government if RCBs are to be issued one day. Finally, the effects of the inflation rate, catastrophe intensity, and geographical location on RCB prices can guide investors in selecting bond portfolios.
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1. Introduction


Catastrophe bonds from the government are financial securities used in its catastrophe insurance to increase coverage costs, reduce financial stress, and reduce the potential bankruptcy of insurers when government claims occur. It is a new mechanism developed from traditional insurance mechanisms that were previously unable to afford enormous coverage costs [1], e.g., at least 16 insurers who failed to pay during the 1992 Hurricane Andrew catastrophe [2].



One type of catastrophe bond commonly issued by the government is a state catastrophe bond (SCB). Unfortunately, these bonds have one fundamental drawback, where the national catastrophic losses associated with them are too enormous [3]. Moreover, this is exacerbated by the current situation, where, according to The International Disaster Database, all countries worldwide are experiencing a trend of increasing intensity and losses from every type of catastrophe, e.g., earthquakes, floods, extreme temperatures, and storms [4,5] as seen in Figure 1 (the increasing tendency can be seen from the area under the curve, which tends to get bigger yearly). In other words, this causes catastrophic losses for each country, projected to get bigger over time. This projection decreases investor interest because they are unwilling to accept a more significant risk of catastrophic losses than usual from the insured and the insurer. At a time when the risk of catastrophic losses increases, the chances of claims occurring and investors losing their capital in bonds also increase. Thus, the shortfall in this country’s catastrophe bonds must be overcome as soon as possible [6,7].



One of the solutions to overcome the problem of too large an area scale in the SCB is to make it into a smaller regional scale. It is then referred to as a regional catastrophe bond (RCB). By reducing the scale of the area, the risk of catastrophic losses borne by investors will also be more negligible, which can further increase investor interest in participating in catastrophe bonds [8,9]. Several regions in one country had insured their catastrophic risks in catastrophe bonds, summarized in Table 1.



Table 1 shows that, in 2013, RCBs were issued in Florida, a state of the United States of America (USA), for hurricane financing [10,11]. The bonds were issued by Sunshine Re 2013-1 as a special-purpose vehicle (SPV) and had a face value of 20 million US Dollars (USD). Then, in 2020, RCBs were issued in Los Angeles, which is part of California, USA, to finance the wildfire catastrophe. The bonds were issued by Power Protective Re Ltd. as an SPV, and had a face value of 50 million USD [12]. Last but not least, in 2020, RCBs were issued in California, USA, for earthquake financing. The bonds were issued by Swiss Re Capital Market as an SPV and had a significant face value, which is 775 million USD [13].



Even though regions in a country have issued RCBs, fundamental obstacles are unfortunately faced where the RCB pricing framework has not been studied much. It is because this security is still newly developed. Several studies regarding the design of an RCB pricing framework or its application are discussed in this paragraph and summarized in Table 2.



Table 2 shows that, in general, all models use nominal interest rates to calculate the present value of coupons and redemption values. Then, in general, all models use binary coupon and redemption value payment schemes, that is, when a claim occurs and when there is no claim. In detail, Hardle and Cabrera [14] modeled RCB prices using a nonhomogeneous compound Poisson process and the peaks over threshold method. The model was then applied to three zones in Mexico. Zone 1 contained the Guerrero area, Zone 2 contained the Oaxaca area, and Zone 3 contained several areas, such as Morelos, Tlaxcala, and Hidalgo. Then, Shao et al. [15] designed a catastrophe bond model for earthquakes using the extreme value theory applied to California earthquake data. Karagiannis et al. [16] devised a bond pricing framework to cover losses in the agricultural sector using the utility indifference pricing method, which was then applied to weather data in two cities in Iran, Mashhad and Tabriz. Then, Hofer et al. [17] designed an RCB pricing framework that considers spatial uncertainty using a nonhomogeneous compound Poisson process. Then, they applied this framework in forming an RCB portfolio that explicitly bears the risk of damage to residential buildings in Italy due to earthquakes. Mistry and Lombardi [18] computed RCB prices specific to earthquakes in Benevento, Italy, based on a high-spatial-resolution hazard and exposure model. They also analyzed the way that the RCB increased the catastrophe resistance in the region. Then, Vakili and Ghaffari-Hadigheh [19] modeled catastrophe bond pricing as an uncertain optimization problem, focusing on investor ruin measures. They applied their model to catastrophe data in a region in Sweden. Anggraeni et al. [20] developed a catastrophe bond price model for earthquakes using copula and extreme value theory. They applied the model to earthquake data in West Java Province, Indonesia. Furthermore, Mistry and Lombardi [21] proposed a stochastic approach to estimate RCB prices using the Monte Carlo method and asset-location attributes applied in ten provinces in southern Italy, these being Avellino, Benevento, Campobasso, Caserta, Foggia, Isernia, Matera, Napoli, Potenza, and Salerno. The results show that spatial resolution affects the average annual loss and RCB prices.



Gaps from previous studies are discussed in this paragraph. Based on the studies presented in Table 2, there has been no study involving the inflation rate in designing regional catastrophe bond prices. It is essential to estimate the return expected by investors more accurately, which is called the real interest rate. Then, based on Table 2, no study considers nonbinary payment schemes of coupon and redemption value. Nonbinary schemes can vary the payment proportion of the coupon and redemption value from each region based on the intensity of each catastrophe. Thus, the estimated RCB prices in each region will adjust to the intensity of the catastrophe more fairly.



Based on the research gaps described, this study aims to design a pricing framework for RCBs by considering the inflation rate and nonbinary payment schemes of coupon and redemption value. We use Fisher’s equation model [22] to model the inflation rate. This model can estimate the actual bond return based on the real interest rate obtained from the relationship between the nominal interest and inflation rates [23,24]. Then, the risk of loss is represented by the catastrophic aggregate loss, modeled using a compound Poisson process (CPP). CPP can integrate loss risk modeling and catastrophe intensity risk modeling simultaneously, making modeling time efficient [25]. After the modeling, the pricing model is applied to catastrophe data in Indonesia from 2009 to 2022. The application uses the cumulative distribution function approximation method of CPP introduced by Chaubey et al. [26] and detailed in the rule of thumb by Reijnen et al. [27]. Finally, the effects of the inflation rate, nonbinary payment scheme, catastrophe intensity, geographic location, and the term on RCB prices, particularly in Indonesia, are analyzed. Indonesia was chosen for the following reasons:




	
This country is geologically the fifth most catastrophe-prone country in the world based on The International Disaster Database. Geologically, this country is traversed by three major plate confluences and is located between two continents and two oceans.



	
Based on The International Disaster Database, among the world’s top five most catastrophe-prone countries, Indonesia has not had a history of issuing catastrophe bonds. Hence, it is very interesting to estimate.








This research can help regions in a country determine regional catastrophe bond prices. Then, the results of the estimated RCB prices in Indonesia can also be used as a reference if the bonds are to be issued one day. Finally, the effects of the inflation rate, nonbinary payment scheme, catastrophe intensity, geographic location, and the term on RCB prices can also be used by investors to measure risk when selecting and compiling their bond portfolio.



The remaining sections of this article are designed as follows. Section 2 briefly explains RCBs and their structure. Then, Section 3 contains the design of the RCB price model framework. Next, Section 4 discusses the application of the model in estimating RCB prices in each province in Indonesia. Section 5 contains analyses of the effects of the inflation rate, nonbinary payment scheme, catastrophe intensity, geographic location, and the term on RCB prices. The final section contains a summary of this article and conclusions.




2. A Brief RCB Structure Explanation


The sponsors, special-purpose vehicles (SPV), and investors comprise the three primary components of the catastrophe-risk securitization structure via RCBs [14,28]. The SPV provides a catastrophe-risk transfer contract to the sponsor, which is the regional government, an insurer, or a reinsurer. Then, the sponsor pays the SPV a premium in exchange for the transfer. After that, the SPV releases the RCB following contract execution and premium payment. In detail, the RCB term is generally not long and ranges from one to five years [29]. After the RCB is sold, the proceeds and the premium paid by the sponsor before are invested in safe short-term financial assets [30]. The investment income is next deposited in a trust account. The SPV converts it into floating interest rate swap payments to strengthen the sponsor’s and investor’s immunity from interest rate and default risks [29,31]. This converting is conducted based on official benchmark interest rates worldwide, e.g., London Interbank Offered Rate (LIBOR) (USD-LIBOR was abandoned in June 2023) and Secured Overnight Financing Rate (SOFR). Finally, in nonbinary payment schemes, coupons, and redemption values from the RCB are charged to investors based on the aggregate loss that occurs. Investors receive the coupon and redemption value from the RCB in full if the aggregate loss of the catastrophe is in the smallest aggregate loss interval [32].




3. Modeling Framework


3.1. Mathematical Notations


The mathematical variable notations used in this study are as follows:




	(a)

	
Triple     Ω , F , P     is a probability space of catastrophe aggregate loss, where   Ω   represents sample space,   F   represents   σ  -algebra of subsets of   Ω  , and   P   represents a probability measure on   F  .




	(b)

	
  Z   is a positive integer representing a country’s many administrative regions.




	(c)

	
  Z =   1 ,   2 ,   … , Z     is the set of positive integers up to   Z  , representing the order index of the administrative regions of a country.




	(d)

	
  K   is a positive integer representing the term of the RCB in years.




	(e)

	
  K = { 1 ,   2 , … , K }   is the set of positive integers up to   K  , representing the year index.




	(f)

	
      N   z , t   : t ∈   0 , K   , z ∈ Z     represents the number of catastrophes that occurred in the   z  -th administration until time   t  .




	(g)

	
    M   z , t   = { 0 ,   1 ,   2 , … ,   N   z , t   }   is the set of nonnegative integers up to     N   z , t    , representing the catastrophe sequence index that occurred in the   z  -th administrative region until time   t  .




	(h)

	
      X   z , m   : m ∈   M   z   , z ∈ Z     represents the   m  -th catastrophe loss in the   z  -th administrative region.




	(i)

	
      L   z , t   : t ∈   0 , Z   , z ∈ Z     represents the aggregate catastrophe loss in the   z  -th administrative region until time   t  .




	(j)

	
      p   z   : z ∈ Z     represents the constant nominal interest rate in the   z  -th administrative region.




	(k)

	
      q   z   : z ∈ Z     is the set of positive real numbers, representing the constant inflation rate in the   z  -th administrative region.




	(l)

	
  {   C   z , k   : z ∈ Z ,   k ∈ K }   represents the constant coupon value in year   k   of the RCB in the   z  -th administrative region.




	(m)

	
      R   z , K   : z ∈ Z     represents the redemption value of the RCB in the   z  -th administrative region on the maturity date.




	(n)

	
      P   z , K   : z ∈ Z     represents the price of a zero-coupon RCB with a term of   K   years in the   z  -th administrative region.




	(o)

	
      P   z , K   ′   : z ∈ Z     represents the price of a coupon-paying RCB with a term of   K   years in the   z  -th administrative region.




	(p)

	
  S   is the number of aggregate loss intervals for determining claims.




	(q)

	
  S = { 1 ,   2 ,   … , S }   is the set of positive integers up to   S  , representing the order of the aggregate loss interval index.




	(r)

	
      μ   s   : s ∈ S     is an increasing sequence representing the threshold value of the aggregate catastrophic losses on the RCB. The values of these variables are generally different for each country and adjusted for historical data on catastrophe losses in that country.




	(s)

	
      η   s   : s ∈ S     is a descending sequence representing the set of payment proportions of coupon and redemption value on the RCB. The maximum value of       η   s   : s ∈ S     is 1. Meanwhile, the minimum value of       η   s   : s ∈ S     can be adjusted according to the risk aversion tendency of the investor. For example, if the investor does not want to lose the coupon and the redemption value is more than 0.5, the minimum value       η   s   : s ∈ S     is 0.5.










3.2. Regional Catastrophic Aggregate Loss Model via a Compound Poisson Process


The catastrophic aggregate loss in the   z  -th state administration region until time   t   modeled by a compound Poisson process is expressed as follows:


    L   z , t   =   ∑  m = 1     N   z , t        X   z , m     ,  



(1)




where   {   N   z , t   : t ∈   0 , K   , z ∈ Z }   represents the Poisson process with intensity     λ   z   > 0  , and       X   z , m   : m ∈   M   z   , z ∈ Z     are nonnegative random variables.       X   z , m   : m ∈   M   z   , z ∈ Z     is assumed to be independent and identically distributed (i.i.d.) random variables. It means that the losses from each catastrophe in each region have the same characteristics and do not affect one another. Then,   {   N   z , t   : t ∈   0 , K   , z ∈ Z }   and       X   z , m   : m ∈   M   z   , z ∈ Z     are assumed to be independent. It means that the number of catastrophes that occurred in each region did not affect the losses.



To measure the risk     L   z , t     in Equation (1), it can be conducted through its cumulative distribution function (CDF) [33]. The CDF value at   x   represents the probability that a maximum loss of   x   will not occur. The CDF of     L   z , t     is expressed as follows:


    F     L   z , t       x   =   Pr  ⁡      L   z , t   ≤ x     =   ∑  n = 0   ∞        e   −   λ   z   t         λ   z   t     n     n !     Pr  ⁡      ∑  m = 1   n      X   z , m     ≤ x        



(2)








3.3. Regional Catastrophe Bond Pricing Model


The RCB price model in this study was designed in two forms, namely zero-coupon and coupon-paying RCBs. Through zero-coupon RCBs, investors only receive payment of the redemption value on the maturity date [34]. The redemption amount paid at maturity depends on the amount of the catastrophic aggregate loss at that time. Mathematically, the redemption value payment scheme for zero-coupon RCBs in the   z  -th administrative region expressed as a random variable is stated as follows:


    R   z , K   =        r   z     ; 0 ≤   L   z , K   ≤   μ   1                 η   1     r   z     ;   μ   1   <   L   z , K   ≤   μ   2              η   2     r   z     ;   μ   2   <   L   z , K   ≤   μ   3             ⋮   ⋮       η   S − 1     r   z     ;   μ   S − 1   <   L   z , K   ≤   μ   S         η   S     r   z     ;   μ   S   <   L   z , K   ≤ ∞            ,  



(3)




where     r   z     is a constant representing the redemption value of RCBs in the   z  -th administrative region.



The price of zero-coupon RCBs in the   z  -th administrative region is modeled as the present value of the expected redemption value random variable in Equation (3). Mathematically, it is written as follows:


    P   z , K   =       1 +   p   z     1 +   q   z         − K     E   P       R   z , K     =       1 +   p   z     1 +   q   z         − K     ∑  s = 0   S        η   s     r   z   Δ   F     L   z , K         μ   s + 1         ,  



(4)




where   Δ   F     L   z , K         μ   s + 1     =   F     L   z , K         μ   s + 1     −   F     L   z , K         μ   s      ,     η   0   = 1  ,     μ   0   = 0  ,     μ   S + 1   = ∞  ,   P   represents a probability measure corresponding to the distribution of     L   z , k    , and     E   P     is often called the risk-neutral price measure. In more detail, the form     1 +   p   z     1 +   q   z       in Equation (4) is Fisher’s real interest rate equation [22,23].



Next is the modeling of the coupon-paying RCB price. Through these bonds, investors receive payment of the redemption value on the maturity date and an annual coupon [35]. The coupon amount paid in year   k   depends on the catastrophic aggregate losses in that year. Mathematically, the coupon payment scheme on RCBs in the   z  -th administrative region represented as a random variable is expressed as follows:


    C   z , k   =        c   z     ; 0 ≤   L   z , k   ≤   μ   1                 η   1     c   z     ;   μ   1   <   L   z , k   ≤   μ   2               η   2     c   z     ;   μ   2   <   L   z , k   ≤   μ   3             ⋮   ⋮       η   S − 1     c   z     ;   μ   S − 1   <   L   z , k   ≤   μ   S         η   S     c   z     ;   μ   S   <   L   z , k   ≤ ∞            ,  



(5)




where     c   z     is a constant representing the nominal value of the RCB coupons in the   z  -th administrative region. The coupon-paying RCB prices in the   z  -th administrative region are modeled as the sum of the zero-coupon bond prices and the present value of the expected coupon random variables in Equation (5). Mathematically, it is formulated as follows:


     P   z , K   ′   =   ∑  k = 1   K          1 +   p   z     1 +   q   z         − k     E   P       C   z , k       +   P   z , K   ,    =   ∑  k = 1   K          1 +   p   z     1 +   q   z         − k     ∑  s = 0   S        η   s     c   z   Δ   F     L   z , k         μ   s + 1           +   P   z , K   ,   



(6)




where   Δ   F     L   z , k         μ   s + 1     =   F     L   z , k         μ   s + 1     −   F     L   z , k         μ   s      ,     η   0   = 1  ,     μ   0   = 0  ,     μ   S + 1   = ∞  ,   P   represents a probability measure corresponding to the distribution of     L   z , k    , and     E   P     is often called the risk-neutral price measure.




3.4. Approximation Methods to Compute the CDF Value of     L   z , k    


The value of CDF     L   z , k     is generally difficult to determine using ordinary operations, except when     X   z , m     has an exponential distribution. Therefore, this study uses the     L   z , k     distribution approach introduced by Chaubey et al. [26] and developed by Reijnen et al. [27]. The     L   z , k     distribution approach in this method is based on average (    μ     L   z , k      ), standard deviation (    σ     L   z , k      ), skewness (    κ   3   L   z , k      ), kurtosis (    κ   4   L   z , k      ), and the   r  -th cumulant (    c   r   L   z , k      ) of     L   z , k    . Furthermore, two methods of approximating the     L   z , k     distribution are used, which are inverse-Gaussian (IG) and gamma inverse-Gaussian (GIG) distributions, presented in Table 3.



The selection criteria of these two methods are based on the skewness of   X   (    κ   3 X    ) and     κ   4   L   z , k      . These criteria are as follows [27]:




	(a)

	
If     κ   3 X   ∈   0,5     and     κ   4   L   z , k     ∈   0 ,   1.5    , the GIG distribution can be applied to more accurately determine the CDF value of     L   z , k    .




	(b)

	
If     κ   3 X   ∈   5,15     and     κ   4   L   z , k     ∈   1.5 ,   50    , the IG distribution can be applied to more accurately determine the CDF value of     L   z , k    .











4. Application Model in Indonesia’s Provinces


4.1. Brief Description of the Data


Equations (4) and (6) are applied to catastrophe loss and frequency data in each province in Indonesia from 2009 to 2022. The data were obtained from the Republic of Indonesia’s National Catastrophe Management Agency at the following link: https://dibi.bnpb.go.id, accessed on 14 February 2023. The administrative region of the data is a province, and the number is   Z = 33  . Then, statistical descriptives of catastrophe loss and frequency data from each province in Indonesia are presented in Table 4.



Table 4 shows that the Provinces of Central Java, West Java, and East Java are the provinces with Indonesia’s first, second, and third largest average and deviation standards of annual catastrophe intensity and losses, respectively. The three provinces are located on Java Island, which is very prone to catastrophe. Then, the provinces of Aceh, South Sulawesi, South Kalimantan, Papua, and Bali are the provinces with the highest average and deviation standard of annual catastrophe intensity and losses on Sumatra, Sulawesi, Kalimantan, Papua, and the Nusa Tenggara Islands, respectively. Meanwhile, the province with the lowest average and deviation standard of annual catastrophe intensity and losses is West Papua Province.




4.2. Determinating Single Catastrophic Loss Distribution     X   z , m    


Losses between catastrophes in each province based on the assumption of the compound Poisson process in Section 3.2 are independent and identically distributed. Therefore, the distributions are determined simultaneously. The selected theoretical distribution options are following the characteristics of the data. The characteristics of the exact data used are as follows:




	
The data have extreme values in the right tail of the histogram, as shown in Figure 2. In other words, the tail of the distribution is fatter on the right.



	
The data have a positive skewness, namely 0.5201. It is because the data are spread out more on the left than the average. This characteristic also aligns with the previous characteristic, where data with a fat right tail of the distribution generally have positive skewness [30].








Based on the characteristics of the data above, the theoretic distribution options chosen are those with a thick right tail. A list of distribution options with a thick right tail is given in Table 5. Then, using the maximum likelihood estimation method, each parameter estimate of each distribution is given in Table 6. Then, the fit between the exact data distribution and the distribution in Table 5 are checked using the Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and Chi-Square (CS) tests. With a significance level of 0.05, the results of examining the fit using the three tests are presented in Table 7. The results of the distribution fit test in Table 7 show that the gamma distribution has the smallest statistical value in each test. Therefore, the gamma distribution represents the distribution of single catastrophe losses in Indonesia.




4.3. Estimated Regional Catastrophe Bond Prices in Each Province


In estimating the price of RCBs in each province, the values of the required variables are determined first. The list of variable values used is presented in Table 8.



Based on Table 8, the term of the RCB is given as one year. This period was chosen so that the risk of loss from bonds is not too significant so that it can be more attractive to investors. Then, there are   S = 5   loss threshold values, namely       μ   s   : s ∈ S    .     μ   s     is the     s   5    -th percentile of the annual loss data due to catastrophe in Table 4 in column 5. Then, the redemption value and coupon proportion are an arithmetic sequence       η   s   : s ∈ S     with a difference of   − 0.1  . The minimum value of this proportion (    η   5    ) is 0.5. If the catastrophic aggregate losses exceed the enormous threshold value, the investor receives half of the redemption and coupon. Then, the nominal interest rate and inflation are adjusted according to actual data that have been rounded up from Bank Indonesia in December 2022. Finally, the annual redemption and coupon values of RCBs in each province are given the same value. These are 1 IDR and 0.05 IDR, respectively.



Before estimating the RCB prices of each province, the distribution approximation method     L   z , 1     for each   z ∈ Z   is analyzed first. This analysis was conducted based on the skewness value of     X   z , m     and the kurtosis of     L   z , 1    . The analysis result of determining the     L   z , 1     distribution approximation method for each province is given in Table 9.



Table 9 shows that the kurtosis value of     L   z , 1       ∀ z ∈ Z   is in the interval   [ 0 ,   1.5 ]  . Then, the skewness value of X is the same, namely 0.1564, because it is assumed to be identical. The skewness value is in the interval   [ 0 ,   5 ]  . Thus, the distribution of     L   z , 1       ∀ z ∈ Z   is approximated by the GIG distribution. Furthermore, with the variable values in Table 8, the RCB prices of each province are determined using Equations (4) and (6). A list of RCB prices for each province is given in Table 10.



Table 10 shows that West Papua, West Sulawesi, North Maluku, Papua, and Gorontalo Provinces have the first, second, third, fourth, and fifth highest zero-coupon and coupon-paying RCB prices among all provinces in Indonesia, respectively. Then, Central Java, East Java, West Java, Aceh, and South Sulawesi Provinces have the first, second, third, fourth, and fifth lowest zero-coupon and coupon-paying RCB prices among all provinces in Indonesia.





5. Discussion


5.1. The Effect of the Inflation Rate on RCB Prices


The analysis of the effect of the inflation rate on RCB prices is discussed in this section. Mathematically, based on Equations (4) and (6), the value of the inflation rate is inversely proportional to the RCB price. In other words, the greater the inflation rate, the lower the RCB price, and vice versa. It is rational because if the inflation rate is low, the returns from RCBs obtained by investors will be high. Hence, the demand for buying RCBs increases, but the issuance of RCBs is limited. Therefore, the price of RCBs has also increased. It also applies to the opposite when the inflation rate is high. In addition, we show this visually in Figure 3 regarding the effect of the inflation rate on RCB prices. The visualized RCB price is the RCB price in Aceh Province only to shorten the writing, and all variables are the same in Table 8 except for the inflation rate and nominal interest rate. Figure 3 also visualizes the effect of the nominal interest rate on the RCB price, where the nominal interest rate appears to be directly proportional to the RCB price. It can also be seen in Equations (4) and (6). It is appropriate because if the nominal interest rate is high, the return from the RCB will be high. Hence, the demand for RCBs increases, but the issuance is limited. Therefore, the price of RCBs is high. The effect of the nominal rate of interest in this study is in line with Burnecki et al. [36].




5.2. The Effect of the Nonbinary Payment Scheme on RCB Prices


In this section, we analyze how the nonbinary payment scheme of coupon and redemption value on RCB prices is affected. In other words, this section also presents a comparison between estimated RCB prices resulting from nonbinary and binary scheme models. The nonbinary scheme is given in Equations (3) and (5), and the values are given in Table 8. Meanwhile, the binary scheme of the coupon payment and redemption value are, respectively, expressed as follows:


    C   z , k   =        c   z     ;   L   z , k   ≤ μ     η   c   z     ;   L   z , k   > μ      ,  



(7)




and


    R   z , K   =        r   z     ;   L   z , K   ≤ μ     η   r   z     ;   L   z , K   > μ      .  



(8)







Then, the zero-coupon and coupon-paying RCB price models of this binary scheme are, respectively, expressed as follows:


    P   z , K   =       1 +   p   z     1 +   q   z         − K     E   P       R   z , K     =       1 +   p   z     1 +   q   z         − K       r   z     F     L   z , K       μ   + η   r   z     1 −   F     L   z , K       μ        



(9)




and


     P   z , K   ′   =   ∑  k = 1   K          1 +   p   z     1 +   q   z         − k     E   P       C   z , k       +   P   z , K   ,    =   ∑  k = 1   K          1 +   p   z     1 +   q   z         − k       c   z     F     L   z , k       μ   + η   c   z     1 −   F     L   z , k       μ         +   P   z , K   .   



(10)







Assume that   η =   η   5   = 0.5   dan   μ =   μ   4   = 501,046,191,274   I D R .   A comparison of RCB prices from models with nonbinary and binary schemes from each province is shown in Figure 4.



Figure 4 shows that the RCB price of the model with the nonbinary scheme is more convergent towards the center than the RCB price of the model with the binary scheme. It can be interpreted that the RCB price of the model with the nonbinary scheme is fairer than the RCB price of the model with the binary scheme. This fairness means that the RCB price in the nonbinary scheme is neither too cheap nor too expensive. If the RCB price is too low, it will be detrimental to the sponsor because the funds they receive from the RCBs will be small. Then, if the RCB price is too high, this will be detrimental to investors because the funds they invest should be cheaper.




5.3. The Effect of Provincial Catastrophe Intensity in Indonesia on RCB Prices


Based on the estimated results of provincial RCB prices in Indonesia in Table 10, some things can be discussed further. This discussion is related to the analysis of the effect of the catastrophe intensity of each province on the price of its bonds. To facilitate this analysis, we first visualize the scatter plot of each province’s bond price and catastrophe intensity in Figure 5.



Figure 5 shows an inverse relationship between the catastrophe intensity of each province in Indonesia and its RCB price, where the higher the catastrophe intensity in a province, the lower the RCB price, and vice versa. It is logically rational because the higher the intensity of the catastrophe in a province, the higher the catastrophic aggregate losses will exceed the threshold values. It makes investors less interested in catastrophe bonds because they fear a massive loss of redemption and coupon values. Therefore, the price of RCBs becomes cheap. This relationship can be seen in Section 4.3, where the top five provinces with the highest and lowest RCB prices are also the top five with the lowest and highest catastrophic intensity, respectively. The relationship obtained is in line with several previous studies, namely Ma and Ma [30], Chao [37], and Ibrahim et al. [34].



The inverse relationship between intensity and bond prices from Figure 5 dips sharply over the zero to one hundred intensity intervals and begins to decline slowly after that. It further indicates that the distribution of catastrophic losses, including in Indonesia, has a thick right tail due to sloping slowly in that direction.




5.4. The Effect of Geographical Location of Provinces in Indonesia on RCB Prices


The effect of the geographical location of each province in Indonesia on the price of the RCBs is also something that can be discussed further. Geologically, the territory of Indonesia is above the earth’s surface, where the world’s plates meet underneath [38,39,40]. In particular, this is the territory of Indonesia which is located around the state border line in the south, such as the provinces of Aceh, North Sumatra, West Sumatra, South Sumatra, Banten, West Java, Central Java, East Java, Bali, West Nusa Tenggara, and East Nusa Tenggara. As a result, these provinces are frequently hit by geological catastrophes, especially earthquakes, volcanic eruptions, and tsunamis. This geographical location affects the price of RCBs in these provinces, where the prices are low compared to other provinces. Seven of the ten provinces with the lowest RCB prices in Indonesia are some of these provinces, as shown in Table 11. It is logical because the geographical location causes the probability of claims from RCBs to be high, making it less attractive to investors and decreasing RCB prices.




5.5. The Effect of the RCB Term on RCB Prices


The effect of the RCB term on its price is analyzed in this section. For reasons of simplicity, the variables used are in Table 8, while the values for the RCB term variables are defined by   K ∈   1 ,   2 ,   3 ,   4 ,   5 ,   6    . Then, the approximation distribution of the     L   z , k    ’s CDF used is also the same as in Table 9, the GIG distribution. Finally, the province analyzed is Aceh (  z = 1  ). The effect of the RCB term on its price is visualized in Figure 6.



Figure 6 shows that the RCB term is inversely proportional to its price. It means that the longer the RCB term, the lower the price, and vice versa. Rationally, this is normal because the longer the RCB term, the greater the risk of claims from the RCB. It has implications for decreased investor interest, resulting in low RCB prices.




5.6. Comparation of Catastrophe Loss in SCBs and RCBs


As the data presented in Table 4 show, catastrophic losses from individual provinces are smaller than catastrophic losses from a single country. Catastrophe losses from individual provinces range from IDR 26 million to IDR 6 trillion, while catastrophe losses from the country are IDR 20 trillion. It happens because the regional scale of the province is smaller than the scale of the country. The larger the scale of a country, the greater the risk of catastrophe, and vice versa. This condition causes a large amount of funds to be provided, and the risk of claims from RCBs is lower than SCBs. Hence, investors’ interest in participating in catastrophe funding is higher. Therefore, RCBs can be an alternative solution for catastrophe funding in the future.





6. Conclusions


This study aims to design a pricing framework for regional catastrophe bonds by considering the inflation rate and nonbinary payment schemes in coupon and redemption values. The inflation rate is involved in estimating investors’ expected return more accurately and is modeled using Fisher’s equation. Then, nonbinary payment schemes are involved in varying the proportion of coupon and redemption values from each region based on each catastrophe intensity. The framework is modeled using a compound Poisson process.



In addition to modeling, this study provides an application of its use in Indonesian catastrophe data. The model application was conducted using the distribution approximation method, proposed and developed by Chaubey et al. [26] and Reijnen et al. [27], respectively. The model application shows an inverse relationship between the inflation rate and RCB price, where low inflation causes a high RCB return, increasing demand. At the same time, RCB issuance is limited, resulting in higher prices. Then, an inverse relationship is also shown between the catastrophe intensity of each province in Indonesia and its RCB price, where the higher the catastrophe intensity in a province, the lower the RCB price, and vice versa. It is logically rational because the higher the intensity of the catastrophe in a province, the higher the catastrophic aggregate losses will exceed the threshold values. Hence, the RCB price decreases. Then, nonbinary payment schemes of coupon and redemption value make the RCB price fairer, which means it is not too cheap or expensive. Then, the term of RCB has a disproportionate relationship with the price, where the longer the term of the RCB, the cheaper the price, and vice versa. It is logical because the longer the term of the RCB, the greater the risk of catastrophe. Hence, investor interest decreases, and the price also decreases. Finally, the geographical location of a region also affects the price of RCBs in that region. The more catastrophic triggers in a region, e.g., meeting points between plates and a large area of dry land, the lower the price of RCBs from that region, and vice versa.



This research can help regions in a country determine RCB prices. Then, the results of the estimated RCB prices in Indonesia can also be used as a reference if the bonds are to be issued one day. Finally, the effects of the inflation rate, nonbinary payment scheme, catastrophe intensity, geographic location, and the term on RCB prices can also be used by investors to measure risk when selecting and compiling their bond portfolio.



As a suggestion for future research, the correlation level of catastrophe frequency between regions can be considered. Involving this factor is logical because its influence on RCB prices is possible. Then, the use of the jumping process can be considered for study in the future because jumping can exist in catastrophe loss data in a country, e.g., losses from the Aceh Tsunami in 2004, which were very extreme in value compared to other catastrophes there. Then, the risk of default can also be considered in the model because each region generally owns it. Lastly, it can be assumed that the interest rate and inflation in Fisher’s equation are not constant. It can better describe the situation, where the two are not always constant yearly.
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Figure 1. Frequency of several types of catastrophes in the world from 1972–2021. 
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Figure 2. Histogram of single catastrophe loss data in Indonesia. 
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Figure 3. (a) The effect of inflation rate and nominal interest rate on zero-coupon RCB price; (b) The effect of inflation rate and nominal interest rate on coupon-paying RCB price. 
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Figure 4. (a) A comparison between the zero-coupon RCB prices of models with the binary and nonbinary payment schemes of coupon and redemption values; (b) A comparison between the coupon-paying RCB prices of models with the binary and nonbinary payment schemes of coupon and redemption values. 
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Figure 5. (a) Scatter plot between catastrophe intensity and zero-coupon bond prices from each province in Indonesia; (b) Scatter plot between catastrophe intensity and coupon-paying bond prices from each province in Indonesia. 
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Figure 6. (a) The effect of RCB term on zero-coupon RCB Price; (b) The effect of RCB term on coupon-paying RCB Price. 
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Table 1. Several regions in one country that had insured their catastrophic risks in catastrophe bonds.
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	Region
	Country
	Year
	Face Value
	Special-Purpose Vehicles





	Florida
	The United States
	2013
	20 million USD
	Sunshine Re 2013-1



	Los Angeles
	The United States
	2020
	50 million USD
	Power Protective Re Ltd.



	California
	The United States
	2020
	775 million USD
	Swiss Re Capital Market










 





Table 2. Several studies regarding the design of an RCB pricing framework or its application.
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Authors

	
Year

	
Main Method (s)

	
Application

Location

	
Involving Factor




	
Inflation Rate

	
Nonbinary

Payment Scheme






	
Hardle and

Cabrera [14]

	
2010

	
Nonhomogeneous compound Poisson process (NHCPP), peaks over threshold (POT) method

	
Three zones in Mexico

	
   ×   

	
   ×   




	
Shao et al. [15]

	
2015

	
Block maxima (BM) method, autoregressive-integrated-moving-average (ARIMA) model, Cox–Ingersoll–Ross (CIR) model

	
California,

The United States

	
   ×   

	
   ×   




	
Karagiannis

et al. [16]

	
2016

	
Indifference utility pricing method

	
Mashhad

and Tabriz, Iran

	
   ×   

	
   ×   




	
Hofer et al. [17]

	
2020

	
NHCPP, CIR model, ground motion prediction equation

	
All provinces

in Italy

	
   ×   

	
   ×   




	
Mistry and

Lombardi [18]

	
2022

	
Homogeneous compound Poisson process (HCPP), CIR model, high spatial resolution hazard and exposure model

	
Benevento, Italy

	
   ×   

	
   ×   




	
Vakili and

Ghaffari-Hadigheh [19]

	
2022

	
Uncertainty theory, renewal theory, uncertain optimization problem

	
A province

in Sweden

	
   ×   

	
   ×   




	
Anggraeni

et al. [20]

	
2023

	
POT method, HCPP, copula, Sign’s fuzzy time series

	
West Java,

Indonesia

	
   ×   

	
   ×   




	
Mistry and

Lombardi [21]

	
2023

	
Stochastic exposure model, Monte Carlo, CIR model, NHCPP

	
Ten provinces

in Southern Italy

	
   ×   

	
   ×   




	
This Study

	
2023

	
Homogeneous compound Poisson process (HCPP), Fisher equation, distribution approximation methods of HCPP

	
All provinces

in Indonesia

	
   √   

	
   √   











 





Table 3. Two approximation methods of     L   z , k     distribution.
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Approximation Distribution

	
      F     L   z , k       x      

	
Additional






	
Inverse-Gaussian

(IG)

	
     F   I G     x   = Φ     x −   x   0   − a    b   x −   x   0          +   e     2 a   b     Φ   −   x −   x   0   + a    b   x −   x   0            

	
   a =   3   c   2   L   z , k     2       c   3   L   z , k       ,  b =     c   3   L   z , k       3   c   2   L   z , k       ,    x   0   =   c   1   L   z , k     − a .  a =   4     κ   3   L   z , k     2     ,  z =   x −   μ     L   z , k         σ     L   z , k       ,  w =   10   κ   3   L   z , k     2   − 6   κ   4   L   z , k         κ   3   L   z , k     2     .   




	
Gamma

Inverse-Gaussian

(GIG)

	
    F   G I G     x   = w   F   G     x   +   1 − w     F   I G     x   ,  

where

    F   G     x   =   γ   a , a + z  a      Γ   a      








  Φ ( · )   is the standard normal CDF,   Γ ( · )   is the gamma function, dan   γ ( · , · )   is the incomplete gamma function.













 





Table 4. Statistical descriptives of catastrophe loss and frequency data from each province in Indonesia.
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    z    

	
Province Name

	
Annual Catastrophe Intensity Data

	
Annual Catastrophe Loss Data




	
Average

(Catastrophe per Year)

	
Deviation Standard

(Catastrophe per Year)

	
Average

(IDR)

	
Deviation Standard

(IDR)






	
1

	
Aceh

	
116.7857

	
11.2144

	
857,252,482,319

	
76,525




	
2

	
North Sumatra

	
82.7143

	
9.6839

	
523,628,143,681

	
64,590




	
3

	
West Sumatra

	
80.6429

	
9.0323

	
486,690,554,987

	
63,777




	
4

	
Riau

	
32.0000

	
6.5359

	
228,854,455,832

	
40,201




	
5

	
Bengkulu

	
16.5714

	
3.4080

	
109,600,444,496

	
28,831




	
6

	
South Sumatra

	
79.1429

	
8.9780

	
581,464,497,741

	
63,046




	
7

	
Jambi

	
35.2143

	
5.7515

	
254,831,254,753

	
42,200




	
8

	
Lampung

	
38.1429

	
4.1905

	
287,663,127,530

	
44,034




	
9

	
Bangka Belitung

	
28.6429

	
5.7483

	
188,236,815,795

	
38,088




	
10

	
Riau Islands

	
15.6429

	
3.7784

	
97,198,278,270

	
28,010




	
11

	
Banten

	
44.7143

	
6.6722

	
332,048,721,239

	
47,577




	
12

	
West Java

	
399.5714

	
21.1141

	
3,531,755,496,825

	
141,757




	
13

	
Jakarta

	
21.4286

	
3.1355

	
183,847,909,889

	
32,821




	
14

	
Central Java

	
651.3571

	
24.8680

	
5,926,026,180,651

	
180,733




	
15

	
Yogyakarta

	
38.5000

	
5.0534

	
237,933,092,079

	
44,209




	
16

	
East Java

	
309.7143

	
18.7278

	
3,331,490,938,395

	
124,926




	
17

	
West Borneo

	
34.2143

	
6.0184

	
247,048,789,693

	
41,350




	
18

	
Central Borneo

	
30.5000

	
4.9356

	
173,082,883,748

	
39,222




	
19

	
South Borneo

	
63.0714

	
7.0262

	
510,616,615,466

	
56,293




	
20

	
East Borneo

	
56.2143

	
8.8474

	
415,469,352,173

	
53,234




	
21

	
North Sulawesi

	
21.5000

	
4.8634

	
141,941,492,725

	
32,927




	
22

	
Gorontalo

	
14.3571

	
2.5258

	
89,175,035,348

	
26,951




	
23

	
Central Sulawesi

	
29.7857

	
6.5390

	
179,787,945,043

	
38,718




	
24

	
West Sulawesi

	
10.2857

	
3.1517

	
62,454,225,488

	
22,811




	
25

	
Southeast Sulawesi

	
35.7143

	
6.1401

	
267,424,228,963

	
42,419




	
26

	
South Sulawesi

	
82.7143

	
11.5024

	
375,321,921,725

	
64,492




	
27

	
Bali

	
38.7143

	
6.8257

	
404,472,127,202

	
44,021




	
28

	
West Nusa Tenggara

	
41.5000

	
4.7700

	
279,172,663,514

	
45,660




	
29

	
East Nusa Tenggara

	
45.6429

	
4.5852

	
256,457,830,690

	
48,051




	
30

	
Maluku

	
14.7857

	
4.0221

	
91,623,184,368

	
27,406




	
31

	
North Maluku

	
10.7143

	
3.9969

	
92,537,413,931

	
23,291




	
32

	
West Papua

	
3.9286

	
2.7408

	
26,734,567,196

	
14,058




	
33

	
Papua

	
11.0714

	
5.7158

	
85,329,669,575

	
23,689











 





Table 5. Several probability distributions with thick right tails.
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	Distribution Name
	    Probability   Density   Function     f   X     x      
	    CDF     F   X     x      
	Additional





	Burr
	     1   β     1 +       x   β       α       κ + 1     α κ       x   β       α − 1     
	   1 −     1 +       x   β       α       − κ     
	   α > 0 , β > 0 ,  κ > 0 , x ≥ 0   



	Fréchet
	     α   β         β   x       α + 1     e   −       β   x       α       
	     e   −       β   x       α       
	   α > 0 , β > 0 ,         x ≥ 0   



	Gamma *
	     1     β   α   Γ   α       x   α − 1     e   −   x   β       
	     Γ   α ,   x   β       Γ   α       
	   α > 0 , β > 0 ,         x ≥ 0   



	Log-Logistic
	     α   β         x   β       α − 1       1 +       x   β       α       − 2     
	       1 +       β   x       α       − 1     
	   α > 0 , β > 0 ,         x ≥ 0   



	Pareto
	     1     x   α + 1     α   β   α     
	   1 −       β   x       α     
	   α > 0 , β > 0 ,         x ≥ β   



	Weibull
	     α   β         x   β       α − 1     e   −       x   β       α       
	   1 −   e   −       x   β       α       
	   α > 0 , β > 0 ,         x ≥ 0   







*   Γ ( · )   is the gamma function, dan   γ ( · , · )   is the incomplete gamma function.













 





Table 6. Results of distribution parameter estimates for single catastrophe loss data.






Table 6. Results of distribution parameter estimates for single catastrophe loss data.





	Distribution Name
	Parameter Estimators





	Burr
	   α = 10.5423 , β = 7.0361 , κ = 1.1101   



	Fréchet
	   α = 7.7232 , β = 6.4317   



	Gamma
	   α = 40.8815 , β = 0.1714   



	Log-Logistic
	   α = 11.1923 , β = 6.9265   



	Pareto
	   α = 2.0281 , β = 4.2346   



	Weibull
	   α = 7.7262 , β = 7.4591   










 





Table 7. Kolmogorov–Smirnov, Anderson–Darling, and Chi-Square test results.






Table 7. Kolmogorov–Smirnov, Anderson–Darling, and Chi-Square test results.





	
Distribution Name

	
Kolmogorov–Smirnov Test

	
Anderson–Darling Test

	
Chi-Square Test




	
Statistic Value

	
Critical

Value

	
   Is     H   0     

Rejected?

	
Statistic Value

	
Critical

Value

	
   Is     H   0     

Rejected?

	
Statistic Value

	
Critical

Value

	
   Is     H   0     

Rejected?






	
Burr

	
0.0309

	
0.0607

	
No

	
0.5284

	
2.5018

	
No

	
4.0551

	
15.5071

	
No




	
Fréchet

	
0.0795

	
Yes

	
7.3995

	
Yes

	
40.6381

	
Yes




	
Gamma

	
0.0195

	
No

	
0.2883

	
No

	
3.5535

	
No




	
Log-Logistic

	
0.0388

	
No

	
0.8078

	
No

	
8.8835

	
No




	
Pareto

	
0.3418

	
Yes

	
105.9521

	
Yes

	
669.3321

	
Yes




	
Weibull

	
0.0748

	
Yes

	
7.0395

	
Yes

	
23.0932

	
Yes











 





Table 8. Variable values used in estimating RCB prices.
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	Variable
	Value





	     μ   1     
	102,159,144,761 IDR



	     μ   2     
	220,730,927,825 IDR



	     μ   3     
	280,870,756,317 IDR



	     μ   4     
	501,046,191,274 IDR



	     μ   5     
	5,926,026,180,651 IDR



	     η   1     
	0.9



	     η   2     
	0.8



	     η   3     
	0.7



	     η   4     
	0.6



	     η   5     
	0.5



	     r   z     
	1 IDR



	     c   z     
	0.05 IDR



	     p   z     
	6%



	     q   z     
	4%



	   K   
	1 Year










 





Table 9. The analysis results of determining the     L   z , 1     distribution approximation method   ∀ z ∈ Z  .






Table 9. The analysis results of determining the     L   z , 1     distribution approximation method   ∀ z ∈ Z  .





	    z    
	        κ   X   ,   κ   4   L   z , 1          
	Chosen Method





	1
	   ( 0.1564 , 0.0094 )   
	GIG



	2
	   ( 0.1564 , 0.0133 )   
	GIG



	3
	   ( 0.1564 , 0.0136 )   
	GIG



	4
	   ( 0.1564 , 0.0343 )   
	GIG



	5
	   ( 0.1564 , 0.0663 )   
	GIG



	6
	   ( 0.1564 , 0.0139 )   
	GIG



	7
	   ( 0.1564 , 0.0312 )   
	GIG



	8
	   ( 0.1564 , 0.0288 )   
	GIG



	9
	   ( 0.1564 , 0.0384 )   
	GIG



	10
	   ( 0.1564 , 0.0703 )   
	GIG



	11
	   ( 0.1564 , 0.0246 )   
	GIG



	12
	   ( 0.1564 , 0.0028 )   
	GIG



	13
	   ( 0.1564 , 0.0513 )   
	GIG



	14
	   ( 0.1564 , 0.0017 )   
	GIG



	15
	   ( 0.1564 , 0.0285 )   
	GIG



	16
	   ( 0.1564 , 0.0035 )   
	GIG



	17
	   ( 0.1564 , 0.0321 )   
	GIG



	18
	   ( 0.1564 , 0.0363 )   
	GIG



	19
	   ( 0.1564 , 0.0174 )   
	GIG



	20
	   ( 0.1564 , 0.0196 )   
	GIG



	21
	   ( 0.1564 , 0.0511 )   
	GIG



	22
	   ( 0.1564 , 0.0765 )   
	GIG



	23
	   ( 0.1564 , 0.0369 )   
	GIG



	24
	   ( 0.1564 , 0.1068 )   
	GIG



	25
	   ( 0.1564 , 0.0308 )   
	GIG



	26
	   ( 0.1564 , 0.0133 )   
	GIG



	27
	   ( 0.1564 , 0.0284 )   
	GIG



	28
	   ( 0.1564 , 0.0265 )   
	GIG



	29
	   ( 0.1564 , 0.0241 )   
	GIG



	30
	   ( 0.1564 , 0.0743 )   
	GIG



	31
	   ( 0.1564 , 0.1026 )   
	GIG



	32
	   ( 0.1564 , 0.2797 )   
	GIG



	33
	   ( 0.1564 , 0.0993 )   
	GIG










 





Table 10. Estimated results of RCB prices for each province in Indonesia.






Table 10. Estimated results of RCB prices for each province in Indonesia.





	    z    
	Province Name
	Estimated Zero-Coupon RCB Price (IDR)
	Estimated Coupon-Paying RCB Price (IDR)





	1
	Aceh
	0.5887
	0.6181



	2
	North Sumatra
	0.5994
	0.6294



	3
	West Sumatra
	0.6041
	0.6343



	4
	Riau
	0.8236
	0.8647



	5
	Bengkulu
	0.9149
	0.9606



	6
	South Sumatra
	0.6082
	0.6386



	7
	Jambi
	0.7915
	0.8311



	8
	Lampung
	0.7627
	0.8008



	9
	Bangka Belitung
	0.8525
	0.8951



	10
	Riau Islands
	0.9233
	0.9694



	11
	Banten
	0.7134
	0.7491



	12
	West Java
	0.5887
	0.6181



	13
	DKI Jakarta
	0.8873
	0.9317



	14
	Central Java
	0.5887
	0.6181



	15
	D.I. Yogyakarta
	0.7593
	0.7973



	16
	East Java
	0.5887
	0.6181



	17
	West Kalimantan
	0.8016
	0.8417



	18
	Central Kalimantan
	0.8374
	0.8792



	19
	South Kalimantan
	0.6724
	0.7060



	20
	East Kalimantan
	0.6856
	0.7199



	21
	North Sulawesi
	0.8871
	0.9314



	22
	Gorontalo
	0.9361
	0.9829



	23
	Central Sulawesi
	0.8435
	0.8857



	24
	West Sulawesi
	0.9714
	1.0200



	25
	Southeast Sulawesi
	0.7865
	0.8258



	26
	South Sulawesi
	0.5994
	0.6294



	27
	Bali
	0.7574
	0.7952



	28
	West Nusa Tenggara
	0.7340
	0.7707



	29
	East Nusa Tenggara
	0.7089
	0.7443



	30
	Maluku
	0.9317
	0.9783



	31
	North Maluku
	0.9689
	1.0173



	32
	West Papua
	0.9722
	1.0208



	33
	Papua
	0.9665
	1.0148










 





Table 11. Ten Provinces with the Lowest RCB Prices in Indonesia.
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	    z    
	Province Name
	Estimated Zero-Coupon RCB Price (IDR)
	Estimated Coupon-Paying RCB Price (IDR)





	1
	Central Java
	0.5887
	0.6181



	2
	East Java
	0.5887
	0.6181



	3
	West Java
	0.5887
	0.6181



	4
	Aceh
	0.5887
	0.6181



	5
	North Sumatra
	0.5994
	0.6294



	6
	South Sulawesi
	0.5994
	0.6294



	7
	West Sumatra
	0.6041
	0.6343



	8
	South Sumatra
	0.6082
	0.6386



	9
	South Kalimantan
	0.6724
	0.7060



	10
	East Kalimantan
	0.6856
	0.7199
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