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Abstract: In this paper, we study a special kind of finite mixture model. The sample drawn from the
model consists of three parts. The first two parts are drawn from specified density functions, f1 and
f2, while the third one is drawn from the mixture. A problem of interest is whether the two functions,
f1 and f2, are the same. To test this hypothesis, we first define the regular location and scale family of
distributions and assume that f1 and f2 are regular density functions. Then the hypothesis transforms
to the equalities of the location and scale parameters, respectively. To utilize the information in the
sample, we use Bayes’ theorem to obtain the posterior distribution and give the sampling method.
We then propose the posterior p-value to test the hypothesis. The simulation studies show that our
posterior p-value largely improves the power in both normal and logistic cases and nicely controls
the Type-I error. A real halibut dataset is used to illustrate the validity of our method.
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1. Introduction

In this paper, we focus on the model proposed by Hosmer [1], which is used to study
the halibut data. There are two different sources of halibut data. One is from the research
cruises, where the sex, age and length of the halibut are available, while another comes
from the commercial catch where only age and length can be obtained since the fish have
been cleaned before the boats returned to the port. The length distribution of an age class
of halibut is closely approximated by a mixture of two normal distributions, which are

Xi
iid∼ f1(y), i = 1, . . . , n1

Yj
iid∼ f2(y), j = 1, . . . , n2

Zk
iid∼ λ f1(y) + (1− λ) f2(y), k = 1, . . . , n3,

(1)

where f1 and f2 are the probability density functions of the normal distributions and λ is
the proportion of the male halibut in the commercial catches. Hosmer [1] estimated the
parameters of the two normal distributions using the iterative maximum likelihood estimate
method. Murray and Titterington [2] generalized the problem to higher dimensions and
summarized a variety of possible techniques, such as maximum likelihood estimation and
Bayesian analysis. Anderson [3] proposed a semiparametric modeling assumption known
as the exponential tilt mixture model, where the estimating of the proportion is performed
by a general method based on direct estimation of the likelihood ratio. This semiparametric
model is further studied by Qin [4], who extended Owen’s [5] empirical likelihood to
the semiparametric model and gave the asymptotic variance formula for the maximum
semiparametric likelihood estimation. However, empirical likelihood may suffer from some
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computational difficulties. Therefore, Zou et al. [6] proposed the use of partial likelihood
and showed that the asymptotic null distribution of the log partial likelihood ratio is
chi-square. To estimate the mixing proportion, an EM algorithm is given by Zhang [7].
It is shown that the sequence of proposed EM iterates, irrespective of the starting value,
converges to the maximum semiparametric likelihood estimator of the parameters in the
mixture model. Furthermore, Inagaki and Komaki [8] and Tan [9] respectively modified
the profile likelihood function to provide better estimators for the parameters.

Except for the estimation of parameters, another important issue is to test the homo-
geneity of the model. Thus, the null hypothesis is

H0 : f1 = f2.

To test the null hypothesis, the classical results on the likelihood ratio test (LRT) may
be invalid. This is caused by the lack of identifiability of some nuisance parameters. To
solve this problem, Liang and Rathouz [10] proposed a score test and applied it to genetic
linkage analysis. They showed that the score test has a simple asymptotic distribution
under the null hypothesis and maintains adequate power in detecting the alternatives.
This idea is further generalized by Duan et al. [11] and Fu et al. [12]. On the other hand,
Chen et al. [13,14] proposed modified likelihood functions to make the LRT available.
They gave the asymptotic theory of the modified LRT and showed that the asymptotic
null distribution is a mixture of χ-type distributions and is asymptotically most powerful
under local alternatives. Furthermore, Chen and Li [15] designed an EM-test for finite
normal mixture models, which performed promisingly in their simulation study. To solve
the problem of degeneration of the Fisher information, Li et al. [16] used a high-order
expansion to establish a nonstandard convergence rate, N−1/4, for the odds ratio parameter
estimator. The methods mentioned above have been applied successfully in many real
applications. For example, genetic imprinting and quantitative trait locus mapping; see Li
et al. [17] and Liu et al. [18].

Most of the mixture models described above mainly consider the case when f1 and
f2 are normal density functions or have an exponential tilt. In this paper, we want to
extend the conclusion to more general cases. A similar question has been researched by
Ren et al. [19]. In their paper, a two-block Gibbs sampling method is proposed to obtain
the samples of the generalized pivot quantities of the parameters. They studied both
cases when f1 and f2 are normal and logistic density functions. In our paper, we assume
that f1 and f2 are in a specified location-scale family with location parameter µ and scale
parameter σ. We propose a posterior p-value based on the posterior distribution to test
the homogeneity. We aim to give a p-value under the posterior distribution, such that it
has the same frequentist properties as the classical p-value. This means that the Bayesian
p-value under proper definition can play the same role as the classical one. To sample
from the posterior distributions, we propose to use the approximate Bayesian computation
(ABC) method for the case when f1 and f2 are normal density functions, which is different
from the cases when f1 and f2 are general. This is because the posterior distribution of the
normal case can be regarded as using the information contained in the first two samples as
prior distribution and updating it via the third one without loss of information. We find in
our simulation that this method is promising and efficient, even though we use the simplest
reject-sampling. For the general case, since the ABC method is no longer available, we use
Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis–Hastings sampling
method proposed by Hannig et al. [20] and the two-block Gibbs sampling proposed by
Ren et al. [19] to sample from the posterior distribution.

The paper is organized as follow. In Section 2, we first define the regular location-scale
family and give some properties of the family. We then propose our posterior p-value for
testing the homogeneity. We further introduce the sampling method for different cases.
Real data of the halibut is studied in Section 3 to illustrate the validity of our method. The
simulation study is given in Section 4, while the conclusion is given in Section 5.
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2. Test Procedure

In this section, we consider model (1), where the distributions are in a certain regular
location-scale family. Thus, we first give the definition in the following subsection.

2.1. Regular Location-Scale Family

In this section, we first give the definition of the regular location-scale family.

Definition 1 (regular location-scale family). Let f (x) be a probability density function. If f (x)
satisfies

(1) f (x) > 0, −∞ < x < ∞;
(2) f ′′(x) is continuous;
(3) lim

x→−∞
x2 f ′(x) = lim

x→+∞
x2 f ′(x) = 0;

(4)
∫ +∞
−∞ x2 [ f ′(x)]2

f (x) dx < ∞.

Then f (x) is defined as a regular density function, and

R f =

{
1
σ

f
(

x− µ

σ

)
; µ ∈ (−∞,+∞), σ ∈ (0,+∞)

}
is defined as the regular location-scale family.

It is easy to verify that many families of distributions are regular location-scale families.
For example, let

f1(x) =
1√
2π

e−
x2
2 , f2(x) =

e−x

(1 + e−x)2 .

Then f1(x) and f2(x) are regular density functions. The families of distributions that are
constructed by f1(x) and f2(x) are regular, and they are the families of normal distributions
and logistic distributions, respectively. The two families of distributions are included later
in the paper.

The following lemma highlights some properties of this family.

Lemma 1. If f (x) is a regular density function, then we have

(1) lim
x→−∞

x f (x) = lim
x→+∞

x f (x) = 0;

(2)
∫ +∞
−∞ f ′(x)dx = 0;

(3)
∫ +∞
−∞ x f ′(x)dx = −1;

(4)
∫ +∞
−∞ f ′′(x)dx = 0;

(5)
∫ +∞
−∞ x f ′′(x)dx = 0;

(6)
∫ +∞
−∞ x2 f ′′(x)dx = 0.

The proof of this lemma is given in Appendix A.
We further calculate the Fisher information matrix of the regular location-scale family

with the following proposition.

Proposition 1. Assume that f (x; ξ) = 1
σ f ( x−µ

σ ) is in the regular location-scale family, where
ξ = (µ, σ)>. The parameter space is Ω = {(µ, σ) : −∞ < µ < ∞, σ > 0}. Let l(X; ξ) be
log f (X; ξ). Then

(1) The score function satisfies

Eξ

[
∂l(X; ξ)

∂ξ

]
= 0,

where
∂l(X; ξ)

∂ξ
=

(
∂l(X; ξ)

∂µ
,

∂l(X; ξ)

∂σ

)>
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is a two-dimensional vector. Eξ denotes the expectation under the distribution of parameters
ξ = (µ, σ)>.

(2) The Fisher information matrix satisfies

0 < I f (ξ) = Eξ

[(∂l(X; ξ)

∂ξ

)(∂l(X; ξ)

∂ξ

)]>
=

1
σ2 C( f ) =

1
σ2

(
C11( f ) C12( f )
C21( f ) C22( f )

)
< ∞,

where

C11( f ) =
∫ ∞

−∞

[ f ′(y)]2

f (y)
dy

C12( f ) = C21( f ) =
∫ ∞

−∞
y
[ f ′(y)]2

f (y)
dy

C22( f ) =
∫ ∞

−∞

(
1 + y

f ′(y)
f (y)

)2
f (y)dy =

∫ ∞

−∞
y2 [ f ′(y)]2

f (y)
dy− 1

(3) The Fisher information matrix is given by

I f (ξ) = −Eξ

[∂2 f (X, ξ)

∂ξ∂ξ>

]
.

The proof is given in Appendix A.

Proposition 2. Assume that 0 < λ0 < 1 and f (·) is regular. Then {g(x; θ) : θ ∈ Ω} given by

g(x, θ) =
λ0

σ1
f
(

x− µ1

σ1

)
+

1− λ0

σ2
f
(

x− µ2

σ2

)
, (2)

where θ = (µ1, µ2, σ1, σ2)
> and Ω = R2 × R+2 has the following properties.

(1)

Eθ

[
∂ log g(x, θ)

∂θ

]
= 0;

(2)

I(θ) = E
[(

∂ log g(x, θ)

∂θ

)(
∂ log g(x, θ)

∂θ

)]>
< ∞;

(3)

I(θ) = −Eθ

[
∂2 log g(x; θ)

∂θ∂θ>

]
.

The proof is given in Appendix A.
We then give the Fisher information matrix of the normal and logistic distribution. For

the normal distribution, we have

C11( f ) =
∫ ∞

−∞

1√
2π

e−
y2
2 y2dy = 1

C12( f ) = C21( f ) =
∫ ∞

−∞

1√
2π

e−
y2
2 y3dy = 0

C22( f ) =
∫ ∞

−∞

1√
2π

e−
y2
2 y4dy− 1 = 2

Thus, the Fisher information matrix of normal distribution is

I f (ξ) =
1
σ2

(
1 0
0 2

)
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Similarly, for the logistic distribution,

C11( f ) =
∫ ∞

−∞

e−y(e−y − 1)2

(1 + e−y)4 dy = 1/3

C12( f ) = C21( f ) =
∫ ∞

−∞

e−y(e−y − 1)2

(1 + e−y)4 dy = 0

C22( f ) =
∫ ∞

−∞

e−y(e−y − 1)2

(1 + e−y)4 dy =
1
3
+

π2

9

Thus, the Fisher information matrix of logistic distribution is

I f (ξ) =
1
σ2

(
1
3 0
0 1

3 + π2

9

)

2.2. A Posterior p-Value

We now consider testing the homogeneity of model (1), where f1 and f2 are inR f ,

f1 =
1
σ1

f
(

x− µ1

σ1

)
, f2 =

1
σ2

f
(

x− µ2

σ2

)
.

This is equivalent to testing the equality of the parameters of the two density functions,
that is,

H0 : µ1 = µ2, σ1 = σ2 v.s. H1 : µ1 6= µ2 or σ1 6= σ2. (3)

Consider the density function

g(x; θ) =
λ

σ1
f
(

x− µ1

σ1

)
+

λ

σ2
f
(

x− µ2

σ2

)
,

where θ = (µ1, µ2, σ1, σ2, λ)> is the unknown parameter. When f (x) is the regular density
function, then the Fisher information matrix is

Ig(θ) = Eθ

[
∂ log g(x; θ)

∂θ

][
∂ log g(x; θ)

∂θ

]>
,

where

∂ log g(x; θ)

∂θ
=



1
g(x;θ)

[
− λ

σ2
1

f ′
(

x−µ1
σ1

)]
1

g(x;θ)

[
− 1−λ

σ2
2

f ′
(

x−µ2
σ2

)]
1

g(x;θ)

[
− λ

σ2
1

f ′
(

x−µ1
σ1

)
− λ

σ3
1

f ′
(

x−µ1
σ1

)]
1

g(x;θ)

[
− 1−λ

σ2
2

f ′
(

x−µ2
σ2

)
− 1−λ

σ3
2

f ′
(

x−µ2
σ2

)]
1

g(x;θ)

[
1
σ1

f
(

x−µ1
σ1

)
− 1

σ2
f
(

x−µ2
σ2

)]


When µ1 = µ2, σ1 = σ2,

∂ log g(x; θ)

∂λ
= 0,

the last row and column of Ig(θ) is zero, which means that |Ig(θ)| = 0 and is non-definite.
Thus, we may encounter some difficulties when using some traditional test methods, such
as the likelihood ratio test.

We suggest a solution here. First we assume that λ = λ0 is known. There are then
four parameters, and we still denote them by θ = (µ1, µ2, σ1, σ2)

>. We use the estimate of λ
instead since λ is unknown. This is because when the homogeneity hypothesis holds, the
distribution of the population is irrelative to λ, so the level of the test is irrelative to the
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estimate of λ. We then give the inference on θ below. For the first two samples, the fiducial
density of (µ1, σ1) and (µ2, σ2) are

(µ1, σ1) ∝

[
n1

∏
i=1

1
σ1

f
(

x1i − µ1

σ1

)]
1
σ1

, (µ2, σ2) ∝

[
n2

∏
j=1

1
σ2

f
( x2j − µ2

σ2

)]
1
σ2

, (4)

where “∝” denotes “proportion to”; see example 3 of Hannig et al. [20]. To combine (4)
with the third sample, we regard (4) as the prior distribution. By the Bayes’ theorem

θ ∝
n3

∏
k=1

[
λ0

σ1
f
(

x3k − µ1

σ1

)
+

1− λ0

σ2
f
(

x3k − µ2

σ2

)]

·
[

n1

∏
i=1

1
σ1

f
(

x1i − µ1

σ1

)]
1
σ1
·
[

n2

∏
j=1

1
σ2

f
( x2j − µ2

σ2

)]
1
σ2

(5)

Denote the probability measure on the parameter space determined by (5) by PΘ|x, where
x = (x>1 , x>2 , x>3 ), x1 = (x11, x12, · · · , x1n1)

>, x2 = (x21, x22, · · · , x2n2)
>, x3 = (x31, x32, · · · ,

x3n3)
>. Θ denotes the random variable. We can see from expression (5) that PΘ|x is the

posterior distribution under the prior distribution

dθ =
1

σ1σ2
dµ1dµ2dσ1σ2.

Let

A =

[
1 −1 0 0
0 0 1 −1

]
, b = [0, 0]>.

Then, hypotheses (3) is equivalent to

H0 : Aθ = b v.s. H1 : Aθ 6= b. (6)

where θ = (µ1, µ2, σ1, σ2)
>.

To establish Bernstein-von Mises theorem for multiple samples, we first introduce
some necessary assumptions below. Let li(θ) be the log-likelihood function of the ith
sample, where i = 1, 2, 3.

Assumption 1. Given any ε > 0, there exists δ > 0, such that in the expansion

li(θ) = li(θ0) + (θ − θ0)
>l′i(θ0)−

1
2
(θ − θ0)

>[nIi(θ0) + Rni (θ)](θ − θ0), i = 1, 2, 3,

where θ0 is the true value of the parameter. Ii(θ0) is the Fisher Information matrix. The probability
of the following event

sup
{

1
n

λmax[Rni (θ)] : ‖θ − θ0‖ ≤ δ

}
≥ ε

tends to 0 as n→ ∞, where ‖ · ‖ is the Euclidean norm and λmax(A) denotes the largest absolute
eigenvalues of a square matrix, A.

Assumption 2. For any δ > 0, there exists ε > 0, such that the probability of the event

sup
{

1
ni
[li(θ)− li(θ0)] : ‖θ − θ0‖ ≥ δ

}
≤ −ε

tends to 1 as n→ ∞.



Mathematics 2023, 11, 3849 7 of 25

Assumption 3. Under the prior π, there exist k0, such that the integral of ‖θ‖ below exists,

∫
‖θ‖2

k0

∏
i=1

[
1
σ1

f
(

x1i − µ1

σ1

)] k0

∏
j=1

[
1
σ2

f
(

x2i − µ2

σ2

)]
π(θ)dθ < ∞.

Assumption 4. When n = n1 + n2 + n3 → ∞,

ni
n
→ ri ∈ (0, 1), i = 1, 2, 3.

We then give the Berstein-von Mises theorem for multiple samples as follows.

Theorem 1. Denote the posterior density of t =
√

n(θ − Tn) by π∗(t|x), where

Tn = θ0 +
1
n

I−1(θ0)l′(θ0).

If Assumptions 1, 2 and 4 hold, then∫
Ω

∣∣∣π∗(t|x)− (2π)−
k
2 |I(θ0)|

1
2 e−

1
2 t> I(θ0)t

∣∣∣dt P→ 0.

Furthermore, if Assumption 3 holds, then∫
Ω

(
1 + ‖t‖2

)∣∣∣π∗(t|x)− (2π)−
k
2 |I(θ0)|

1
2 e−

1
2 t> I(θ0)t

∣∣∣dt P→ 0.

We can then define the posterior p-value as follows

Definition 2. Let

p(x) = PΘ|x
(
(Θ− θB)

>A>
(

AΣBA>
)−1

A(Θ− θB)

> (b−AθB)
>
(

AΣBA>
)−1

(b−AθB)
)

,
(7)

where PΘ|x(·) is the probability under the posterior distribution. θB is the posterior mean and ΣB is
the posterior covariance matrix. We call p(x) a posterior p-value.

It should be noted that p(x) is defined under the posterior distribution, which is the
distribution of parameters given the observation X = x. However, when studying the
properties of p(x), we regard it as a random variable and denote it by p(X). The theorem
below guarantees the validity of the posterior p-value.

Theorem 2. Under the assumption of Theorem 1, if the null hypothesis in (3) is true, that is,
µ1 = µ2 and σ1 = σ2, then the p-value defined by (7) satisfies

p(X)
d−→ U(0, 1).

where “ d−→” is the convergence in distribution and U(0, 1) is the uniform distribution on the
internal (0, 1).

The proof is given in the Appendix A. For a given significance level, α, we may reject
the null hypothesis if the p-value is less than α.

2.3. Sampling Method

The posterior mean, θB, and the posterior variance, ΣB, in Equation (7) can be estimated
by the sample mean and variance, respectively. Now the remain problem is how to sample
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from the posterior distribution. When λ is unknown, we first propose an EM algorithm to
estimate λ, then we sample from the posterior distribution where λ is fixed to the estimate
of λ. The Markov Chain Monte Carlo (MCMC) method is commonly used. However, as we
have mentioned earlier, the MCMC method needs to discard a large number of samples in
the burn-in period to guarantee the samples are accepted sufficiently close to the ones from
the real distribution. Fortunately, when f1 and f2 are normal density functions, we find
that the posterior distribution can be transformed and sampled by using the approximate
Bayesian computation (ABC) method. However, when f1 and f2 are more general, such as
the logistic density functions, the two-block Gibbs sampling proposed by Ren et al. [19]
can be an appropriate substitution. We will discuss the details in the following subsection.

2.3.1. EM Algorithm for λ

In this subsection, we propose the EM algorithm for estimating λ.
The log-likelihood function of the model is

L(x; θ, λ) =
n1

∑
i=1

log[ f1(x1i; θ)] +
n2

∑
j=1

log
[

f2
(
x2j; θ

)]
+

n3

∑
k=1

log[p(x3k; θ, λ)],

where f1 and f2 are in the same regular location-scale family,R f , with parameters (µ1, σ1)
and (µ2, σ2), respectively. In the log-likelihood function of the third sample, p(x3k; θ, λ) is

p(x3k; θ, λ) = λ f1(x3k; θ) + (1− λ) f2(x3k; θ).

The EM algorithm was first proposed by Dempster et al. [21] and broadly applied to a wide
variety of parametric models; see McLachlan and Krishnan [22] for a better review.

Assume that we have obtained the estimate of the parameters after m times of iterative,
denote them by θ(m) = (µ

(m)
1 , σ

(m)
1 , µ

(m)
2 , σ

(m)
2 )> and λ(m). We introduce the latent variable

γ = (γ1, γ2, · · · , γn3)
>; the component γk indicates which distribution the sample x3k is

drawn from. γk = 1 when it is drawn from the first distribution f1(x3k; θ), otherwise,
γk = 0. We then have

P(γk = 1) = λ, P(γk = 0) = 1− λ, k = 1, 2, · · · , n3

The density of the joint distribution of X1, X2, X3, γ is

n1

∏
i=1

f1(x1i; θ)
n2

∏
j=1

f2(x2j; θ)
n3

∏
k=1

[λ f1(x3k; θ)]γk [(1− λ) f2(x3k; θ)]1−γk .

Given X1 = x1, X2 = x2, X3 = x3, the conditional distribution of γk is[
λ f1(x3k; θ)

λ f1(x3k; θ) + (1− λ) f2(x3k; θ)

]γk
[

(1− λ) f2(x3k; θ)

λ f1(x3k; θ) + (1− λ) f2(x3k; θ)

]1−γk

,

where γk = 0, 1, k = 1, 2, · · · , n3. Thus, the conditional expectation of γk is

E(θ,λ)γk = P(θ,λ)(γk = 1) =
λ f1(x3k; θ)

λ f1(x3k; θ) + (1− λ) f2(x3k; θ)
.

When θ = θ(m) and λ = λ(m), the conditional expectation of γk can be the estimate of γk.

γ̂k(θ
(m), λ(m)) =

λ(m) f1(x3k; θ(m))

λ(m) f1(x3k; θ(m)) + (1− λ(m)) f2(x3k; θ(m))
,

k = 1, 2, · · · , n3.
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The log likelihood function is

n1

∑
i=1

log f1(x1i; θ) +
n2

∑
j=1

log f2
(
x2j; θ

)
+

n3

∑
k=1

γk log f1(x3k; θ, )

+
n3

∑
k=1

(1− γk) log f2(x3k; θ, ) +

(
n3

∑
k=1

γk

)
log λ +

(
n3 −

n3

∑
k=1

γk

)
log(1− λ).

Since the latent variable is unknown, we use its conditional expectation. Furthermore, the
MLE of λ is

λ(m+1) =
∑n3

k=1 γ̂k(θ
(m), λ(m))

n3
.

Then, in the E-step, we calculate the expectation of new parameters conditional on (θ(m), λ(m)),

Q(θ, λ|θ(m), λ(m)) =
n1

∑
i=1

log f1(x1i; θ) +
n2

∑
j=1

log f2
(
x2j; θ

)
+

n3

∑
k=1

γ̂k((θ
(m), λ(m))) log f1(x3k; θ, )

+
n3

∑
k=1

(1− γ̂k((θ
(m), λ(m)))) log f2(x3k; θ, ).

Let γ̂k = γ̂k(θ
(m), λ(m)), then

Q(θ, λ|θ(m), λ(m)) =
n1

∑
i=1

[
− log σ1 + log f

(
x1i − µ1

σ1

)]
+

n2

∑
j=1

[
− log σ2 + log f

( x2j − µ2

σ2

)]

+
n3

∑
k=1

γ̂k

[
− log σ1 + log f

(
x3k − µ1

σ1

)]
+

n3

∑
k=1

(1− γ̂k)

[
− log σ2 + log f

(
x3k − µ2

σ2

)]
.

In the M-step, we compute the simultaneous equations below to maximize Q(θ, λ|θ(m), λ(m)).
The solutions are the new parameters (θ(m+1), λ(m+1)). We give the equations of (µ1, σ1);
similarly, we can obtain (µ1, σ1).

0 = ∑n3
k=1

γk
λ f1+(1−λ) f2

f ′
(

x3k−µ1
σ1

)
+ ∑n1

i=1

[
1
f1

f ′
(

x1i−µ1
σ1

)]
0 = ∑n3

k=1
γk

λ f1+(1−λ) f2

[
σ2

1 f1 + f ′
(

x3k−µ1
σ1

)
(x3k − µ1)

]
+ ∑n1

i=1

[
σ2

1 + (x1i − µ1) f ′
(

x1i−µ1
σ1

)
1
f1

]
λ = 1

n3
∑n3

k=1 γk

In the simulation study, we consider the normal and logistic cases. The maximization step
of the normal case can be simplified as

µ1 =
∑n3

k=1 γkx3k + ∑n1
i=1 x1i

∑n3
k=1 γk + n1

,

σ2
1 =

∑n3
k=1 γk(x3k − µ1)

2 + ∑n1
i=1(x1i − µ1)

2

∑n3
k=1 γk + n1

,
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while that of the logistic case is
0 = ∑n3

k=1 γk

(
e

x3k−µ1
σ1 −1

e
x3k−µ1

σ +1

)
+ ∑n1

i=1
e

x1i−µ1
σ −1

e
x1i−µ1

σ1 +1

0 = ∑n3
k=1

[
γk

(
x3k−µ1

σ1
e

x3k−µ1
σ1 −1

e
x3k−µ1

σ1 +1
− 1

)]
+ ∑n1

i=1

[
x1i−µ1

σ1

(
e

x1i−µ1
σ1 −1

e
x1i−µ1

σ1 +1

)
− 1

]
.

The two steps are repeated sufficiently to gurantee the convergence. W can then obtain the
MLE of the parameters.

2.3.2. Normal Case

When the estimate of λ is obtained, the posterior distribution (5) can be rewritten as

π(θ|X1, X2, X3) =
( 1

σ1

n1

∏
i=1

f (X1i; µ1, σ1)
)
×
( 1

σ2

n2

∏
j=1

f (X2j; µ2, σ2)
)

×
n3

∏
k=1

[
λ̂ f (X3k; µ1, σ1) + (1− λ̂) f (X3k; µ2, σ2)

]
.

(8)

This means that the posterior distribution is equivalent to using the first two terms on the
right side of the equation as the “prior distribution” and the third term as the likelihood
function. For the first term, we have

1
σ1

n1

∏
i=1

f (Xi; µ1, σ1) =
1
σ1

( 1√
2πσ1

)n
exp

[
− ∑n1

i=1(Xi − µ1)
2

2σ2
1

]
.

By denoting the sample mean and variance by X̄ and S2
1, respectively, we have

X̄1 =
1
n1

n1

∑
i=1

X1i, S2
1 =

1
n− 1

n1

∑
i=1

(X1i − X̄1)
2,

which follows a normal and χ2(n1 − 1) distribution, respectively; that is,

X̄1 ∼ N

(
µ1,

σ2
1

n1

)
,

(n1 − 1)S2
1

σ2
1

∼ χ2(n1 − 1).

Let U ∼ N(0, 1) and V ∼ χ2(n1 − 1) be two independent random variables. Then

X̄1 = µ1 +
σ1√
n1

U, (n1 − 1)S2
1 = σ2

1 V.

Given X̄1 = x̄1 and S2
1 = s2

1, then µ1 and σ1 can be regarded as the functions of U and V

µ1 = x̄1 −
σ1√
n1

U, σ2
1 =

(n1 − 1)s2
1

V
.

The joint distribution of (U, V) is

1√
2π

e−
u2
2

v
n1−1

2 −1

Γ( n1−1
2 )2

n1−1
2

e−
v
2 .
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Then the joint distribution of (µ1, σ1) can be calculated as

π(µ1, σ1|xobs) =

√
n1√

2πσ1
e
− n1(x̄1−µ1)

2

2σ2
1

(s2
1)

n1−1
2 (n1 − 1)

n1−1
2

Γ( n1−1
2 )2

n1−1
2

(
1
σ2

1
)

n1−1
2 −1+ 3

2 e
− (n1−1)s2

1
2σ2

1 , (9)

where x1obs = (x1, x2, · · · , xn1)
>. This coincides with the joint fiducial density proposed by

Fisher [23,23], which means that the fiducial distribution of (µ1, σ1) is

µ1|σ2
1 ∼ N

(
x̄1,

σ2
1

n1

)
,

1
σ2

1
∼ χ2(n1 − 1)

(n1 − 1)s2
1

. (10)

Similarly, can we obtain

µ2|σ2
2 ∼ N

(
x̄2,

σ2
2

n1

)
,

1
σ2

2
∼ χ2(n2 − 1)

(n2 − 1)s2
2

, (11)

where x̄2 and s2
2 are the sample mean and variance of the second sample and x2obs =

(x21, x22, · · · , x2n2)
>.

With the conclusion above, sampling from the posterior distribution (5) can be con-
ducted by sampling first from the fiducial distribution of the parameters and then combine
the information with the likelihood function of the third sample from the mixture model
(1). This can be carried out simply using the approximate Bayesian computation (ABC)
method. In this case, we regard the fiducial distributions of (µ1, σ1, µ2, σ2)

> as the prior
distribution. After we have drawn samples of parameters from (10) and (11), denoted
by (µ∗1 , σ∗1 , µ∗2 , σ∗2 )

>, we generate simulations from the model below and denote them by
x3sim = (x31, x32, · · · , x3n3)

>,

λ̂ f (x; µ∗1 , σ∗1 ) + (1− λ̂) f (x; µ∗2 , σ∗2 )

where λ̂ is the MLE of λ, estimated beforehand using the EM algorithm proposed in the last
subsection. We then calculate the distance between the simulations and the observation and
accept those whose distance is below a given threshold, ε. The algorithm is given below.

1. Compute the sample mean and variance of the first two samples and denote them by
x̄, s2

1, ȳ and s2
2. Calculate the MLE of λ using the EM algorithm and denote it by λ̂.

2. Sample U1 and U2 from the standard normal distribution, V1 from the χ2(n1 − 1)
distribution and V2 from χ2(n2 − 1), respectively. To sample from the fiducial distri-
butions of the parameters, we calculate µ1, σ1, µ2 and σ2 using

µ1 = x̄1 −
U1

V1/
√

n1 − 1
s1√
n1

, σ2
1 =

(n1 − 1)s2
1

V2
1

,

µ2 = x̄2 −
U2

V2/
√

n2 − 1
s2√
n2

, σ2
2 =

(n2 − 1)s2
2

V2
2

.

We denote the samples of the parameters by θ∗ = (µ∗1 , µ∗2 , σ∗1 , σ∗2 )
>.

3. Generate a simulation of size n3 from

λ̂ f (x; µ∗1 , σ∗1 ) + (1− λ̂) f (x; µ∗2 , σ∗2 ).

The simulation is represented by x3sim = (x∗31, x∗32, · · · , x∗3n3
)>.

4. Calculate the Euclidean distance between the order statistics of the observation
Z1, Z2, · · · , Zn3 and the simulation z∗1 , z∗2 , · · · , z∗n3

. We accept the parameters if the
distance is below a given threshold, ε. Otherwise, we reject the parameters.

5. The procedure is repeated until we accept a certain number of parameters.
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A remark that should be noted in this algorithm is that the samples we receive are an
approximation of the posterior distribution (5). We actually receive samples from

π(θ, ε|x1obs, x2obs, x) ∝ π(θ|x1obs, x2obs, x3obs)I(‖x− x3obs‖ ≤ ε), (12)

where I is the indicator function. ε controls the proximity of (12) to (5) and can be adjusted
to balance the accuracy and computational cost.

2.3.3. General Case

When f1 and f2 are not normal, to sample from the posterior (8), it is natural to
use the Markov chain Monte Carlo (MCMC) method. The Metropolis–Hastings (MH)
sampling method and Gibbs sampling method are commonly used. An early version of
the MH algorithm was given by Metropolis et al. [24] in a statistical physics context, with
subsequent generalization by Hastings [25], who focused on statistical problems. Some
computational problem and solutions can be further seen in Owen and Glynn [26].

The initial values of the parameters can be determined by the EM algorithm mentioned
above. For the proposal distribution, we choose

q(µk|µ
(τ)
k ) = N(·; µ

(τ)
k , 1)

q(σk|σ
(τ)
k ) = Ga(·; σ

(τ)
k , 1)

(13)

where Ga(·) and N(·) denote the gamma distribution and normal distribution, respectively.
k = 1, 2 and µ

(τ)
k , σ

(τ)
k denotes the parameters accepted in the τth loop. After we obtain

θ(τ) = (µ
(τ)
1 , σ

(τ)
1 , µ

(τ)
2 , σ

(τ)
2 )>, we can further obtain θ(τ+1) via the following two-step

algorithm.

1. Sample (µ∗1 , σ∗1 , µ∗2 , σ∗2 )
> respectively from the proposal distribution (13). Compute

log Q(θ∗|θτ) = log q(µ∗1 |µ
(τ)
1 ) + log q(µ∗2 |µ

(τ)
2 ) + log q(σ∗1 |σ

(τ)
1 ) + log q(σ∗2 |σ

(τ)
2 )

+
n1

∑
i=1

log f (xi; µ∗1 , σ∗1 ) +
n2

∑
i=1

log f (yi; µ∗2 , σ∗2 )

+
n3

∑
i=1

[
λ̂ f (zi; µ∗1 , σ∗1 ) + (1− λ̂) f (zi; µ∗2 , σ∗2 )

]
− log (σ∗1 σ∗2 ).

2. Accept θ∗ with probability

P(θ∗, θ(τ)) = exp
{

min
[
0, log Q(θ∗|θτ)− log Q(θ(τ)|θ∗)

]}
.

and let θ(τ+1) = θ∗. Otherwise, we reject the parameters and return to the first step.

The algorithm should be repeated sufficiently before obtaining the samples from the
posterior distribution. This costs much more time compared with the ABC algorithm for
the normal case. What is more, in our simulation we found that the MH algorithm may be
too conservative. A better substitution could be the two-block Gibbs sampling proposed by
Ren et al. [19]. In this sampling method, λ is first estimated using the EM algorithm, then
for each loop, the parameters are updated by the conditional generalized pivotal quantities.

3. Real Data Example

In this section, we apply the proposed posterior p-value to the real halibut dataset
studied by Hosmer [1], which was provided by the International Halibut Commission
in Seattle, Washington. This dataset consists of the lengths of 208 halibut caught on one
of their research cruises, in which 134 are female while the rest 74 are male. The data is
summarized by Karunamuni and Wu [27]. We follow their method and randomly select 14
males and 26 females from the samples and regard them as the first and second sample of
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the mixture model (1). The remaining male proportion of 60/168 is approximately identical
to the original male proportion of 74/208, which is 0.3558. One hundred replications are
generated with the same procedure. Hosmer [1] pointed out that the component for the
dataset can be fitted by the normal distribution. A problem of interest is whether the sex
effects the length of the halibut.

To test the homogeneity, for each replication we first use the EM algorithm to estimate
λ, then we use the reject-ABC method to generate 8000 samples. We choose a moderate
threshold, ε, to balance the accuracy and the computational cost. For the 100 replications,
the mean estimate of the male proportion, λ, is 0.3381, with the mean squared error of
0.0045, which illustrates the accuracy of our EM algorithm The estimates of the location
and scale parameter of the male halibut are µ̂1 = 96.655 and σ̂1 = 12.983, while those of
the female ones are µ̂2 = 118.806 and σ̂2 = 9.077. This is close to the estimates of Ren
et al. [19]. As with the hypothesis testing f1 = f2, we calculate the posterior p-value of
the 100 replications. Given the significance level, α = 0.05, all the p-values are less than
α. Thus, the null hypothesis is rejected, which indicates that there exists an association
between the sex and length of the halibut.

4. Simulation Study

In this section, we present the simulation study of the cases discussed above. We
compare the results of the posterior p-value (7) using different sampling methods and
the generalized fiducial method proposed by Ren et al. [19]. As we can see from the
simulations, the posterior p-value we proposed largely improves the testing of homogeneity.
R programming language is used for our calculation and simulations.

4.1. Normal Case

When f1 and f2 are normal density functions, we compare the results of three different
tests. The first two are the posterior p-value we proposed, but using the two-block Gibbs
sampling and reject-ABC sampling methods, respectively. The last one is the generalized
fiducial method proposed by [19]. In the following tables, the first two are denoted by
“TG” and “TR”, while the last is denoted by “G”. We fix f1 to N(0, 1) while f2 is set to be
N(0, 1), N(1, 1), N(0, 1.52) and N(1, 1.52). For each f1 and f2 we consider λ = 0.3, 0.5, 0.7
and different sample sizes for n1, n2 and n3. We simulate N = 10000 repetitions for each
case. For the Gibbs sampling, we accept 3000 samples after burning in the first 2000. For the
reject-ABC sampling method, we first calculate the estimate of λ and accept 4000 parameters
with ε set to

√
n3/2. We then calculate the posterior p-value using the samples. We set the

significance level to α = 0.05 and reject the null hypothesis when the posterior p-value
is below α. The results are shown in Tables 1–4. We further provide the QQ-plot of TR
in Figure 1, which indicates the correctness of Theorem 2. The first rows are the cases of
(n1, n2, n3) = (10, 10, 10), (20, 20, 20) and (30, 30, 30), while the last rows are the cases of
(10, 20, 30), (30, 20, 10) and (15, 25, 150).

Table 1. Type-I errors (%) of the three methods in normal cases with nominal level α = 0.05.

n1, n2, n3 G TG TR

(10, 10, 10) 3.89 3.92 4.47

(20, 20, 20) 4.63 4.84 4.72

(30, 30, 30) 4.63 4.75 5.42

(10, 20, 30) 4.36 4.85 4.36

(30, 20, 10) 4.46 4.46 4.79

(10, 10, 100) 3.92 4.64 4.77

(15, 25, 150) 4.64 5.65 4.51
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Table 2. Power comparison (%) of the cases when f1 = N(0, 1) and f2 = N(1, 1).

0.3 0.5 0.7
G TG TR G TG TR G TG TR

(10, 10, 10) 32.2 33.9 36.8 32.2 33.9 36.5 33.3 35.9 36.5
(20, 20, 20) 70.6 74.2 76.3 70.3 74.0 76.0 72.3 76.2 75.6
(30, 30, 30) 90.2 93.3 92.1 89.2 91.2 92.2 90.7 92.2 92.0
(10, 20, 30) 46.3 50.9 46.4 51.3 56.1 45.6 56.8 63.2 45.6
(30, 20, 10) 84.3 85.8 85.3 81.3 83.3 85.4 82.8 84.3 85.2
(10, 10, 100) 35.4 43.0 41.8 33.1 41.9 41.7 34.3 44.5 41.2
(15, 25, 150) 63.5 70.7 71.5 66.8 75.1 74.0 75.8 82.3 72.6

Table 3. Power comparison (%) of the cases when f1 = N(0, 1) and f2 = N(0, 1.52).

0.3 0.5 0.7
G TG TR G TG TR G TG TR

(10, 10, 10) 11.8 20.8 22.5 13.9 22.3 22.8 14.0 24.3 22.4
(20, 20, 20) 28.4 39.9 43.8 29.7 41.6 44.6 32.8 44.5 43.4
(30, 30, 30) 42.2 57.1 58.5 44.1 56.3 58.3 45.5 57.4 58.5
(10, 20, 30) 14.3 23.8 26.3 15.5 26.8 26.5 20.9 33.5 26.8
(30, 20, 10) 38.4 50.5 50.1 38.6 49.8 51.3 38.9 49.2 50.7
(10, 10, 100) 9.4 18.0 25.2 14.4 22.2 23.7 18.5 27.6 25.4
(15, 25, 150) 20.9 35.4 35.6 28.2 42.5 37.7 35.3 48.8 38.4

Table 4. Power comparison (%) of the cases when f1 = N(0, 1) and f2 = N(1, 1.52).

0.3 0.5 0.7
G TG TR G TG TR G TG TR

(10, 10, 10) 38.9 42.6 46.6 38.2 42.1 41.7 42.0 46.2 42.6
(20, 20, 20) 77.3 79.7 82.3 75.2 78.0 80.6 80.0 82.6 80.8
(30, 30, 30) 93.6 94.2 95.5 93.8 94.0 93.3 93.9 94.5 94.4
(10, 20, 30) 47.2 50.0 55.2 55.4 59.6 57.2 62.1 66.0 56.1
(30, 20, 10) 88.4 89.0 88.9 85.8 87.2 86.5 86.3 87.6 85.3
(10, 10, 100) 46.0 48.9 49.1 53.8 56.9 45.9 59.1 64.6 48.6
(15, 25, 150) 77.1 78.6 78.1 83.9 84.8 74.4 89.6 91.5 75.1

We can see from the results that the posterior p-value largely improves the testing
of homogeneity in normal cases. The Type-I error is controlled as well as the generalized
fiducial methods. Moreover, our method significantly improves the power of testing
homogeneity, especially when σ is different. The reject-ABC sampling method has the
advantage of lower computational cost, compared with the two-block Gibbs sampling
method. However, the power of using the reject-ABC sampling method is smaller than
using two-block Gibbs sampling when n3 is much larger than n1 and n2. Thus, we can use
the reject-ABC sampling method when the sample size is small or moderate and two-block
Gibbs sampling when the sample size is large.
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Figure 1. QQ-plot of the normal cases.

4.2. General Case

For the general case, we assume that f1 and f2 are logistic density functions. The
location and scale parameters of f1 and f2 are set the same as that of the normal case.
We simulate 10,000 repetitions for each sample size. We propose three methods in this
simulation. The first two are the generalized fiducial method proposed by Ren et al. [19]
and our posterior p-value using two-blocks Gibbs sampling. They are denoted by “G”
and “TG”, as in the last simulation. The last one is the posterior p-value using the M–H
algorithm, which is denoted by “TM”. First, we calculate the MLE of λ using the EM
algorithm. We then propose the Metropolis–Hastings algorithm to obtain 12,000 samples
after the first burn-in of 8000 ones. To avoid the dependency between the samples, we
choose the first one in every three samples, which leaves us 4000 samples. We then use
these samples to calculate the posterior p-value. The algorithm is natural and seems to
be feasible. However, from Table 5 we can see that with this sampling method the results
are rather conservative. Given the significance level α = 0.05, the type-I error of TM is
always much smaller than 0.05, which makes the power of TM also smaller than the other
two when f1 6= f2. However, We find that the two-block Gibbs sampling method can
successfully solve the problem. It can be seen that the type-I error of “TG” can be controlled
well, while the power is largely improved compared with the generalized fiducial method.
The results are shown in Tables 6–8. We also provide the QQ-plot of “TG” in Figure 2.

Table 5. Type-I errors (%) of the three methods in logistic cases with nominal level α = 0.05.

n1, n2, n3 G TG TM

(10, 10, 10) 4.15 3.34 2.98

(20, 20, 20) 4.81 4.83 2.81

(10, 20, 30) 4.18 3.85 2.67

(30, 20, 10) 4.73 4.61 2.31

(30, 30, 30) 4.72 4.92 3.41

(10, 10, 100) 4.16 4.92 2.58

(15, 25, 150) 5.06 5.96 2.91
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Table 6. Power comparison (%) of the cases when f1 = Logis(0, 1) and f2 = Logis(1, 1).

0.3 0.5 0.7
G TG TM G TG TM G TG TM

(10, 10, 10) 12.2 12.0 13.2 12.6 13.3 14.5 13.2 13.0 13.7
(20, 20, 20) 29.4 30.3 26.2 28.3 29.9 26.4 28.9 30.2 26.0
(30, 30, 30) 43.2 45.4 36.6 43.1 45.2 35.9 43.9 46.5 37.3
(10, 20, 30) 17.5 18.1 15.1 19.3 20.2 16.9 22.2 23.2 18.7
(30, 20, 10) 35.4 36.6 31.8 33.9 35.8 32.4 33.5 35.1 30.4
(10, 10, 100) 13.8 17.8 12.7 13.8 17.1 11.8 13.9 16.6 11.9
(15, 25, 150) 24.4 29.3 20.1 25.3 30.0 22.7 30.9 38.1 24.1

Table 7. Power comparison (%) of the cases when f1 = Logis(0, 1) and f2 = Logis(0, 1.5).

0.3 0.5 0.7
G TG TM G TG TM G TG TM

(10, 10, 10) 10.3 13.5 16.2 10.5 14.7 16.3 11.2 15.9 15.9
(20, 20, 20) 20.8 32.4 23.6 21.7 33.3 23.7 23.0 33.4 24.1
(30, 30, 30) 32.4 44.7 33.3 33.8 44.9 33.2 34.9 46.2 34.1
(10, 20, 30) 9.6 15.3 12.1 11.1 18.0 15.2 14.2 21.9 17.9
(30, 20, 10) 27.4 37.1 21.9 27.1 36.7 22.4 27.1 36.3 22.3
(10, 10, 100) 8.9 14.8 10.6 10.2 16.3 12.2 12.7 18.4 16.8
(15, 25, 150) 15.1 26.2 20.6 21.1 32.0 20.7 24.2 35.6 22.0

Table 8. Power comparison (%) of the cases when f1 = Logis(0, 1) and f2 = Logis(1, 1.5).

0.3 0.5 0.7
G TG TM G TG TM G TG TM

(10, 10, 10) 17.4 17.9 18.1 18.3 21.7 18.8 18.5 22.6 19.6
(20, 20, 20) 43.7 49.4 36.3 43.7 49.3 36.2 45.2 51.3 37.7
(30, 30, 30) 62.9 67.3 58.1 62.2 67.2 57.9 63.6 68.4 59.6
(10, 20, 30) 20.6 24.2 21.3 24.1 29.4 26.2 30.1 35.8 35.8
(30, 20, 10) 52.7 57.0 37.6 51.7 55.9 39.7 51.5 56.0 38.8
(10, 10, 100) 19.9 24.1 18.7 23.1 27.3 19.8 23.5 30.2 19.7
(15, 25, 150) 36.7 43.1 40.4 44.6 51.5 40.7 51.0 57.8 40.1

Figure 2. QQ-plot of the logistic cases.
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5. Conclusions

In this paper, we propose a new posterior p-value for testing the homogeneity of the
three-sample problem. We define the regular location-scale family and assume that both f1
and f2 are in the same family. Therefore, testing the homogeneity is equivalent to testing
the equality of the location and scale parameters. We use the Bayes’ theorem to obtain the
posterior distribution of the parameters and propose the Bernstein-von Mises theorem for
multiple samples. We then propose the posterior p-value for testing the equality of the
parameters. To sample from the posterior distribution, we compare different sampling
methods. The simulation studies illustrate that the reject-ABC sampling method may be
a good choice for the normal case while the two-block Gibbs sampling is better for the
general ones. It should be noted that we transform the hypotheses of homogeneity to
hypotheses (6). Then, with a different matri, A, we can generate our method to a variety
of hypotheses.
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Appendix A

Proof of Lemma 1.
(1) First we show that

lim
x→−∞

f (x) = lim
x→+∞

f (x) = 0. (A1)

By the third condition in Definition 1, there exists an M > 0, such that when |x| > M,
x2| f ′(x)| < 1. Let {xn, n = 1, 2, · · · } be a sequence that satisfies lim

n→∞
xn = −∞ and let

an = f (xn). Then, for sufficiently large m and n, such that |xn| > M and |xm| > M, we
have

|am − an| = | f (xm)− f (xn)| =
∣∣∣ ∫ xn

xm
f ′(x)dx

∣∣∣ ≤ ∣∣∣ ∫ xm

xn

1
x2 dx

∣∣∣ = ∣∣∣ 1
xm
− 1

xn

∣∣∣.
This indicates that when m, n → ∞, |am − an| → 0. Thus, {an, n = 1, 2, · · · } is a Cauchy
sequence, which must be convergent. Since {xn, n = 1, 2, · · · } is an arbitrary sequence,
then the limit lim

x→−∞
f (x) exists. Notice that f (x) is a continuous density function, so

lim
x→−∞

f (x) = 0.

Similarly, we can show that
lim

x→+∞
f (x) = 0.
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By condition (3) in Definition 1, for arbitrary ε > 0, there exists a number B > 0 such
that when |x| > B, x2| f ′(x)| < ε. Then, by Equation (A1), if x < −B, we have

|x f (x)| = |x
∫ x

−∞
f ′(t)dt| ≤ |x|

∫ x

−∞
| f ′(t)|dt ≤ |x|

∫ x

−∞

ε

t2 dt = ε.

This means that lim
x→−∞

x f (x) = 0. If x > B, we have

|x f (x)| = |x
∫ +∞

x
f ′(t)dt| ≤ |x|

∫ +∞

x
| f ′(t)|dt ≤ |x|

∫ +∞

x

ε

t2 dt = ε.

This means that lim
x→+∞

x f (x) = 0.

(2) From (A1) we can get ∫ ∞

−∞
f ′(x)dx = f (x)

∣∣∣∞
−∞

= 0.

(3) As we can see ∫ ∞

−∞
x f ′(x)dx = x f (x)

∣∣∣∞
−∞
−
∫ ∞

−∞
f (x)dx.

Then, by the lemma, we just proved the fact that f (x) is a density function,∫ ∞

−∞
x f ′(x)dx = −1. (A2)

(4) Since
lim

x→−∞
f ′(x) = lim

x→+∞
f (x) = 0.

Then it is easy to get ∫ ∞

−∞
f ′′(x)dx = f ′(x)

∣∣∣∞
−∞

= 0.

(5)
lim

x→−∞
x f ′(x) = lim

x→+∞
x f ′(x) = 0

∫ +∞

−∞
x f ′′(x)dx = x f ′(x)

∣∣∣∞
−∞
−
∫ ∞

−∞
f ′(x)dx = 0− f (x)

∣∣∣∞
−∞

Then, by Equation (A1), ∫ ∞

−∞
x f ′′(x)dx = 0.

(6) ∫ ∞

−∞
x2 f ′′(x)dx = x2 f ′(x)

∣∣∣∞
−∞
−
∫ ∞

−∞
2x f ′(x)dx = −2

∫ ∞

−∞
x f ′(x)dx

Then by, Equation (A2), we have ∫ ∞

−∞
x2 f ′′(x)dx = 2

Proof of Proposition 1.
(1) The log likelihood function, l(ξ, x), is

l(ξ, x) = log f (x, ξ) = − log σ + log f
( x− µ

σ

)
.
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We can then get the derivatives as below

∂l(ξ, x)
∂µ

= − 1
σ

f ′
( x− µ

σ

)/
f
( x− µ

σ

)
∂l(ξ, x)

∂σ
= − 1

σ
− 1

σ

x− µ

σ
f ′
( x− µ

σ

)/
f
( x− µ

σ

)
Using the second term in Lemma 1, we can get the expectation of the first derivatives

Eξ

[
∂l(ξ, x)

∂µ

]
= − 1

σ2

∫ ∞

−∞
f ′
(

x− µ

σ

)
dx = − 1

σ

∫ ∞

−∞
f ′(y)dy = 0

Eξ

[
∂l(ξ, x)

∂σ

]
= 0.

(2) The elements of the Fisher information matrix are computed as

Eξ

[
∂l(ξ, x)

∂µ

]2

=
∫ ∞

−∞

1
σ2

[
f ′
(

x−µ
σ

)]2

f 2
(

x−µ
σ

) · 1
σ

f
(

x− µ

σ

)
dx

=
1
σ2

∫ ∞

−∞

[ f ′(y)]2

f (y)
dy =

C11( f )
σ2 ,

Eξ

[
∂l(ξ, x)

∂µ

∂l(θ, x)
∂σ

]
=
∫ ∞

−∞

1
σ

f ′
(

x−µ
σ

)
f
(

x−µ
σ

)
 1

σ
+

1
σ

x− µ

σ

f ′
(

x−µ
σ

)
f
(

x−µ
σ

)
 1

σ
f
(

x− µ

σ

)
dx

=
1
σ2

∫ ∞

−∞

[
f ′(y) + y

[
f ′(y)

]2/ f (y)
]
dy

=
1
σ2

∫ ∞

−∞
y
[ f ′(y)]2

f (y)
dy =

C12( f )
σ2 ,

Eξ

[
∂l(ξ, x)

∂σ

]2

=
1
σ2

∫ ∞

−∞

1 +
x− µ

σ

f ′
(

x−µ
σ

)
f
(

x−µ
σ

)
2

1
σ

f
(

x− µ

σ

)
dx

=
1
σ2

∫ ∞

−∞

[
1 + y

f ′(y)
f (y)

]2

f (y)dy

=
1
σ2

[
1 + 2

∫ ∞

−∞
y f ′(y)dy +

∫ ∞

−∞
y2 [ f ′(y)]2

f (y)
dy

]

=
1
σ2

[∫ ∞

−∞
y2
[

f ′(y)2

f (y)
dy− 1

]
=

C22( f )
σ2 .

So the equation holds. By the fourth condition in Definition 1, we can prove that

I f (ξ) =
1
σ2 C( f ) < ∞.

Now, we show that C( f ) > 0. Suppose that |C( f )| = 0, then there exists a nonzero
vector a = (a1, a2)

>, such that a>Ca = 0, which also means that

a>
∂l(ξ, x)

∂θ

∣∣∣
ξ=(0,1)>

= 0, a.e. f (x).

Since f (x) > 0, we have

a>
∂l(ξ, x)

∂θ

∣∣∣∣
ξ=(0,1)>

= −a1
f ′(x)
f (x)

+ a2

(
−1− x

f ′(x)
f (x)

)
= 0, a.e. L
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where L is the Lebesgue measure. Because a is nonzero, so a2 6= 0, then

(x + b)
f ′(x)
f (x)

+ 1 = 0,

where b = a1/a2. When x > −b,

(log f (x))′ =
f ′(x)
f (x)

= − 1
x + b

,

log f (x) = − ln(x + b) + D,

where D is a constant. Then, f (x) = eD/(x + b), this contradicts the first equation in
Lemma 1. Thus, the assumption of |C( f )| = 0 is not true, then I(θ) > 0.
(3) We first calculate the second derivatives of the parameters.

∂2l(ξ, x)
∂µ2 =

1
σ2

 f ′′
(

x−µ
σ

)
f
(

x−µ
σ

) −
(

f ′
(

x−µ
σ

))2

f 2
(

x−µ
σ

)
,

∂2l(ξ, x)
∂µ∂σ

=
1
σ2

 f ′
(

x−µ
σ

)
f
(

x−µ
σ

) +
x− µ

σ

f ′′
(

x−µ
σ

)
f
(

x−µ
σ

) − x− µ

σ

(
f ′
(

x−µ
σ

))2

f 2
(

x−µ
σ

)
,

∂2l(ξ, x)
∂σ2 =

1
σ2 +

2(x− µ)

σ3 ·
f ′
(

x−µ
σ

)
f
(

x−µ
σ

) +
(x− µ)2

σ4

f ′′
(

x−µ
σ

)
f
(

x−µ
σ

) − (x− µ)2

σ4

(
f ′
(

x−µ
σ

))2

(
f
(

x−µ
σ

))2 .

Then, by Lemma 1, we have

Eξ

[
∂2l(ξ, x)

∂µ2

]
= −C11( f )

σ2 ,

Eξ

[
∂2l(ξ, x)

∂µ∂σ

]
= −C12( f )

σ2 ,

Eξ

[
∂2l(ξ, x)

∂σ2

]
= −C22( f )

σ2 .

Proof of Proposition 2.
(1) First, we calculate the derivatives as follows.

∂ log g(x, θ)

∂µ1
= −λ0

σ2
1

f ′
(

x− µ1

σ1

)
/g(x; θ);

∂ log g(x, θ)

∂µ2
= −1− λ0

σ2
2

f ′
(

x− µ2

σ2

)
/g(x; θ);

∂ log g(x, θ)

∂σ1
=

[
−λ0

σ2
1

f
(

x− µ1

σ1

)
− λ0

σ1

x− µ1

σ2
1

f ′
(

x− µ1

σ1

)]
/g(x; θ);

∂ log g(x, θ)

∂σ2
=

[
−1− λ0

σ2
2

f
(

x− µ2

σ2

)
− 1− λ0

σ2

x− µ2

σ2
2

f ′
(

x− µ2

σ2

)]
/g(x; θ).

Then, by the second equation in Lemma 1, we have

Eθ

[
∂ log g(x; θ)

∂µ1

]
= −λ0

σ2
1

∫ ∞

−∞
f ′
(

x− µ1

σ

)
dx = −λ0

σ

∫ ∞

−∞
f (y)dy = 0
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By Lemma 1(3),

Eθ

[
∂ log g(x; θ)

∂σ1

]
=
∫ +∞

−∞

[
−λ0

σ2
1

f
(

x− µ1

σ1

)
− λ0

σ1

x− µ1

σ2
1

f ′
(

x− µ1

σ1

)]
dx

=
∫ ∞

−∞

[
−λ0

σ1
f (y)− λ0

σ1
y f (y)

]
dy

= −λ0

σ1

[
1 +

∫ ∞

−∞
y f (y)dy

]
= 0.

Similarly, can we prove that

Eθ

[
∂ log g(x)θ)

∂σ2

]
= 0.

(2) First, we calculate the derivatives on the location parameter as

Eθ

[
∂ log g(x; θ)

∂µ1

]2

=
∫ ∞

−∞

λ2
0

σ4
1

[
f ′
(

x− µ1

σ1

)]2/
g(x; θ)dx

≤
∫ ∞

−∞

λ4
0

σ1
2

[
f ′
(

x− µ1

σ1

)]2/[λ0

σ1
f
(

x− µ1

σ1

)]
dx

=
λ0

σ1
2

∫ ∞

−∞

( f ′(y))2

f (y)
dy

=
λ0

σ2
1

C11( f ) < ∞.

Similarly, we have

Eθ

[
∂ log g(x; θ)

∂µ2

]2

≤ 1− λ0

σ2
2

C11( f ) < ∞

Then, as with the scale parameter, we have

Eθ

[
∂ log g(x; θ)

∂σ1

]2

=
λ2

0
σ1

2

∫ ∞

−∞

[
1
σ1

f
(

x− µ1

σ1

)
+

x− µ1

σ2
1

f ′
(

x− µ1

σ1

)]2/
g(x; θ)dx

≤
λ2

0
σ2

1

∫ ∞

−∞

[
1
σ1

f
(

x− µ1

σ1

)
+

x− µ1

σ2
1

f ′
(

x− µ1

σ1

)]2/λ0

σ1
f
(

x− µ1

σ1

)
dx

=
λ0

σ2
1

∫ ∞

−∞

[
1 + y

( f ′(y))2

f (y)

]2

f (y)dy

=
λ0

σ2
1

C22( f ) < ∞

Eθ

[
∂ log g(x; θ)

∂σ2

]2

=
1− λ0

σ2
2

C22( f ) < ∞.

Then I(θ) < ∞.
(3)

∂2 log g(x; θ)

∂µ2
1

=

λ0
σ3

1
f ′′
(

x−µ1
σ1

)
g(x; θ)

−
λ2

0
σ4

1

(
f ′
(

x−µ1
σ1

))2

(g(x; θ))2

Then, by the fourth equation in Lemma 1 can we get

Eθ
∂2 log g(x; θ)

∂µ2
1

= −Eθ

λ2
0

σ4
1

(
f ′( x−µ1

σ1
)
)2

g(x; θ)2 = −Eθ

(
∂ log g(x, θ)

∂µ1

)2
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The same procedure can be applied to the other nine equations to show that the conclusion
holds.

Proof of Theorem 1. First, we provide the Bernstein-von Mises theorem for multiple sam-
ples; see Theorem 2 in Long and Xu [28]. Besides Assumptions 1 to 4 in the context, there
are some other assumptions below

Assumption A1. For all i = 1, 2, . . . , k, the density function, fi(x|θ), of the population Gi satisfies
the following conditions:

(a) The parameter space of θ contains an open subset, ω ⊂ Ω, in which the true value is
included.

(b) The set Ai = {x : fi(x|θ) > 0} is independent of θ.
(c) For almost all x ∈ Ai, fi(x|θ) as a function of θ admits continous second derivatives

∂2

∂θj∂θh
fi(x|θ), j, h = 1, 2, . . . , d, for all θ ∈ ω.

(d) Denote by I(i)(θ) the Fisher’s information matrix of fi(x|θ). The first and second deriva-
tives of the logarithm of fi(x|θ) satisfy the equations

Eθ

[
∂

∂θj
log fi(x|θ)

]
= 0, j = 1, . . . , d,

I(i)jh (θ) = Eθ

[
∂

∂θj
log fi(x|θ) · ∂

∂θh
log fi(x|θ)

]

= Eθ

[
− ∂2

∂θj∂θh
log fi(x|θ)

]
, j, h = 1, 2, . . . , d.

(e) Suppose the sample size ni of Gi satisfies when n→ ∞, ni/n→ ri ∈ (0, 1). Let

I(θ) =
k

∑
i=1

ri I(i)(θ).

We assume that all entries of I(θ) are finite, and I(θ) is positive definite.

Then, by Definition 1, Propositions 1 and 2 and Assumptions 1–A1, Theorem 1 holds.
It should be noted that since the prior is π(θ) = 1/σ1σ2, its second moment does not exist.
Therefore, we draw k0 samples from the first two density functions and combine them with
π(θ); thus, we get the new prior. This is a trick in the research of big data.

Proof of Theorem 2. First, we present two conclusions

√
n(θB − Tn)

P→ 0, nΣB
P→ I−1(θ0). (A3)

Let Epg(θ) be the expectation of g(θ) under distribution P. Then
√

n(θB − Tn) =
√

n(Eπθ − Tn) = Eπ [
√

n(θ − Tn)] = Eπ∗θ − EN(0,I−1(θ0))
θ.

‖
√

n(θB − Tn)‖ = ‖Eπ∗θ − EN(0,I−1(θ0))
θ‖

≤
∫
‖θ‖

∣∣∣π∗(θ|x)− (2π)−
4
2 |I(θ0)|

1
2 e−θ> I(θ0)θ

∣∣∣dθ.

By Theorem 1, the above equation converges in probability to 0.
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nΣB = nEπ(θ − θB)(θ − θB)
>

= nEπ(θ − Tn + Tn − θb)(θ − Tn + Tn − θb)
>

= nEπ(θ − Tn)(θ − Tn)
> + nEπ(θ − Tn)(Tn − θB)

>

+ n(Tn − θB)Eπ(θ − Tn) + n(Tn − θB)(Tn − θB)

= Eπ∗θθ> + Eπ∗θ
√

n(Tn − θB)
> +
√

n(Tn − θB)Eπ∗θ + [
√

n(Tn − θB)][
√

n(Tn − θB)]
>.

From the conclusion above we have
√

n(Tn − θB)
P−→ 0, Eπ∗θ

P−→ 0,

then, by Theorem 1,
Eπ∗(θθ>)→ I−1(θ0).

thus,
nΣB

P−→ I−1(θ0).

Then we can get

(θ − θB)
>A>

(
AΣBA>

)−1
A(θ − θB)

=
[√

n(θ − θB)
]>A>

[
A(nΣB)A>

]−1
A
[√

n(θ − θB)
]

=
[√

n(θ − Tn)−
√

n(θB − Tn)
]>A>

[
A(nΣB)A>

]−1
A
[√

n(θ − Tn)− λn(θB − Tn)
)

=t>A>
[
A(nΣB)A>

]−1
At− 2t>A>

[
A(nΣB)A>

]−1
A
[√

n(θB − Tn)
]

+
[√

n(θB − Tn)
]>A>

[
A(nΣB)A>

]−1
A
[√

n(θB − Tn)
]
.

The expression above should have the same asymptotic distribution as

t>A>
[
A(nΣB)A>

]−1
At, where t ∼ Np(0, I−1(θ0)) and At ∼ Nk(0, AI−1(θ0)A>). From

the conclusion above, we have A(nΣB)A>
P→ AI−1(θ0)A>; thus, we can get

t>A>
[
A(nΣB)A>

]−1
At −→ χ2(k),

where k is the degree of freedom and also the rows of matrix A. Thus

(θ − θB)
>A>

(
AΣBA>

)−1
A(θ − θB)

d→ χ2(k)

Under the null hypothesis,

(b−AθB)
>
(

AΣBA>
)−1

(b−AθB)

=[b−ATn −A(θB− Tn)]
−1
(

AΣBA>
)−1

[b−ATn −A(θB − Tn)]
−1

=(b−ATn)
>
(

AΣBA>
)−1

(b−ATn) + (θB − Tn)
>A>

(
AΣBA>

)−1
A(θB − Tn)

− 2(b−ATn)
>(AΣBA)−1A(θB − Tn).
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Since b = Aθ0, the expression above is equalivalent to(
1
n

I−1(θ0)l′(θ0)

)>
A>
(

AΣBA>
)−1

A
(

1
n

I′′(θ0)l′(θ0)

)
+
[√

n(θB − Tn)
]−1A>

[
A(nΣB)A>

]−1
A
[√

n(θB − Tn)
]

+2
(

1√
n

I−1(θ0)`
1(θ0)

)>
A>[A(nΣB)A]−1A

[√
n(θB − Tn)

]
.

The first term can be rewritten as(
1√
n

I−1(θ0)l′(θ0)

)>
A>
[
A(nΣB)A>

]−1
A
(

1√
n

I−1(θ0)l′(θ0)

)
.

This asypototically follows the χ2(k) distribution. The second and third terms tend to 0 in
probability by Equation (A3). Thus

p(x)− Fk

[
1−

(
1√
n

I−1(θ0)l′(θ0)

)>
A>
[
A(nΣB)A>

]−1
A
(

1
n

I−1(θ0)l′(θ0)

)]
P→ 0.

where Fk is the cumulative distribution function of χ2(k). Then, by the asymptotic property,
we have

p(x) d−→ U(0, 1).
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