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Abstract: It is very meaningful and challenging to efficiently seek common solutions to operator
systems (CSOSs), which are widespread in pure and applied mathematics, as well as some closely
related optimization problems. The purpose of this paper is to introduce a novel class of multistep
implicit iterative algorithms (MSIIAs) for solving general CSOSs. By using Xu’s lemma and Maingé’s
fundamental and important results, we first obtain strong convergence theorems for both one-step and
multistep implicit iterative schemes for CSOSs, involving asymptotically demicontractive operators.
Finally, for the applications and profits of the main results presented in this paper, we give two
numerical examples and present an iterative approximation to solve the general common solution to
the variational inequalities and operator equations.
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1. Introduction

Throughout this paper, letH,H1, andH2 be three real Hilbert spaces with the inner
product as 〈·, ·〉, and the induced norm as ‖ · ‖. Assume that 1 := {1, 2, · · · , p1} and
2 := {1, 2, · · · , p2} are two sets; here, p1 and p2 are two arbitrary positive integers. We
assume that all the problems and iterative schemes are well-defined.

For all i ∈ 1 and each j ∈ 2, let Si : H → H and Fj : H → H be two nonlinear
operators, and Qj ⊂ H be a given nonempty closed convex subset for any j ∈ 2. In order
to solve the general common solution to variational inequalities and operator equations
(GCSVIOE), we consider the following:{

0 = x− Six, ∀i ∈ 1,
〈Fjx, yj − x〉 ≥ 0, ∀yj ∈ Qj, j ∈ 2.

(1)

It is not difficult to note that (1) can also be reformulated as the following nonlinear
operator system (see [1]):{

0 = x− Six, ∀i ∈ 1,
0 = x− PQj(I − ρFj)x, ∀j ∈ 2, (2)

where ρ is a positive constant, I is the identity operator, and for each j ∈ 2, PQj is the metric
projection fromH to Qj , which is used to find the unique point PQj x in Qj fulfilling

‖x− PQj x‖ = inf
{
‖x− y‖

∣∣y ∈ Qj
}

,

Mathematics 2023, 11, 3871. https://doi.org/10.3390/math11183871 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11183871
https://doi.org/10.3390/math11183871
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4625-2185
https://doi.org/10.3390/math11183871
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183871?type=check_update&version=1


Mathematics 2023, 11, 3871 2 of 20

i.e.,
〈x− PQj x, y− PQj x〉 ≤ 0, ∀y ∈ Qj.

If PQj(I − ρFj) in (2) is generally replaced by Tj : H → H for all j ∈ 2, then one can
easily see that GCSVIOE is a special case of the following common solution problem for
the operator system (CSOS) involved in the nonlinear operators Si and Tj, which aims to
locate the point x ∈ H such that{

0 = x− Six, ∀i ∈ 1,
0 = x− Tjx, ∀j ∈ 2.

(3)

Example 1. When 1 and 2 are single point sets, i.e., pk = 1 for k = 1, 2, and S1 and T1 are
separately denoted as S and T, one has the following special nonlinear operator system from (3):

0 = x− Sx and 0 = x− Tx. (4)

Example 2. If Tj = I for every j ∈ 2, then (3) reduces to a family of operator equations as follows:

(I − Si)x = 0, ∀i ∈ 1, (5)

which was considered by Gu and He [2].

Furthermore, the split common fixed point problem (SCFPP), which is used to describe
intensity-modulated radiation therapy, can be transformed into a CSOS.

Example 3. Give a bounded linear operator A : H1 → H2, and two series of nonlinear operators
Si : H1 → H1 for any i ∈ 1 and Tj : H2 → H2 for each j ∈ 2. Then, the SCFPP can be
formulated by finding the point (x1, x2) ∈ (H1,H2) such that

Ax1 = x2,
x1 = Six1, ∀i ∈ 1,
x2 = Tjx2, ∀j ∈ 2,

which was first introduced by Censor and Segal [3] in 2009 and has attracted widespread attention—
see [4]. According to the Lemma 3.2 in [5], the SCFPP can be transformed into the following CSOS:
Find x ∈ H1 such that {

0 = x− Six, ∀i ∈ 1,
0 = x− (A∗A)−1 A∗Tj Ax, ∀j ∈ 2,

where A∗ is the adjoint operator of A.

Remark 1. We remark that CSOSs have a wide range of applications in physics [6], mechanics [7],
control theory [8], economics [9], information science [10], and other problems in pure and applied
mathematics and some highly related optimization problems [11,12].

In order to solve (5), Gu and He [2] introduced the following multistep iterative
process with errors u(i)

n for i ∈ 1 and n ∈ N:
x1 ∈ C,
xn+1 = x(0)n ,
x(i−1)

n = a(i)n Six
(i)
n + b(i)n xn + c(i)n u(i)

n ,
x(p1)

n = xn,

(6)

where C is a nonempty closed convex subset of H and Si : C → C. {a(i)n }, {b
(i)
n } and

{c(i)n } are three real sequences in [0, 1] and satisfy certain conditions. They also prove that
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(6) converges strongly to a common solution while {Si}i∈1 is a family of nonexpansive
operators in Banach space. Afterward, when Si in (5) is the more general asymptotically
demicontractive operator for all i ∈ 1, Wang et al. [13] introduced an iteration scheme
as follows: {

x1 ∈ H,
xn+1 = (1− an − bn)xn + bn ∑

p1
i=1 ciSn

i xn, ∀n ∈ N,
(7)

where {an}, {bn} ⊂ (0, 1) are two real sequences, and a strong convergence theorem was
also obtained in real Hilbert space.

In order to solve (3), which is involved in a family of nonexpansive operators {Si}i∈

and a series of asymptotically nonexpansive operators {Tj}j∈, here, when  = {1, 2, · · · , k}
and k ∈ N, Yolacan and Kiziltunc [14] proposed the following multistep approximation
algorithm (YKMSA): 

x1 ∈ H,
xn+1 = x(k)n ,
x(i)n = a(i)n Tn

i x(i−1)
n + b(i)n Sixn + c(i)n u(i)

n ,
x(0)n = xn.

(8)

On the other hand, it is well known that the implicit rule is one powerful tool in
the field of ordinary differential equations and is widely used to construct the iteration
scheme for (asymptotically) nonexpansive-type operators; see, for example, [15–19] and the
references therein. Of particular note is that Aibinu and Kim [20] compared the convergence
rates of the following two viscosity implicit iterations:{

x1 ∈ H,
xn+1 = anSxn + (1− an)T(bnxn + (1− bn)xn+1), ∀n ≥ 1,

(9)

and {
x1 ∈ H,
xn+1 = anSxn + bnxn + cnT(dnxn + (1− dn)xn+1), ∀n ≥ 1,

(10)

where {an}, {bn}, {cn}, and {dn} are four sequences satisfied by special conditions, and S
and T are two self operators for H. They also proved that iteration (10) converges faster
than (9) under some prerequisites.

Due to the complexity and effectiveness of the implicit rules (see [19]), there are few
pieces of research on implicit iterations for the more general asymptotically demicontractive
operators. Thus, the following question comes naturally:

Question 1. How can a novel iteration scheme be to established with an implicit rule for the CSOSs
(3) involved in asymptotically demicontractive operators? What conditions should be satisfied for
strong convergence?

Motivated and inspired by the above-mentioned works, we provide a kind of novel
multistep implicit iteration algorithm (MSIIA) to answer Question 1. The basic definitions
of the related nonlinear operators and some useful lemmas are given in Section 2. In
Section 3, we present the details of the proposed MSIIA and prove the main results. Two
numerical experiments and an application on GCSVIOE are shown in Section 4. Finally, we
make a brief summary of this paper in Section 5. Our studies extend and generalize the
results of Gu and He [2], Wang et al. [13], and Yolacan and Kiziltunc [14].

2. Preliminary

In a real Hilbert spaceH, the following inequalities hold for all x, y ∈ H:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, (11)

and

‖ax + (1− a)y‖2 ≤ a‖x‖2 + (1− a)‖y‖2, ∀a ∈ [0, 1]. (12)
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In the remainder of this section, we recall some useful definitions and lemmas.

Definition 1. A nonlinear operator U : H → H with fixed point set Fix(U) 6= ∅ is said to be

(i) a c−contraction if there exists a constant c ∈ [0, 1) such that

‖Ux−Uy‖ ≤ c‖x− y‖, ∀x, y ∈ H;

(ii) nonexpansive if

‖Ux−Uy‖ ≤ ‖x− y‖, ∀x, y ∈ H;

(iii) L-Lipschitzian-continuous if there exists a constant L ≥ 0 such that

‖Ux−Uy‖ ≤ L‖x− y‖, ∀x, y ∈ H;

(iv) L-uniformly Lipschitzian-continuous if there exists a constant L ≥ 0 such that

‖Unx−Uny‖ ≤ L‖x− y‖, ∀x, y ∈ H;

(v) δ-demicontractive if there exists a constant δ ∈ [0, 1) such that

‖Ux− p‖2 ≤ ‖x− p‖2 + δ‖Ux− x‖2, ∀x ∈ H and p ∈ Fix(U),

which is also equivalent to

〈x−Ux, x− p〉 ≥ 1− δ

2
‖x−Ux‖2;

(vi) asymptotically demicontractive if there exists a sequence {kn} ⊂ [0, ∞) with limn→∞ kn = 1
and a constant κ ∈ [0, 1) such that

‖Unx− q‖2 ≤ k2
n‖x− q‖2 + κ‖x−Unx‖2, ∀x ∈ C, q ∈ F(U),

which is also equivalent to the following inequalities:

〈Unx− q, x− q〉 ≤ k2
n + 1

2
‖x− q‖2 +

κ − 1
2
‖x−Unx‖2,

〈Unx− x, x− q〉 ≤ k2
n − 1

2
‖x− q‖2 +

κ − 1
2
‖x−Unx‖2.

In order to enhance clarity and precision, we use a (kn, κ)-asymptotically demicontrac-
tive operator to represent the above-defined asymptotically demicontractive operator for
the sake of convenience.

Lemma 1 ([21]). Let C be a nonempty closed convex subset ofH and U : C → C be a L-uniformly
Lipschitzian-continuous and asymptotically demicontractive operator. Then, Fix(U) is a closed
convex subset of C.

Definition 2. Let U : H → H be an operator. Then, I −U is noted as being demiclosed at zero if,
for any {xn} ⊂ H, the following implication holds:

xn ⇀ x
(I −U)xn → 0

}
⇒ x = Ux,

where ⇀ and→ represent weak and strong convergence, respectively.
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Definition 3 ([22]). An operator T : H → H is called uniformly asymptotically regular if, for
any bounded subset C ofH, there is the following equality:

lim
n→∞

sup
x∈C
‖Tn+1x− Tnx‖ = 0.

Example 4 ([23]). Let K = R, and T : K → K be defined by

T(x) =


rx, if 0 ≤ x ≤ 1/2,
r(r− x)
2r− 1

, if 1/2 ≤ x ≤ r,

0, if x < 0 or x > r,

(13)

where 1/2 < r < 1 is a given constant. Then, T is a uniformly Lipschitzian-continuous and a
(r, 0)-asymptotically demicontractive operator that is uniformly asymptotically regular for K, and
I − T is demiclosed at 0. The fixed point of T is 0.

Example 5. Let C be a nonempty closed convex subset of H, and operator F : C → H be a
σ/µ2-inverse strongly monotone operator, i.e., σ/µ2‖Fx − Fy‖2 ≤ 〈Fx − Fy, x − y〉 for any
x, y ∈ C. Then, T := PC(I − ρF) is uniformly asymptotically regular if constant ρ ∈ (0, 2σ/µ2).

Proof. Since F is σ/µ2-inverse strongly monotone, F is also µ-Lipschitizan-continuous and
σ-strongly monotone such that σ‖x− y‖2 ≤ 〈Fx− Fy, x− y〉.

Now, we have the following inequality for all z ∈ C:

‖Tn+1z− Tnz‖2

= ‖[PC(I − ρF)]n+1z− [PC(I − ρF)]nz‖2

≤ ‖(I − ρF)Tnz− (I − ρF)Tn−1z‖2

≤ ‖(Tnz− Tn−1z)− ρ(FTnz− FTn−1z)‖2

= ‖Tnz− Tn−1z‖2 − 2ρ〈Tnz− Tn−1z, FTnz− FTn−1z〉+ ρ2‖FTnz− FTn−1z‖2

≤ ‖Tnz− Tn−1z‖2 + (ρ2 − 2ρ
σ

µ2 )‖FTnz− FTn−1z‖2

= (1 + ρ2µ2 − 2ρσ)‖Tnz− Tn−1z‖2

≤ (1 + ρ2µ2 − 2ρσ)n‖Tz− z‖2.

It follows from ρ ∈ (0, 2σ/µ2) that

lim
n→∞

sup
z∈C
‖Tn+1z− Tnz‖ ≤ lim

n→∞
sup
z∈C

(1 + ρ2µ2 − 2ρσ)
n
2 ‖Tz− z‖ = 0,

which means that T is uniformly asymptotically regular.

Lemma 2 ([24]). Let {Ψn} be a sequence of nonnegative real numbers such that

Ψn+1 ≤ (1− an)Ψn + anbn, n ∈ N,

where {an} and {bn} satisfy the following conditions:
(i) an ∈ [0, 1] and ∑∞

n=0 an = ∞; (ii) lim supn→∞ bn ≤ 0.
Then, limn→∞ Ψn = 0.

Lemma 3 ([25]). Suppose that {Ψk} is a real number sequence that does not decrease at infinity.
Then, there exists a subsequence {Ψkj

}j≥0 of {Ψk} such that

Ψkj
< Ψkj+1.
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Let {τ(k)}k≥k0 be a sequence of integers defined by

τ(k) = max{i ≤ k|Ψi < Ψi+1}.

Then, the following statements hold:

(i) {τ(k)}k≥k0 is a nondecreasing sequence, and lim
k→∞

τ(k) = ∞;

(ii) max{Ψτ(k), Ψk} ≤ Ψτ(k)+1 for all k ≥ k0.

Lemma 4. In a real Hilbert space, the following inequality holds:

‖(1− a− b− c)x + by + cz− p‖2 ≤ 1− a− b− c
1− a

‖x− p‖2 +
b

1− a
‖y− p‖2

+
c

1− a
‖z− p‖2 + a‖p‖2,

where a ∈ [0, 1) and b, c ∈ [0, 1] with a + b + c ≤ 1.

Proof. According to (12), we have

‖(1− a− b− c)x + by + cz− p‖2

= ‖(1− a)
1

1− a
[(1− a− b− c)(x− p) + b(y− p) + c(z− p)] + a(−p)‖2

≤ (1− a)‖ 1
1− a

[(1− a− b− c)(x− p) + b(y− p) + c(z− p)]‖2 + a‖p‖2

=
1

1− a
‖(1− a− b− c)(x− p) + b(y− p) + c(z− p)‖2 + a‖p‖2.

Then, similar to the above inequality, it can be proved that

‖(1− a− b− c)x + by + cz− p‖2

≤ 1− a− b− c
1− a

‖x− p‖2 + a‖p‖2

+
a + b + c

1− a
‖ b

a + b + c
(y− p) +

c
a + b + c

(z− p)‖2

=
1− a− b− c

1− a
‖x− p‖2 + a‖p‖2

+
a + b + c

1− a
‖ b + c

a + b + c
[

b
b + c

(y− p) +
c

b + c
(z− p)]‖2

≤ 1− a− b− c
1− a

‖x− p‖2 + a‖p‖2 +
b + c
1− a

‖ b
b + c

(y− p) +
c

b + c
(z− p)‖2

≤ 1− a− b− c
1− a

‖x− p‖2 +
b

1− a
‖y− p‖2 +

c
1− a

‖z− p‖2 + a‖p‖2.

This completes the proof.

3. Main Results

In this section, we first introduce a one-step implicit approximation algorithm for
(4) with a contraction operator and an asymptotically demicontractive operator, and then
strong convergence is obtained. In order to go a step further, to solve (3), which is in-
volved in a series of contraction operators and is a finite of asymptotically demicontractive
operators, a multistep implicit iteration method is proposed, and strong convergence
is proved.

Through this section, we denote the solution set of (4) by Γ := Fix(S)
⋂

Fix(T),
assuming that Γ is nonempty and x∗ ∈ Γ is a common solution. We introduce the following
implicit Algorithm 1.
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Algorithm 1 Novel one-step implicit iteration for CSOS
Choose an initial point x1 ∈ H, and for any n ∈ N do{

yn = ηnxn + (1− ηn)xn+1,
xn+1 = (1− αn − βn − γn)Sxn + βnxn + γn[δnyn + (1− δn)Tnyn],

where S : H → H is a c−contraction operator, and T : H → H is a L-uniformly
Lipschitzian-continuous and is a (kn, κ)-asymptotically demicontractive operator, where
{kn} ⊂ [0, ∞), lim

n→∞
kn = 1, and κ ∈ [0, 1). The real sequence {αn}, {βn}, {γn}, {δn}, and

{ηn} satisfies the following conditions:
(i) αn, βn, γn, δn, ηn are all in [0, 1];
(ii) αn+γn

1−αn−βn−γn
≤ 1− c;

(iii) αn
γn
→ 0, ηn → 1, and ∑∞

i=1 αn = ∞;

(iv) max{κ, 1− 1
M−1}+ ε ≤ δn ≤ 1− ε, here M = sup{k2

n}∞
n=1 and ε > 0.

Lemma 5. If {xn} is a sequence generated by Algorithm 1, then the following inequality holds:

‖xn+1 − x∗‖2 ≤ (1− An)‖xn − x∗‖2 + An‖x∗‖2, (14)

where x∗ ∈ Γ and
An =

αn

1− αn − 2γn(1− ηn)
.

Proof. Due to Lemma 4, we can easily obtain

‖xn+1 − x∗‖2 ≤ 1− αn − βn − γn

1− αn
‖Sxn − x∗‖2 + αn‖x∗‖2 +

βn

1− αn
‖xn − x∗‖2

+
γn

1− αn
‖δnyn + (1− δn)Tnyn − x∗‖2. (15)

Note that

‖Sxn − x∗‖2 = ‖Sxn − Sx∗‖2 ≤ c‖xn − x∗‖2

and

‖[δnyn + (1− δn)Tnyn]− x∗‖
≤ δ2

n‖yn − x∗‖2 + (1− δn)
2‖Tnyn − x∗‖2

+2δn(1− δn)〈Tnyn − x∗, yn − x∗〉
≤ [δ2

n + (1− δn)
2k2

n + δn(1− δn)(k2
n + 1)]‖yn − x∗‖2

+[(1− δn)
2κ + δn(1− δn)(κ − 1)]‖yn − Tnyn‖2

= (δn + (1− δn)k2
n)‖yn − x∗‖2

+(δ2
n − (1 + κ)δn + κ)‖yn − Tnyn‖2

≤ 2‖yn − x∗‖2

≤ 2ηn‖xn − x∗‖2 + 2(1− ηn)‖xn+1 − x∗‖2. (16)

It follows that

‖xn+1 − x∗‖2 ≤ c(1− αn − βn − γn)

1− αn
‖xn − x∗‖2 +

βn

1− αn
‖xn − x∗‖2 + αn‖x∗‖2

+
2γnηn

1− αn
‖xn − x∗‖2 +

2γn(1− ηn)

1− αn
‖xn+1 − x∗‖2

=
c(1− αn − βn − γn) + βn + 2γnηn

1− αn
‖xn − x∗‖2 + αn‖x∗‖2

+
2γn(1− ηn)

1− αn
‖xn+1 − x∗‖2. (17)
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When combining the similar terms in (17), it means that

‖xn+1 − x∗‖2 ≤ c(1− αn − βn − γn) + βn + 2γnηn

1− αn − 2γn(1− ηn)
‖xn − x∗‖2

+
αn

1− αn − 2γn(1− ηn)
‖x∗‖2.

As αn+γn
1−αn−βn−γn

≤ 1− c, since An = αn
1−αn−2γn(1−ηn)

, we immediately obtain (14).

Lemma 6. If {xn} is a sequence generated by Algorithm 1, then the following inequality holds:

−γn(δ
2
n − (1 + κ)δn + κ)‖yn − Tnyn‖2 (18)

≤ [c(1− αn − βn − γn) + βn + 2γnηn]‖xn − x∗‖2

−(1− αn − 2γn(1− ηn))‖xn+1 − x∗‖2 + αn‖x∗‖2.

Moreover, if the limit of ‖xn − x∗‖ exists, then lim
n→∞

‖yn − Tnyn‖ = 0.

Proof. According to (16), we have

‖[δnyn + (1− δn)Tnyn]− x∗‖
≤ (δn + (1− δn)k2)‖yn − x∗‖2 + (δ2

n − (1 + κ)δn + κ)‖yn − Tnyn‖2

≤ 2‖yn − x∗‖2 + (δ2
n − (1 + κ)δn + κ)‖yn − Tnyn‖2

≤ 2ηn‖xn − x∗‖2 + 2(1− ηn)‖xn+1 − x∗‖2

+(δ2
n − (1 + κ)δn + κ)‖yn − Tnyn‖2.

and then

‖xn+1 − x∗‖2 ≤ c(1− αn − βn − γn)

1− αn
‖xn − x∗‖2 +

βn

1− αn
‖xn − x∗‖2 + αn‖x∗‖2

+
2γnηn

1− αn
‖xn − x∗‖2 +

2γn(1− ηn)

1− αn
‖xn+1 − x∗‖2

+
γn(δ2

n − (1 + κ)δn + κ)

1− αn
‖yn − Tnyn‖2

=
c(1− αn − βn − γn) + βn + 2γnηn

1− αn
‖xn − x∗‖2 + αn‖x∗‖2

+
2γn(1− ηn)

1− αn
‖xn+1 − x∗‖2 +

γn(δ2
n − (1 + κ)δn + κ)

1− αn
‖yn − Tnyn‖2.

The above inequality is equivalent to

−γn(δ
2
n − (1 + κ)δn + κ)‖yn − Tnyn‖2

≤ [c(1− αn − βn − γn) + βn + 2γnηn]‖xn − x∗‖2 + αn‖x∗‖2

−(1− αn − 2γn(1− ηn))‖xn+1 − x∗‖2,

which is the objective inequality.
According to the conditions in Algorithm 1, we have αn+γn

1−αn−βn−γn
≤ 1− c and αn

γn
→ 0,

thus

lim sup
n→∞

c(1− αn − βn − γn) + βn + 2γn − 1
γn

≤ 0

holds. Assuming that lim
n→∞

‖xn − x∗‖2 = L, we have

(δ2
n − (1 + κ)δn + κ)‖yn − Tnyn‖2

≤ c(1− αn − βn − γn) + βn + 2γn − 1
γn

L +
αn

γn
‖x∗‖2.
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Due to the definition of δn, one has δ2
n + (1 + κ)δn + κ > ε1 > 0, where ε1 is a positive

number in (0, 1). Thus, we can deduce that

‖yn − Tnyn‖ = 0, n→ ∞.

Lemma 7. If {xn} is a sequence generated by Algorithm 1, and lim
n→∞

‖yn − Tnyn‖ = 0, then

‖xn+1 − xn‖ → 0 as n→ ∞.

Proof. According to Lemma 4, we have

‖xn+1 − yn‖2 = ‖(1− αn − βn − γn)Sxn + βnxn + γn[δnyn + (1− δn)Tnyn]− yn‖2

≤ 1− αn − βn − γn

1− αn
‖Sxn − yn‖2 + αn‖yn‖2

+
βn

1− αn
‖xn − yn‖2 +

γn(1− δn)

1− αn
‖Tnyn − yn‖2.

Note that αn → 0 and ‖Tnyn − yn‖2 → 0, which implies

lim
n→∞

‖xn+1 − yn‖2 ≤ lim
n→∞

‖xn − yn‖2.

According to ηn → 0, we have yn → xn, that is

lim
n→∞

‖xn+1 − xn‖ = 0.

The proof is completed.

Lemma 8. If {xn} is a sequence generated by Algorithm 1, then the following inequality holds:

‖xn+1 − x∗‖2 ≤ (1− An)‖xn − x∗‖2 + An2〈0− x∗, xn+1 − x∗〉, (19)

where An is defined in the same as Lemma 5.

Proof. For inequality (11), we have

‖xn+1 − x∗‖2 ≤ ‖(1− αn − βn − γn)(Sxn − x∗) + βn(xn − x∗) + γn[δnyn + (1− δn)Tnyn − x∗]‖2

+2αn〈0− x∗, xn+1 − x∗〉
= ‖(1− αn − βn − γn)(Sxn − x∗)

+(αn + βn + γn)
1

αn + βn + γn
[βn(xn − x∗) + γn[δnyn + (1− δn)Tnyn − x∗]]‖2

+2αn〈0− x∗, xn+1 − x∗〉
≤ (1− αn − βn − γn)‖Sxn − x∗‖2

+(αn + βn + γn)‖
βn + γn

αn + βn + γn
[

βn

βn + γn
(xn − x∗)

+
γn

βn + γn
[δnyn + (1− δn)Tnyn − x∗]]‖2 + 2αn〈0− x∗, xn+1 − x∗〉

≤ (1− αn − βn − γn)‖Sxn − x∗‖2 + βn‖xn − x∗‖2

+γn‖δnyn + (1− δn)Tnyn − x∗‖2 + 2αn〈0− x∗, xn+1 − x∗〉
≤ c(1− αn − βn − γn)‖xn − x∗‖2 + βn‖xn − x∗‖2 + 2αn〈0− x∗, xn+1 − x∗〉
+2γnηn‖xn − x∗‖2 + 2γn(1− ηn)‖xn+1 − x∗‖2.
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This leads to

‖xn+1 − x∗‖2 ≤ c(1− αn − βn − γn) + βn + 2γnηn

1− 2γn(1− ηn)
‖xn − x∗‖2

+
αn

1− 2γn(1− ηn)
2〈0− x∗, xn+1 − x∗〉

≤ c(1− αn − βn − γn) + βn + 2γnηn

1− αn − 2γn(1− ηn)
‖xn − x∗‖2

+
2αn

1− αn − 2γn(1− ηn)
〈0− x∗, xn+1 − x∗〉.

Note that when An = αn
1−αn−2γn(1−ηn)

and αn+γn
1−αn−βn−γn

≤ 1− c, we immediately obtain
the objective inequality (19).

Next, we give a strong convergence theorem for Algorithm 1.

Theorem 1. If {xn} is a sequence generated by Algorithm 1, T is uniformly asymptotically regular
forH and I − T is demiclosed at 0; then, {xn} converges strongly to PΓ0.

Proof. According to Lemma 5, we have {‖xn − x∗‖}, and {xn} is bounded. In the sequel,
we consider the proof in two possible cases.

(Case I) If there exists a positive integer N∗ such that ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ for
all n ≥ N∗, then we know that lim

n→∞
‖xn − x∗‖ exists, and because {xn} is bounded, there

exists a subsequence {xnk} of {xn} such that lim
k→∞

xnk → q. Then, from Lemma 6, it follows

that lim
n→∞

‖yn − Tnyn‖ = 0. Since yn → xn as n→ ∞, one also has lim
n→∞

‖xn − Tnxn‖ = 0.

Recall that T is uniformly asymptotically regular for H and {xn} is bounded. This
means that we can find the nonempty closed convex subset K ofH such that xn ∈ K holds
for all n ∈ N. Then, one has

‖xn − Txn‖ = ‖xn − Tnxn + Tnxn − Tn+1xn + Tn+1xn − Txn‖
≤ ‖xn − Tnxn‖+ ‖Tnxn − Tn+1xn‖+ ‖Tn+1xn − Txn‖
≤ (1 + L)‖xn − Tnxn‖+ sup

z∈K
‖Tnz− Tn+1z‖ → 0. (20)

Next, according to Lemma 7, we get ‖xn+1 − xn‖ → 0 as n → ∞, so q ∈ Fix(T)
according to the demiclosedness of I − T. Hence, we have

lim
n→∞
〈0− x∗, xn+1 − x∗〉

= lim
n→∞
〈0− x∗, xnk+1 − x∗〉

= lim
n→∞
〈0− x∗, q− x∗〉.

Letting x∗ = PΓ0, the following inequality holds:

lim sup
n→∞

〈0− x∗, xn+1 − x∗〉 = 〈0− x∗, q− x∗〉 ≤ 0.

Note that
∞

∑
i=1

An =
∞

∑
i=1

αn

1− αn − 2γn(1− ηn)
≥

∞

∑
i=1

αn = ∞.

According to Lemma 8 and Lemma 2, we now obtain ‖xn − x∗‖ → 0.
(Case II) Put Ψn = ‖xn − x∗‖2. If there does not exist a positive integer N∗ such that

Ψn+1 ≤ Ψn for all n ≥ N∗, then there exists a subsequence {Ψτ(n)} according to Lemma 3
such that Ψτ(n) ≤ Ψτ(n)+1 and Ψn ≤ Ψτ(n)+1, and {τ(n)} is a nondecreasing sequence
such that τ(n)→ ∞ as n→ ∞.
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From Lemma 6, it is not difficult to verify the following inequality:

lim
n→∞

‖yτ(n) − Tτ(n)yτ(n)‖ = 0.

Since yτ(n) → xτ(n), we also have

lim
n→∞

‖xτ(n) − Tτ(n)xτ(n)‖ = 0.

Similar to the inequality in (20), one can obtain ‖xτ(n) − Txτ(n)‖ → 0 as n→ ∞. Then,
according to Lemma 7, we have

‖xτ(n)+1 − xτ(n)‖ → 0.

According to the demiclosed principle, we have xτ(n) → q ∈ Fix(T) again, and

lim
n→∞
〈0− x∗, xτ(n)+1 − x∗〉 = lim

n→∞
〈0− x∗, xτ(n) − x∗〉

= lim
n→∞
〈0− x∗, q− x∗〉

≤ 0.

It follows from Lemma 8 that

Ψτ(n)+1 ≤ (1− Aτ(n))Ψτ(n) + Aτ(n)2〈0− x∗, xτ(n)+1 − x∗〉,

Aτ(n)Ψτ(n)+1 + (1− Aτ(n))(Ψτ(n)+1 −Ψτ(n)) ≤ Aτ(n)2〈0− x∗, xτ(n)+1 − x∗〉.

Recalling that Ψτ(n) ≤ Ψτ(n)+1, then we have

Aτ(n)Ψτ(n)+1 ≤ Aτ(n)2〈0− x∗, xτ(n)+1 − x∗〉,

and so

Ψτ(n)+1 ≤ 2〈0− x∗, xτ(n)+1 − x∗〉 → 0.

Finally, since Ψn ≤ Ψτ(n)+1, we obtain Ψn → 0, meaning {xn} converges strongly to
x∗ = PΓ0.

Assuming that η ≡ 1, then the implicit Algorithm 1 reduces to the following explicit
Algorithm 2.

Algorithm 2 Novel one-step explicit iteration for CSOS
Choose an initial point x1 ∈ H, and for any n ∈ N do

xn+1 = (1− αn − βn − γn)Sxn + βnxn + γn[δnxn + (1− δn)Tnxn],

where the real sequence {αn}, {βn}, {γn}, and {δn} satisfies the following conditions:
(i) αn, βn, γn and δn are all in [0, 1];
(ii) αn+γn

1−αn−βn−γn
≤ 1− c;

(iii) αn
γn
→ 0, and ∑∞

i=1 αn = ∞;

(iv) max{κ, 1− 1
M−1}+ ε ≤ δn ≤ 1− ε, here M = sup{k2

n}∞
n=1 and ε > 0 is a positive

number.

Corollary 1. If S : H → H is a c−contraction operator, T : H → H is a L-uniformly Lipschitzian-
continuous and (kn, κ)-asymptotically demicontractive operator, and T is uniformly asymptotically
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regular for H, with I − T being demiclosed at 0, then {xn} converges strongly to a point in Γ
according to Algorithm 2.

In the remainder of the section, we introduce a multistep implicit iteration algorithm
(MSIIA) for (3) that is involved in a series of contraction operators and a finite of asymptoti-
cally demicontrative operator.

Theorem 2. For all i ∈ {1, 2, · · · , p}, let Si : H → H be a ci−contraction operator, Ti : H → H
be a Li-uniformly Lipschitzian-continuous and (k(i)n , κ(i))-asymptotically demicontractive operator,
where {k(i)n } ⊂ [0, ∞), lim

n→∞
k(i)n = 1, and κ(i) ∈ [0, 1). Moreover, assume that Ti is uniformly

asymptotically regular forH and I − Ti is demiclosed at 0. Let Ξ be the solution set of (3) if {xn}
is a sequence generated by Algorithm 3; then, {xn} converges strongly to PΞ0.

Algorithm 3 Novel multistep implicit iteration for CSOS
Choose an initial point x1 ∈ H, and for any n ∈ N do the following:

y(1)n = η
(1)
n xn + (1− η

(1)
n )x(1)n ,

x(1)n = (1− α
(1)
n − β

(1)
n − γ

(1)
n )S1xn + β

(1)
n xn

+γ
(1)
n

[
δ
(1)
n y(1)n + (1− δ

(1)
n )Tn

1 y(1)n

]
,

for i = 2, 3, · · · , p,
y(i)n = η

(i)
n x(i−1)

n + (1− η
(i)
n )x(i)n ,

x(i)n = (1− α
(i)
n − β

(i)
n − γ

(i)
n )Six

(i−1)
n + β

(i)
n x(i−1)

n

+γ
(i)
n

[
δ
(i)
n y(i)n + (1− δ

(i)
n )Tn

i y(i)n

]
,

xn+1 = x(p)
n .

The real sequence {α(i)n }, {β
(i)
n }, {γ

(i)
n }, {δ

(i)
n }, and {η(i)

n } satisfies

(i) α
(i)
n , β

(i)
n , γ

(i)
n , δ

(i)
n , η

(i)
n are all in [0, 1];

(ii) α
(i)
n +γ

(i)
n

1−α
(i)
n −β

(i)
n −γ

(i)
n
≤ 1− ci;

(iii) α
(i)
n

γ
(i)
n
→ 0, η

(i)
n → 1, and ∑∞

j=1 α
(i)
j = ∞;

(iv) max{κ(i), 1− 1
Mi−1}+ εi ≤ δ

(i)
n ≤ 1− εi; here, Mi = supn{(k

(i)
n )2} and εi > 0 is a

positive number.

Proof. Let x∗ ∈ Ξ. We divide the whole proof into four parts.
Step 1. First, we prove that the sequence {xn} is bounded. Assuming that

A(j)
n :=

α
(j)
n

1− α
(j)
n − 2γ

(j)
n (1− η

(j)
n )

,

according to Lemma 5, we then obtain
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‖xn+1 − x∗‖2 = ‖x(p)
n − x∗‖2

≤ (1− A(p)
n )‖x(p−1)

n − x∗‖2 + A(p)
n ‖x∗‖2

≤ (1− A(p)
n )((1− A(p−1)

n )‖x(p−2)
n − x∗‖2 + A(p−1)

n ‖x∗‖2) + A(p)
n ‖x∗‖2

=
1

∏
i=0

(1− A(p−i)
n )‖x(p−2)

n − x∗‖2 + (A(p)
n +

1

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))‖x∗‖2

≤
2

∏
i=0

(1− A(p−i)
n )‖x(p−3)

n − x∗‖2 + (A(p)
n +

2

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))‖x∗‖2

· · ·
· · ·

≤
p−1

∏
i=0

(1− A(p−i)
n )‖xn − x∗‖2 + (A(p)

n +
p−1

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))‖x∗‖2. (21)

Note that

p−1

∏
i=0

(1− A(p−i)
n ) + A(p)

n +
p−1

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ) ≤ 1,

and letting Bn be

Bn =
p−1

∏
i=0

(1− A(p−i)
n ),

then, one has

‖xn+1 − x∗‖2 ≤ Bn‖xn − x∗‖2 + (1− Bn)‖x∗‖2

≤ Bn(Bn−1‖xn−1 − x∗‖2 + (1− Bn−1)‖x∗‖2) + (1− Bn)‖x∗‖2

= BnBn−1‖xn−1 − x∗‖2 + (1− BnBn−1)‖x∗‖2

≤ BnBn−1(Bn−2‖xn−2 − x∗‖2 + (1− Bn−2)‖x∗‖2) + (1− BnBn−1)‖x∗‖2

≤
2

∏
i=0

Bn−i‖xn−2 − x∗‖2 + (1−
2

∏
i=0

Bn−i)‖x∗‖2

· · ·
· · ·

≤
n

∏
i=1

Bi‖x1 − x∗‖2 + (1−
n

∏
i=1

Bi)‖x∗‖2.

Due to Bi ∈ [0, 1], one has ‖xn+1− x∗‖2 ≤ max{‖x1− x∗‖2, ‖x∗‖2}, which means that
{xn} is bounded, and {yn} is bounded.

Step 2. According to Lemma 6, it is easy to see that

−γ
(1)
n [(δ

(1)
n )2 − (1 + κ1)δ

(1)
n + κ1]‖y

(1)
n − Tn

1 y(1)n ‖2 ≤ [c1(1− α
(1)
n − β

(1)
n − γ

(1)
n ) + β

(1)
n + 2η

(1)
n γ

(1)
n ]‖xn − x∗‖2

+α
(1)
n ‖x∗‖2 − [1− α

(1)
n − 2γ

(1)
n (1− η

(1)
n )]‖x(1)n − x∗‖2,

and for i ∈ {2, 3, · · · , p}, we have
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−γ
(i)
n [(δ

(i)
n )2 − (1 + κi)δ

(i)
n + κi]‖y

(i)
n − Tn

i y(i)n ‖2 ≤ [ci(1− α
(i)
n − β

(i)
n − γ

(i)
n ) + β

(i)
n + 2η

(i)
n γ

(i)
n ]‖x(i−1)

n − x∗‖2

+α
(i)
n ‖x∗‖2 − [1− α

(i)
n − 2γ

(i)
n (1− η

(i)
n )]‖x(i)n − x∗‖2.

Step 3. Assume that

χn := sup
i∈{1,2,··· ,p}

2〈0− x∗, x(i)n − x∗〉.

We have the following inequality according to Lemma 8 and (21):

‖xn+1 − x∗‖2 ≤ (1− A(p)
n )‖x(p−1)

n − x∗‖2 + A(p)
n χn

≤ (1− A(p)
n )(1− A(p−1)

n )‖x(p−2)
n − x∗‖2 + ((1− A(p)

n )A(p−1)
n + A(p)

n )χn

=
1

∏
i=0

(1− A(p−i)
n )‖x(p−2)

n − x∗‖2 + (A(p)
n +

1

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))χn

≤
2

∏
i=0

(1− A(p−i)
n )‖x(p−3)

n − x∗‖2 + (A(p)
n +

2

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))χn

· · ·
· · ·

≤
p−1

∏
i=0

(1− A(p−i)
n )‖xn − x∗‖2 + (A(p)

n +
p−1

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))χn.

Because Bn = ∏
p−1
i=0 (1− A(p−i)

n ), we immediately have

‖xn+1 − x∗‖2 ≤ Bn‖xn − x∗‖2 + (1− Bn)χn. (22)

Step 4. To prove the strong convergence, we consider two possible cases.
(Case I) If there exists a positive integer N∗ such that ‖xn − x∗‖ ≤ ‖xn+1 − x∗‖ for all

n ≥ N∗, then one knows that lim
n→∞

‖xn − x∗‖ exists, and because {xn} is bounded, there

exists a subsequence {xnk} of {xn} such that xnk ⇀ q.
According to Step 1, we have

‖xn+1 − x∗‖2 ≤ (1− A(p)
n )‖x(p−1)

n − x∗‖2 + A(p)
n ‖x∗‖2,

and for all v = 1, 2 · · · , p− 2, the following holds:

‖xn+1 − x∗‖2 ≤
v

∏
i=0

(1− A(p−i)
n )‖x(p−1−v)

n − x∗‖2 + (A(p)
n +

v

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))‖x∗‖2

≤
p−1

∏
i=0

(1− A(p−i)
n )‖xn − x∗‖2 + (A(p)

n +
p−1

∑
i=1

A(p−i)
n

i−1

∏
j=0

(1− A(p−j)
n ))‖x∗‖2.

Let W := lim
k→∞
‖xnk − x∗‖2. With the conditions in Algorithm 3, it can be seen that

A(i)
n → 0 as n→ ∞ for all i ∈ {1, 2, · · · , p}; then, we have

W ≤ lim
k→∞
‖x(i)nk − x∗‖2 ≤W, ∀i = 1, 2, · · · , p,
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which means that lim
k→∞
‖x(i)nk − x∗‖2 = W. According to Lemma 6, one directly obtains

lim
k→∞
‖y(i)nk − Tnk

i y(i)nk ‖
2 = 0, ∀i = 1, 2, · · · , p.

Similar to the proof in Lemma 7, the following equalities hold:

lim
k→∞
‖x(1)nk − xnk‖

2 = 0,

lim
k→∞
‖x(i)nk − x(i−1)

nk ‖2 = 0, ∀i = 2, 3, · · · , p.

The above equations lead to x(i)nk ⇀ q. Since Ti all are uniformly Lipschitzian-
continuous operators, one has

lim
k→∞
‖x(i)nk − Tnk

i x(i)nk ‖
2 = 0, ∀i = 1, 2, · · · , p.

Because Ti is uniformly asymptotically regular forH, we have

lim
k→∞
‖x(i)nk − Tix

(i)
nk ‖

2 = 0, ∀i = 1, 2, · · · , p.

According to demiclosedness, we have q ∈ ⋂p
i=1 Fix(Ti) and

lim sup
n→∞

〈0− x∗, x(i)n − x∗〉 = lim sup
k→∞

〈0− x∗, x(i)nk − x∗〉

= 〈0− x∗, q− x∗〉
≤ 0

for every i = 2, 3, · · · , p. Now, we have lim supn→∞ χnk ≤ 0. Note that when ∑∞
j=1 α

(i)
j = ∞,

we also have ∑∞
n=1(1− Bn) = ∞ via a simple calculation. Together with (22) and Lemma 2,

it implies that ‖xn − x∗‖2 → 0.
(Case II) Similar to the proof in Theorem 1, make Ψn = ‖xn − x∗‖2. If there does

not exist a positive integer N∗ such that Ψn+1 ≤ Ψn for all n ≥ N∗, then there exists a
subsequence {Ψτ(n)} such that Ψτ(n) ≤ Ψτ(n)+1 and Ψn ≤ Ψτ(n)+1. Moreover, {τ(n)} is a
non-decreasing sequence such that τ(n)→ ∞ becasue n→ ∞.

Since Ψτ(n) ≤ Ψτ(n)+1, it follows from Lemma 6 that

lim
n→∞

‖y(i)
τ(n) − Tτ(n)

(i) y(i)
τ(n)‖ = 0, ∀i = 1, 2, · · · , p.

For Lemma 7, these equations follow:

lim
n→∞

‖x(1)
τ(n) − xτ(n)‖2 = 0,

lim
n→∞

‖x(i)
τ(n) − x(i−1)

τ(n) ‖
2 = 0, ∀i = 2, 3, · · · , p.

Thus we can assume that x(i)
τ(n) ⇀ q. Since yτ(n) → xτ(n), one gets

lim
n→∞

‖x(i)
τ(n) − Tτ(n)

(i) x(i)
τ(n)‖ = 0, ∀i = 1, 2, · · · , p.

By the uniformly asymptotically regularity of Ti, one has ‖x(i)
τ(n) − Tix

(i)
τ(n)‖ → 0.
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and we have xτ(n) → q ∈ Ξ, again, by using the demiclosed principle, and

lim sup
n→∞

〈0− x∗, x(i)
τ(n)+1 − x∗〉 = lim sup

n→∞
〈0− x∗, x(i)

τ(n) − x∗〉

= 〈0− x∗, q− x∗〉
≤ 0

for any i ∈ {2, 3, · · · , p}. Then, according to (22), we have

Ψτ(n)+1 ≤ Bτ(n)Ψτ(n) + (1− Bτ(n))χτ(n),

(1− Bτ(n))Ψτ(n)+1 + Bτ(n)(Ψτ(n)+1 −Ψτ(n)) ≤ (1− Bτ(n))χτ(n).

Recall that Ψτ(n) ≤ Ψτ(n)+1; it is easy to see that

Ψτ(n)+1 ≤ χτ(n) = sup
i∈{1,2,··· ,p}

2〈0− x∗, x(i)
τ(n) − x∗〉 ≤ 0.

Finally, as Ψn ≤ Ψτ(n)+1, we also get Ψn → 0, which means {xn} converges strongly
to a solution: x∗ = PΞ0 of (3).

Like the implicit one-step Algorithm 1, the multistep implicit Algorithm 3 can also be
simplified to the multistep explicit Algorithm 4. For every i ∈ {1, 2, · · · , p}, letting η

(1)
n ≡ 1,

one can easily have the following Corollary 2 for Algorithm 4.

Algorithm 4 Novel multistep explicit iteration for CSOS
Choose an initial point x1 ∈ H, and for any n ∈ N do the following:

x(1)n = (1− α
(1)
n − β

(1)
n − γ

(1)
n )S1xn + β

(1)
n xn

+γ
(1)
n

[
δ
(1)
n x(1)n + (1− δ

(1)
n )Tn

1 x(1)n

]
,

for i = 2, 3, · · · , p,
x(i)n = (1− α

(i)
n − β

(i)
n − γ

(i)
n )Six

(i−1)
n + β

(i)
n x(i−1)

n

+γ
(i)
n

[
δ
(i)
n x(i)n + (1− δ

(i)
n )Tn

i x(i)n

]
,

xn+1 = x(p)
n .

The real sequence {α(i)n }, {β
(i)
n }, {γ

(i)
n }, and {δ(i)n } satisfies the following conditions:

(i) α
(i)
n , β

(i)
n , γ

(i)
n , δ

(i)
n are all in [0, 1];

(ii) α
(i)
n +γ

(i)
n

1−α
(i)
n −β

(i)
n −γ

(i)
n
≤ 1− ci;

(iii) α
(i)
n

γ
(i)
n
→ 0, and ∑∞

j=1 α
(i)
j = ∞;

(iv) max{κ(i), 1− 1
Mi−1}+ εi ≤ δ

(i)
n ≤ 1− εi; here, Mi = supn{(k

(i)
n )2} and εi > 0 is a

positive number.

Corollary 2. For all i ∈ {1, 2, · · · , p}, let Si : H → H be a ci−contraction operator and Ti :
H → H be a Li-uniformly Lipschitzian-continuous and (k(i)n , κ(i))-asymptotically demicontractive
operator. Moreover, suppose that Ti is uniformly asymptotically regular for H and I − Ti is
demiclosed at 0. Then, {xn} converges strongly to a common solution of (3) if it is generated by
Algorithm 4.
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4. Applications

In this section, we first give two numerical experiments to show the efficiency of
the algorithms proposed in this paper. Then, by applying the main results, we solve the
nonlinear optimization problem GCSVIOE corresponding to (2). All codes are written in
Matlab 2020a and run on a laptop with 2.5 GHz Intel Core i5 processor.

Example 6. Let H = R. Let S(x) := x/2, and T be defined by (13) with r = 3/4. It is not
difficult to verify that {0} is the only common solution of (4). Note that S and T satisfy all
conditions in Theorem 1 and Corollary 1; thus, the sequences generated by Algorithms 1 and 2
converge to 0 together.

Example 7. Let H = R. Let i ∈ {1, 2, · · · , 10}, Si(x) := (0.5− 0.02i)x, and Ti be defined by
(13) with ri = 0.6− 0.02i. The common solution of (3) is {0}. It is easy to see that Si and Ti
satisfy all conditions in Theorem 2 and Corollary 2, which leads that the sequences produced by
Algorithms 3 and 4 converge to 0.

We compare the convergence speed of Algorithms 1–4 to YKMSA [14] (i.e., (8)) through
Examples 6 and 7. The parameters are set as follows. In the proposed algorithms, set
αn = 1/(9n + 1), βn = 1/4, γn = n/(9n + 9), δn = 0.99− 1/(4n + 1), ηn = 1/n, and
let α

(i)
n = αn, β

(i)
n = βn, γ

(i)
n = γn, δ

(i)
n = δn, η

(i)
n = ηn. For YKMSA, set an = bn =

(n2 − 1)/(2n2), cn = 1/n2, un = 1 + 1/n according to Lemma 3.1 [14]. The stop criterion is
set as ‖xn+1 − xn‖ ≤ 10−10 or a maximum iteration of 103. Take the initial points as 0.6 and
0.9 for Example 6 and 0.5 for Example 7. The numerical results are shown in Figures 1–3.
As shown in the figures, it can be observed that both the one-step and multistep algorithms
involving implicit rules perform slightly better than explicit algorithms. Furthermore, as
the one-step and multistep YKMSAs [14] contain Halpern-type constants, the proposed
algorithms in this article converge much faster than YKMSA.

0 10 20 30 40 50 60
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1

1.5

2

0 10 20 30 40 50 60

-10

-8

-6

-4

-2

0

2

Figure 1. Results of Algorithms 1 and 2, and YKMSA for Example 6 with an initial point of x0 = 0.6.
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Figure 2. Results of Algorithms 1 and 2, and YKMSA for Example 6 with an initial point of x0 = 0.9.
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Figure 3. Results of Algorithms 3 and 4, and YKMSA for Example 7 with an initial point of x0 = 0.5.

According to (2), we have shown that GCSVIOE is equivalent to a CSOS. Now, we
give the following multistep implicit Algorithm 5 and Theorem 3 to find the solution
of GCSVIOE.

Algorithm 5 Multistep implicit iteration for GCSVIOE
Choose an initial point x1 ∈ H, and for any n ∈ N do the following:

z(1)n = η
(1)
n zn + (1− η

(1)
n )x(1)n ,

y(1)n = δ
(1)
n z(1)n + (1− δ

(1)
n )PQ1(z

(1)
n − rF1z(1)n ),

x(1)n = (1− α
(1)
n − β

(1)
n − γ

(1)
n )S1(xn) + β

(1)
n xn + γ

(1)
n y(1)n ,

for i = 2, 3, · · · , p,
z(i)n = η

(i)
n z(i−1)

n + (1− η
(i)
n )x(i)n ,

y(i)n = δ
(i)
n z(i)n + (1− δ

(i)
n )PQi (z

(i)
n − rFiz

(i)
n ),

x(i)n = (1− α
(i)
n − β

(i)
n − γ

(i)
n )Si(x(i−1)

n ) + β
(i)
n x(i−1)

n + γ
(i)
n y(i)n ,

xn+1 = x(p)
n .

The real sequence {α(i)n }, {β
(i)
n }, {γ

(i)
n }, {δ

(i)
n }, and {η(i)

n } satisfies the following conditions:

(i) α
(i)
n , β

(i)
n , γ

(i)
n , δ

(i)
n , η

(i)
n are all in [0, 1];

(ii) α
(i)
n +γ

(i)
n

1−α
(i)
n −β

(i)
n −γ

(i)
n
≤ 1− ci;

(iii) α
(i)
n

γ
(i)
n
→ 0, η

(i)
n → 1, and ∑∞

j=1 α
(i)
j = ∞;

(iv) εi ≤ δ
(i)
n ≤ 1− εi; here, εi > 0 is a positive constant;

(v) r ∈ (0, min
i∈1,2,··· ,p

2σi/µ2
i ).

Theorem 3. For all i ∈ {1, 2, · · · , p}, suppose that Si : H → H is a ci−contraction operator and
Fi : Qi → H is a σi/µ2

i -inverse strongly monotone operator, where Qi is a nonempty closed convex
subset ofH. Then, the sequence {xn} generated by Algorithm 5 converges strongly to the solution
of (2), that is, GCSVIOE is solved by Algorithm 5.

Proof. For any i ∈ {1, 2, · · · , p}, let Ti := PQi (I − rFi). Then, according to [26], one has Ti,
which is a nonexpansive operator for all i ∈ {1, 2, · · · , p}. Thus, for each i ∈ {1, 2, · · · , p},
Ti is also 1-Lipschitzian-continuous and (1, 0)-asymptotically demicontractive, and I − Ti
is demiclosed at 0 [27]. Recall Example 5; one can easily see that Ti is also uniformly
asymptotically regular for all i ∈ {1, 2, · · · , p}. Hence, Ti (i = 1, 2, · · · , p) satisfies all the
conditions required in Theorem 2.

Then, by directly applying Theorem 2, one sees that the sequence {xn} generated by
Algorithm 5 converges strongly to a point in

⋂
i∈{1,2,··· ,p} Fix(Si) ∩ Fix(Ti). This completes

the proof.
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5. Conclusions

In this paper, to answer Question 1, we propose a brand-new multistep algorithm (i.e.,
Algorithm 3) for solving CSOSs (3), which are highly related to nonlinear optimization
problems. We first give two strong convergence theorems for both one-step and multistep
iterations, utilizing the implicit rule for CSOSs that involve asymptotically demicontractive
operators. In order to show the efficiency of the proposed algorithms, two numerical
simulations on single-set and multi-set CSOSs are given in Section 4 and are also applied
to GCSVIOE.

However, the following two areas are worthy of future research:

(i) The common solution of two finite or infinite asymptotically demicontractive opera-
tors requires in-depth exploration.

(ii) Convergence for CSOSs involving multivalued operators—see [28].
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