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Abstract: The analysis of bifurcations and chaotic dynamics for nonlinear systems of a large size is
a difficult problem. Analytical and numerical approaches must be used to deal with this problem.
Numerical methods include solving some of the hardest problems in computational mathematics,
which include system spectral and algebraic problems, specific nonlinear numerical methods, and
computational implementation on parallel architectures. The software structure that is required to
perform numerical bifurcation analysis for large-scale systems was considered in the paper. The
software structure, specific features that are used for successful bifurcation analysis, globalization
strategies, stabilization, and high-precision implementations are discussed. We considered the
bifurcation analysis in the initial boundary value problem for a system of partial differential equations
that describes the dynamics of incompressible ABC flow (3D Navier–Stokes equations). The initial
stationary solution is characterized by the stability and connectivity to the main solutions branches.
Periodic solutions were considered in view of instability transition problems. Finally, some questions
of higher dimensional attractors and chaotic regimes are discussed.

Keywords: bifurcation analysis; chaotic dynamics; laminar–turbulent transition; Newton method;
Krylov methods; deflation; matrix-free methods; fluid dynamics; ABC flow
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1. Introduction

Let us consider the bifurcation analysis for a fluid dynamics problem. The problem
can be described by a system of equations in the general form:

F (u, R) = 0, (1)

where B is a Banach space, u ∈ B, R ∈ Rk is a vector of k-parameters, and F : B → B
is a nonlinear operator (which can include temporal and spatial operators). For each
specific nonlinear system under consideration, one formulates more-specific properties of
space B and a nonlinear operator F . Notice that a majority of different models, described
by the system of nonlinear equations, can be recast into (1)’s format, so this setting is
rather general.

Some standard methods of analytical and semi-analytical analysis exist that allow
one to obtain first or even secondary bifurcations [1]. These methods include Lyapunov–
Schmidt reduction [2,3], central manifold reduction [4,5], equivariant unfolding theory [6],
etc. Some examples from the area of fluid dynamics are presented below. Lyapunov–
Schmidt reduction was applied to 1D spatial Euler equations in [7] to obtain periodic
solutions; the classical results of Youdovich with these approaches were obtained in [8–10],
as well as other results in the field of fluid dynamics and Navier–Stokes equations [11–13].
Equivariant unfolding theory together with the Lyapunov–Schmidt reduction was applied
to the Taylor–Couette flow in [6] by reducing O(2) × SO(2) group symmetries in the
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system. Unfortunately, even such sophisticated methods cannot always predict bifurcations
for substantial variation of parameters and are not related to chaotic regimes. These
methods can be used in particular cases, as described in the cited papers. For a general
analysis, one needs to apply numerical methods that take into account the properties of the
underlying system (1), as well as being efficient and obtaining solutions with satisfactory
numerical precision. Under these conditions, one needs efficient software capable of
running on modern hardware that can be executed on any computational system, from a
desktop to a high-performance cluster.

The finite-dimensional system of equations is derived from (1) by applying some
consistent method (for example, the Galerkin method). It is assumed that the obtained
system represents the original system (1) with enough Degrees Of Freedom (DOFs) to
approximate all solutions in the range of parameter variations. The new finite-dimensional
discrete system can be presented as:

Mut = F(u, R). (2)

Here, u(t) ∈ RN is a discrete solution of (2) that approximates the solution of the original
system, t is a temporal variable, N is the number of DOFs (typically from 1 · 106 to 1 · 109),
M is a linear operator, which can be an identity (E), and F is a discrete, generally nonlinear,
operator. Boundary conditions are included in the M and F operators. These systems (1)
and (2) are the basic setup on which one can consider many different problems (in this
paper, for example, System (2) is represented by the Bubnov–Galerkin representation of
the incompressible Navier–Stokes equations on a periodic domain). In order to solve (2)
with high precision on all necessary DOFs, one must utilize large computational clusters
and use High-Performance Computations (HPCs). This difficulty is superimposed on
advanced methods required for bifurcation analysis that include the stabilization method
for stationary, periodic, or quasi-periodic solutions, continuation methods, and leading
eigenvalue solvers. Assume that, for some R0, the solution u0 of (2) is stable. The process of
bifurcation analysis can be described as follows:

1. Find a solution of (2) that can be traced from u0 for some variation of δR to obtain u∗ using
the continuation process, and apply stabilization methods if the solution is linear unstable.

2. Obtain the linearization of the system (2) at u∗ and find the leading eigenvalues of the
linearized system (these can be eigenvalues with the largest real parts for stationary
solutions or the largest magnitude eigenvalues for periodic solutions).

3. Find R∗ where the leading eigenvalues cross an imaginary axis or cross the unit circle
for exponential mapping.

4. Identify the bifurcation type.
5. Check if there are other solutions that exist for the system at R0, then set such solutions

as u0, and go to Step 1.

These processes can be automated for stationary and periodic solutions. For quasi-
periodic solutions, such processes can only be partially automated; hence, the manual
execution of the above-listed steps is required.

The following set of numerical methods is required to perform the above-listed steps:

• Deflation of the solutions.
• Continuation of the solutions through bifurcation points.
• Stabilization of the stationary points of the original system (stationary solutions).
• Stabilization of periodic orbits (for example, by the stabilization of the fixed points in

the Poincare mapping).
• Obtaining the leading eigenvalues of either the original system or of the return

Poincare mapping.

Let us consider the methods that have already been developed and applied to the
bifurcation analysis of (2), where F is the discrete representation of the Navier–Stokes
operator, i.e., conservation laws for incompressible flow. One the most-famous approaches
to partially automated bifurcation analysis for incompressible fluid dynamics problems
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was suggested by L.S. Tuckerman and co-authors. The idea is the utilization of already-
available time stepper codes (Direct Numerical Simulation (DNS) methods); see [14–17].
The design of the eigensolvers for (2) in the case of incompressible flow is based on the
exponential preconditioner [18] or shift and inverse preconditioner [15] together with
available time steppers. An example of the application of these approaches was presented
in [19,20], where the bifurcations of steady-state solutions in cylindrical Rayleigh–Benard
instability were investigated. An excellent review on the question of bifurcation analysis
using this approach for fluid dynamics is presented in [21]. Another successful approach
was developed by Sanchez and co-authors; see [22–24]. Many other papers exist that deal
with the instability analysis of the Navier–Stokes equations in the linear and nonlinear
cases. However, these papers are focused on the detection of the first instability (first
bifurcation) and cannot be qualified as bifurcation-analysis-oriented.

Some attempts to apply machine learning with a reduced models approach [25] to (2)
were made; for example, see [26]. However, all these problems are limited to 2D spatial
flows only.

Another important property of bifurcation analysis is the identification of distinct,
disconnected solutions. Such a procedure is called the deflation of solutions. This was
suggested in the work of Farrell et al. [27] and earlier works of Kalantonis et al. [28],
which were both based on the work of Davidenko [29]. For large-scale systems on the HPC
architecture, the approach was suggested in [30], and the algorithm for the deflation of
periodic solutions of large-scale systems was suggested in [31]. Such approaches allow one
to find disconnected solutions, as well as construct bifurcation diagrams. For example, the
results for the disconnected solutions in fluid dynamics were presented in [32,33] for 2D
flows and in [34] for 3D flows.

On the other hand, it is impossible to trace the complexity of solutions further than
2D quasi-periodic using automatic bifurcation software. In this case, direct simulation
is in order since it is possible to use DNS and Poincare section analysis to study higher-
dimensional attractors, including N-dimensional tori. The stabilization of periodic solutions
embedded in these higher-order attractors is also essential; it allows one to study the
dimension of the unstable manifold and its eigenvectors, which decode the dynamics
around the stabilized periodic orbits. This approach was used in many studies by the
authors, including 2D and 3D Kolmogorov flows [35–37], Rayleigh–Benard convection [38],
and Rayleigh–Taylor and Kelvin–Helmholtz instabilities [39]. In these papers, the authors
were able to unravel some universal patterns, including bifurcations in limited periodic
orbits and 2D and 3D invariant tori. This was possible only due to the use of high-precision
operations in the base floating-point standards.

Our goal was to develop a rather universal software that allows one to perform
not only bifurcation analysis, but the analysis of chaotic regimes in large-scale nonlinear
problems, defined by (2). This paper gives more details on some parts of our software
(deflation that takes discrete symmetry into account and the compensated variant of the
time-stepping method for the floating-point arithmetic), as well as demonstrates bifurcation
and chaotic analysis. We present a survey of the automatic bifurcation analysis software
used for the problems of computational fluid dynamics, as well as the results obtained with
such methods. In the next section, a review of the method and some specific features are
considered. Next, some new results of the automated bifurcation analysis are presented
for the ABC flow problem as a demonstration of the developed software. The paper is
finalized by a discussion.

2. Numerical Methods and Software

There are several libraries available that allow one to automate bifurcation analysis.
However, most of these software packages are aimed at small or medium-sized maps or
systems of equations that allow one to compute direct matrix factorization (LU or QR)
and store dense Jacobi and Hessian matrices. Examples of such methods are AUTO [40],
MATCONT [41], DSTOOL [42], MANLAB [43–45], etc. For the continuation of time periodic
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problems for Partial Differential Equations (PDEs), a PDECONT [46] is available that performs
time-stepper-based continuation, but only for middle-sized problems. Among others, one can
outline a bifurcation package [47] implemented in Julia that allows one to find bifurcations
even for large-scale problems. It requires recasting the system in the Julia universe and can
be used if the system can be efficiently implemented in the “Julia way”. Unfortunately, this
is not always possible; hence, a standard massively parallel C++ implementation, though
much more time-consuming, is still, in the final accord, more efficient.

The structure of the current bifurcation analysis and simulation software is outlined in
Figures 1 and 2.

The implementation of the software was performed using template metaprogramming
in C++ and CUDA C++. Parallelization was implemented using the Message-Passing
Interface (MPI) for distributed memory, Open Multi-Processing (OpenMP), and the NVIDIA
Compute Unified Device Architecture (CUDA) for central and Graphics Processing Units
(GPUs). Each block of a different color depicts a different namespace. The software,
developed by the authors, is based on a set of publications: some were published, and some
are to be published and are referenced in the namespaces’ descriptions. The namespaces
are distributed between a user-provided problem description (discrete models of fluid
dynamics problems) [39,48,49], methods that perform automatic bifurcation analysis [30,31],
methods that solve nonlinear problems, methods that solve eigenvalue problems [50,51],
methods that remove continuous and discrete symmetries, methods that solve large-scale
linear problems and perform basic operations on linear spaces [52–55], and the solutions’
storage database.

Next, we shall consider different parts of the designed software that were not discussed
before and show some specific features that we used to perform bifurcation analysis.
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Problem: F(x, λ) = 0

Linear operator: A(y) := F(x0, λ0)xy

Linear operator: g := F(x0, λ0)λ

Problem parameters.

(opt)Conj.Linear operator: A(y)H

(opt)Precond.: PL + βE, PR + βE

(opt)Conj.Precond: PH
L + βHE

(opt)Mass operator:M(x)

(opt) Calibration:C(x) = 0

Time marching formulation (opt).

Mxt + F(x, λ) = 0

(opt)C(x) = 0

User provided Newton–Krylov method.

Ay = −F(x, λ0)

x ← x + µy

Extended Newton–Krylov method.

Gradient Descent method.

MHxt = −αAH(x)F(x, λ)

Time integration meth-
ods, Poincare shooting

method, Lyapunov exponents

Nonlinear Problem Solution

High precision reduction class.
BLAS 1 operations.

Linear space operations.
MultiGPU,MPI.

Linear Solver

(P−1
L )(A)(PRP−1

R )x = (P−1
L )b

Rank 1,2 updated Linear Solver

(A + CDT)x = b

Rank 1,2 updated Linear Solver

(A + CDT)x = b

Linear Spaces

Discrete symmetry reduction. SO(2) symmetry reduction.

Symmetries

Figure 1. Structure of the high-performance bifurcation analysis software: Part 1. The designation “(opt)” means optional classes or parameters provided by a user.
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Deflation operations.

G(x, S(λ))F(x, λ) = 0

Globalization Strategies.

Pseudo–Arclength continuation.

Branch Switching Method.

Stabilization of periodic
and quasi-periodic orbits.

Bifurcation Analysis

Eigenvalue Problem Solution.

Preconditioners for the
Eigenvalue Problem.

Eigenvalue Analysis

Deflated solutions data storage.

Continued solutions data storage

Data Storage.

Figure 2. Structure of the high-performance bifurcation analysis software: Part 2.

2.1. Time Marching Integration

The time-marching algorithm is one of the main parts of the simulation process, and it
is also used to perform the Poincare shooting method in the deflation and continuation of
periodic orbits. The simulation of solutions that correspond to the invariant s-dimensional
tori also requires time marching with millions of time steps. In this subsection, we shall
analyze the behavior of the time-stepping algorithms on inertial manifolds and discuss
possible increases in precision for the standard time-marching methods.

The first important property of our implementation is the usage of Diagonally Implicit
(DIRK) or Semi-Implicit (IMEX) Runge–Kutta (RK) methods, which are L- and B-stable
in their implicit part; see [56–58]. Let g(z) be a stability function of an RK method. The
method is stable for such z ∈ C, so that |g(z)| < 1. The last inequality generates a region
S ⊂ C for which the method is linearly stable, i.e.,

S(z) := {z ∈ C : g(z) = exp(iθ), ∀θ ∈ [0, 2π]}.

An important property of these methods (and any methods that we applied in our simula-
tions) is that a segment of the imaginary axis (or the whole axis) is enclosed inside S . In
this case, the following estimate is known. Assume that the Jacobi matrix of (2) J(u) has
the following property: for some set U that represents a set of solutions, the symmetric part
A(u) := (J(u) + J(u)∗)/2 of the matrix is such that (A(u)ξ, ξ) ≤ 0, ∀ξ, u ∈ U. The system
(2) can be written in the following form for any RK method on the n-th step:

un+1 = F̂k(τ, un, un+1, F), u0 = u0 (3)

u′n+1 = τF̂k(u
′
n, u′n+1, F) + ε, u′0 = u0 + ε, (4)

where F̂k is the RK operator or order k, which is built around the current and previous
steps, time step τ, F, and the Butcher tableau; u′ is a perturbed solution with the small
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perturbation ε. The error is given as en = un − u′n. If the above-listed property of the Jacobi
matrix is true, then:

‖en‖ ≤ exp(C1)‖e0‖+O(τk−1) exp(C2),

where constants C1 and C2 are independent of n and τ. Hence, for a periodic orbit, one
usually obtains satisfactory simulation results. Such an estimate cannot hold for other
types of attracting sets, such as quasi-periodic orbits or chaotic attractors. However, if
one assumes the existence of an Inertial Manifold (IM), then the estimate can be extended.
Define an IM [5]. Let B := H be a Hilbert space of the original system (1) with the distance
function dist(·, ·); this system can be rewritten in terms of the semi-group translation form
u(t) := ϕ(F )tu(0), with the t state a continuous or discrete time and u(0) an allowed
initial condition.

Definition 1. Let the manifoldM enjoy the following properties:

1. dim(M) = m < ∞;
2. ∀t > 0 : ϕ(F )M⊆M;
3. ∀t > 0 and u(0) ∈ H, there exist constants c1 > 0 and c2 > 0 s.t. dist(ϕ(F )tu(0),M) ≤

c1 exp(−c2t).

Such a manifoldM is called an inertial manifold.

Notice that the existence of the IM for a particular problem (1) needs to be proven
and requires some strong conditions on the operator spectrum (spectral gap condition;
see [59,60]). Since we are interested in the finite-dimensional representation (2) of the
original system (1), we need to assume that the number of Degrees Of Freedom (DOFs) is
sufficient to represent the dynamics of the system on the inertial manifold, say using the
Galerkin method. Approaches to define these DOFs for different dissipative dynamical
systems can be considered in [5,60,61] and, in particular, in [62] for the application in our
research related to the problems in fluid dynamics.

Remark 1. The number (n) of DOFs in the approximation (2) is not directly related to the dimension
of the IM (m) given in Definition 1. Sufficient conditions should be provided for the value of n that
can represent the dynamics on the IM, for example for space periodic boundary conditions; see [61],
Inequality (1.13).

If such conditions are met and withthe system (2), then one can see from the properties
in the Definition 1 that the RK methods applied to such systems can simulate dynamics on
the approximate inertial manifold if the selected RK methods satisfy the stability conditions.
If the condition on the existence of the IM is not met, one can assume the existence of the
absorbing manifold that attracts trajectories algebraically quickly.

Nevertheless, for the IM and general absorbing and attracting manifolds, it is desirable
to increase the precision of the RK methods and reduce the influence of rounding-off
errors because of the usage of floating-point arithmetic. A general pessimistic estimate
for the floating-point representation of Runge–Kutta methods is well known; for example,
see [63]. Let us designate the floating-point representation of un on step n as ũn. Then, the
floating-point error ẽn = un − ũn can be estimated as:

‖ẽn‖ < Cγn/τ, (5)

where C is a constant (encompassing a maximum from a solution value at different steps
that do not depend on the time step values), τ is the time step floating-point representation,
and γn is the quantity of the rounding error estimates, given as:

γn =
nε

1− nε
,



Mathematics 2023, 11, 3875 8 of 25

when nε < 1 and ε is the unit round-off (or macheps) of the selected floating-point arithmetic,
usually represented as ε = 2−p, where p is the number of significant bits (for example,
ε = 2−53 for double-precision in the IEEE 754 standard). One can observe that, for many
time steps and a small value of τn, the round-off floating-point error becomes significant.
Notice that a refined estimate is provided in [64].

The improvement of the estimate (5) can be made by either using extended precision
floating-point arithmetic or by using the compensated summation algorithm. The first
approach can be achieved by using standard libraries for CPUs or custom implementations
for GPUs, for example [65]. However, it is known that, for GPUs, such an approach greatly
reduces performance. In our research, we used the second approach, which is discussed
in detail in [54]. We shall indicate any operation that is executed using floating-point
arithmetic as fl(·), which includes all operations inside the brackets. The floating-point-
compensated operations that are to be used are based on error-free operations, presented
in Algorithms 1 and 2; for more information, see [54].

Algorithm 1 Error-free addition s.t. s + c = a + b, s = fl(a + b), and c ≤ ε(a + b).

1: function ADD(a, b)
2: s = fl(a + b);
3: z = fl(s− a);
4: c = fl((a− (s− z)) + (b− z));
5: return (s, c);

Algorithm 2 Error-free multiplication s.t.: s + c = ab, s = fl(ab), and c ≤ ε|ab|
1: function MUL(a, b)
2: s = fl(ab);
3: c = FMA(a, b,−s);
4: return (s, c);

In light of the RK methods, one can implement such an approach as follows. For
simplicity, we shall consider the autonomous variant of the method. Let some s-stage
RK-method be given in the Butcher’s table in the form of a matrix A and a vector b. As
already mentioned, the methods are either SSP-stable (for explicit methods) or B-stable for
diagonally implicit methods. For explicit RK methods with the provided general nonlinear
function RHS, the system of equations between steps n and n + 1 with summation and
product compensations can be written in Algorithm 3. Implicit diagonal RK methods can
be constructed in the same fashion, with the additional stage of using Newton’s method to
obtain the diagonal values of k. One can formulate the following:

Theorem 1. Let the ODE system (2) be given with an identity matrix for M and Lipschitz con-
tinuous nonlinear function F. Let the provided initial conditions be consistent with respect to the
function F. Let the basic floating-point arithmetic (according to the IEEE 754 standard) be used, and
the compensated explicit Runge–Kutta method in the Algorithm 3 is applied to the system (2) with
such a sequence of time steps {τn}, such that ∀n : |g(τn, A, b, un, F)| < 1, and now, the underflow
of floating-point representation occurs; g is an RK method stability function. Then, the following
estimate for the round-off error is true:

‖ẽn‖ <
Cγ2

n
τ

, (6)

where τ is the minimum accepted time step value and C is a constant that does not depend on the
time step.
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Algorithm 3 Compensated explicit autonomous Runge–Kutta method single-step from n
to n + 1. All variables are presented in the base floating-point precision.

1: function ERK_INTERNAL(τ, (u, r), w, k)
2: (d, p1)← MUL(τ, w);
3: (d, p2)← MUL(d, k);
4: (u, p3)← ADD(u, d);
5: r← r + p1 + p2 + p3;
6: return (u, r)
7: function ERK((u, r)n+1, (u, r)n, τn, RHS, A, b)
8: kj=1,..,s ← 0; s← LEN(b);
9: for j = 1, . . . , s do

10: u← un + rn; q← 0;
11: for l = 1, . . . , s do
12: (u, q)← ERK_INTERNAL(τn, (u, q), Aj,l , kl);

13: kj ← RHS(u + q);

14: (u, r)n+1 ← (u, r)n;
15: for j = 1, . . . , s do
16: (u, r)n+1 ← ERK_INTERNAL(τn, (u, r)n+1, bj, kj);

17: return (u, r)n+1;

Proof. First, let us obtain an estimate (5). A single step of an S-stage explicit RK method
with Butcher’s table coefficients A, b is given as:

Kj = F(un + τn ∑
j−1
l=1 aj,lKl), j = 1, . . . , S

un+1 = un + τn ∑S
j=1 bjKj,

Let us consider a single-step in floating-point operations.

fl
(

Kj = F(un + τn ∑
j−1
l=1 aj,lKl)

)
, j = {1, . . . , S}

fl
(

un+1 = un + τn ∑S
j=1 bjKj

)
,

We used the estimates from [54], Appendix A (Proofs of lemmas and propositions), the
Lipschitz continuity of F with Lipschitz constant L, and the stability condition for g, under
which we assume that τnL ≤ 1. Then,

‖Kj − fl(Kj)‖ < (Lε + 4jε)‖un‖, j = {1, . . . , S}.

Then, for the first step, we have:

‖fl(u1)− u1‖ < (2ε + 4τ1(3S2 + S)/2ε)‖u0‖.

By using induction and maximizing the time steps (τ = maxk∈[1...n] τn), we arrive at:

‖fl(un+1)− un+1‖ < (2nε + 2τn(3S2 + S)ε) max
k∈[1...n]

‖uk‖.

The latter can be bounded to obtain Inequality (5):

ẽn = ‖ũn − un‖ < τn(2/τ + 6S2 + 2S)εC1 . Cγn/τ.

Now, we considered Algorithm 3. The same manipulations can be performed, taking
into account the compensated algorithms and using prefix induction; see Lemma 1 from [54].
Then:

‖Kj − fl(Kj)‖ < (Lε2 + 6jε2)‖un‖, j = {1, . . . , S},



Mathematics 2023, 11, 3875 10 of 25

‖fl(un+1)− un+1‖ < (2nε2 + 3τn(9S2 + 3S)/2ε2) max
k∈[1...n]

‖uk‖.

The latter can be bounded to obtain the results of the theorem as:

ẽn = ‖ũn − un‖ < τn(2/τ + 12S2 + 6S)ε2C1 . Cγ2
n/τ.

�

Remark 2. In actual computations, however, the estimate (6) is very pessimistic. Many floating-
point errors are compensated and are not essential during long-time calculations.

Let us demonstrate that this approach not only allows one to decrease the time step
close to ε, but also to simulate linearly unstable solutions for a substantial simulation time
with no loss of accuracy. We considered the Dahlquist equation ut = u subject to the initial
conditions u(0) = 1 with an exact unstable solution u(t) = exp(t). One can observe the
error ẽn between the exact solution and approximate floating-point solutions in Figure 3.

1X107

1

0

1
1X10-14

fp128

5.0

2.5

0.0

fp64 comp

0.00 0.25 0.50 0.75 1.00 1.25 1.50

1

0
1X10-9

fp64

1X10-15

Figure 3. Error for the floating-point solutions with respect to the exact solutions of the Dahlquist
equation with τ = 1.0× 10−12 against the number of time steps (up to 1× 107) using the RK3SSP
method with different approaches: fp64—64 bit double-precision floating-points, fp64 comp—64 bit
double-precision floating-points and Algorithm 3, fp128—128 bit quad-precision floating-points.

The results demonstrate that the suggested approach works even better than the
application of quadruple-precision floating-points by a factor of 5. Since the base macheps
ε = 2−53 ∼ 1.11× 10−16, one can safely decrease the time step to the order of several
magnitudes of ε, say about 1.0× 10−12, with no worries about losing precision due to the
round-off errors. This allows one to select small time steps in the adaptive time step control
strategy for general nonlinear F for chaotic attractors near stiff regimes. This approach
allowed the authorsto obtain very sensitive attractors of nonlinear systems, such as 3D
invariant tori, for example [37].

2.2. Deflation with Discrete Symmetry

In order to reduce the complexity of the problem, it is beneficial to reduce the sym-
metries of the system if those are known. The symmetries are saved in the system (2) in
the case that a correct spatial discretization method is used. One of the most-important
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reductions is the reduction of continuous symmetries related to the SO(n) group. If such
a reduction cannot be performed on a discrete level, then it becomes a difficult problem
and will be discussed elsewhere. The reduction of discrete symmetries, however, can be
performed more easily if the deflated Newton method is used. The discussion here is based
on the definitions from [27,30]. First, we consider stationary solutions:

F(u) = 0, (7)

for a fixed value of the parameter R, which is omitted. Recap the following definition
from [27]:

Definition 2. Let B, C, and D be Banach spaces and U be an open subset of B. Let F : U ⊂
B → C be a Frechet differentiable operator with derivative F′. For each r ∈ U, u ∈ U \ {r}, let
M(u; r) : C → D be an invertible linear operator. We say that M is a deflation operator if, for any
F s.t. F(r) = 0 and F′(r) nonsingular, we have:

lim
j→∞

inf ‖M(u; r)F(uj)‖D > 0, (8)

for any sequence {uj} converging to r, where uj ∈ U \ {r}.

Let the system (1) be recast into the deflated system by using this definition with the
multiple deflation operator G:

G(u, S)F(u) = 0, (9)

where S := {rj|∀j = 1, . . . , K : F(rj) = 0} is the set that contains all K known or previously
found solutions. We shall use a particular form of the deflation operator from [30]:

G(u, S) =
1
K

diag

(
K

∑
j=1

(
‖u− uj‖

−p
2 + αj

))
, (10)

where αk is the shift value, which can be chosen in order to improve the convergence of
iterative methods.

Let σk be a non-trivial element of some discrete finite group σ acting on the solution
of the system (7). The nonlinear operator F is invariant under the action of the elements
of this group, i.e., if u is a solution of (7), then F(σku) = σkF(u) = F(u) = 0. However,
the deflated system (9) will not be able to take this group element into account (since
‖σku− u‖ > 0), and Newton’s method will converge to the solution. One way to deal with
this problem is to wait until all such solutions are found. However, such an approach may
require too much memory to store all those solutions. The other approach that we adopted
here is to use a modified deflated operator s.t. taking known discrete symmetry elements
into account. Such a deflation operator we shall define as a discrete symmetry-invariant
deflation operator.

Definition 3. Let B, C, and D be Banach spaces and U be an open subset of B. Let σk be an element
of a discrete finite group σ. Let F : U ⊂ B → C be invariant under the action of elements from
the σ Frechet differentiable operator with derivative F′. For each σkr ∈ U, u ∈ U \ ∪k{σkr}, let
M(u; r) : C → D be an invertible linear operator. We say that M is a discrete symmetry invariant
deflation operator or D-deflation operator if, for any F and σk ∈ σ, such that F(σkr) = 0 and
F′(σkr) nonsingular, we have:

lim
j→∞

inf ‖M(u; r)F(uj)‖D > 0, (11)

for any sequence {uj} converging to σkr, where uj ∈ U \ ∪k{σkr}.
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The actual implementation of such a D-deflation operator can be performed in different
ways. In the software implementation, we propose the following modification of (10):

G(u, S, Q) =
1

K + |Q|diag

(
K

∑
j=1

( |Q|
∑
k=1
‖σku− uj‖

−p
2

)
+ αj

)
, (12)

where the set Q contains the description of all elements of known discrete groups in terms
of the action of this group on u. σk ∈ Q. The whole nonlinear operator now becomes:

G(u, S, Q)F(u) = 0, (13)

This form of the proposed operator (13) retains the rather simple form of the original
Jacobian operator that was derived in [30].

3. Bifurcation Analysis and Chaotic Dynamics in ABC Flow

In this section, we provide an example of the bifurcation and chaotic analysis of a
fluid dynamics problem: a well-known problem of the dynamics in the ABC flow [66] is
considered. Although it has been studied intensively, the transition to chaos in this problem
is still not fully understood. This example is mainly a demonstration of the approach
used by our methodology and software applied to large-scale problems in fluid dynamics.
However, some new results were obtained.

The governing equations are given by the incompressible Navier–Stokes equations:

ut + (u,∇)u +∇p− 1
R
4 u− 1

R
f = 0,

∇ · u = 0,
(14)

on the periodic domain T3 := [−π; π]× [−π; π]× [−π; π], and the forcing term is given as:

f := (A sin(x3) + C cos(x2); B sin(x1) + A cos(x3); C sin(x2) + B cos(x1))
T, (15)

where A, B, C are positive whole numbers and R is the positive real number (Reynolds num-
ber) that is used as the bifurcation parameter. Note that f is divergence-free. Equations (14)
and (15) formulate the problem (1). The problem has a trivial base solution:

u = f. (16)

A finite-dimensional problem is formulated by expanding the solution using a finite
set of trigonometric polynomials and applying Bubnov–Galerkin and divergence-free
projections; we arrive at the following ODE system:

ût + PB(û, û)− R−1Cû− R−1 f̂ = 0, (17)

where û is the vector of expansion coefficients (DOFs), E is the identity matrix, G is the
matrix that represents the gradient operator, GT is the matrix that represents the divergence
operator, C is the diagonal matrix that represents the Laplace operator, and P = E −
GC−1GT is the Leray–Helmholtz orthogonal projector. The convolution term (nonlinearity)
is designated as B, and f̂ is the ABC forcing term (15) projected to the approximating space
of polynomials. The system (17) is basically the problem (2) with a unit mass matrix. In
order to accelerate the convergence of Newton’s method, we applied the preconditioned
gradient descent method before each Newton method iteration.

A detailed analysis of this problem was performed in [67–69] by O.Podvigina and
co-authors. In this section, we are interested in diving into more details on the initial stage
of transition to chaos and constructing bifurcation diagrams to unravel the interaction
between stationary, periodic solutions and chaotic regimes. Here, we only considered the
case A = B = C = 1 and 1 ≤ R ≤ 20. The system (17) is invariant under the action of
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24 elements isomorphic to O (octahedral symmetry) and S4 (permutations of four elements)
group elements; see [70] for more details. All elements of these groups were added to the
set Q in (12). For the visualization of the bifurcation diagrams, we used the following set of
functions, depicted on the figure axes:

L2ph := ‖u‖L2 :=
√
(8π3)−1

∫
T3 |u(x)|2dx,

L2 := ‖û‖l2 :=
√

N−1 ∑N
j=0 ûjû∗j ,

a := ux

(
4π
3 , 2π

3 , 2π
3

)
, b := ux

(
4π
5 , 4π

3 , 2π
3

)
,

c := ux
(
π, 2π

5 , 2π
5
)
, c′ := uy

(
π, 2π

5 , 2π
5
)
, d := ux(2π, π, π).

(18)

We applied the discretization of 1283 for this problem; hence, the number of DOFs
is N = 6× 128× 128× (128/2 + 1)− 1− 128/2− 128/2− 2(128× 128)/2 ' 6.37×106

due to the reality condition on the functions. We used two Nvidia GTX TITAN BLACK
GPUs to perform the calculations, the base double-precision with error compensation on
the blas1 operations, and the compensated ERK fifth-order method (Algorithm 3) for the
time-dependent solutions.

3.1. Bifurcation Analysis

First, we performed the deflation and continuation of all stationary solutions. This was
performed by first tracing the solution (16), adding solutions at knot points to the deflation
operator (for more information; see [30]), and then, using the deflation algorithm on the set
of random vectors; each random vector was initialized by divergence-free perturbations.
After a new solution was found, it was traced by the pseudo-arc length continuation
algorithm. The cycle was repeated until no more solutions were found on the deflation
step. For this procedure, we called BIFURCATION_ANALYSIS::DEFLATION_OPERATIONS

and BIFURCATION_ANALYSIS::PSEUDO_ARCLENGTH_CONTINUATION classes, presented in
Figure 2. These methods use the concepts and classes that are provided in Figure 1.

A bifurcation diagram for stationary solutions is presented in Figure 4. Solutions of
the problem in physical space are represented at some points by using the iso-surfaces of
velocity vector magnitude. Bellow, we shall demonstrate that these stationary solutions are
essential for understanding the process of the transition to chaos.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
R

1.1

1.2

1.3

1.4

1.5

1.6

L2
ph

Figure 4. ABC flow bifurcation diagram of 3 stationary branches (each color represents different
stationary branch). Solutions are depicted with absolute iso-surfaces of velocities at some points for
better representation.
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Next, the stability analysis is executed, and bifurcation points are located in the
stationary solutions. These bifurcation points are represented in Figure 5 by blue crosses.
For the trivial solution branch, all bifurcation points are shown, while only the first loss of
stability is shown on secondary branches. The dimension of the unstable manifold is 35
by the last presented bifurcation at R = 15.006 on the main branch, so we can expect the
fast growth of instabilities. The existence of multistable stationary solutions can be seen
for 7.8753 ≤ R ≤ 13.0059 between the main trivial branch and two disconnected branches.
Additionally, one can see the disconnected nature of these branches in the 3D Figure 6.
There are three independent Hopf bifurcations on each branch that form periodic orbits: at
R = 13.0059 for the trivial branch and at R = 13.8922 at secondary branches.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
R

1.2

1.3

1.4

1.5

1.6

L2
ph

Figure 5. ABC flow bifurcation stability diagram of stationary solutions: black points are stable
solutions; red points are unstable solutions; blue crosses are bifurcation points. Only the first stability
loss is shown on the secondary branches, while the main branch includes all bifurcation points.
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1.02
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1.06
1.08

Figure 6. The 3D bifurcation diagram of stationary solutions in different projections, different color
represents different branch; see (18) for the axes’ titles.

The presented branches of periodic orbits were obtained using the reduction of the
symmetry of the problem; otherwise, multiple branches would cover the bifurcation di-
agram entirely for non-L2-norms after the first Hopf bifurcation at R = 13.09 and would
coincide for L2-norms. The periodic orbits that emanated from the secondary branches
have a smaller period, with a ratio of about 1/3 to the periodic orbits on the main branch.
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Next, we considered the stabilization of the periodic orbits that bifurcate from the Hopf
bifurcation points. The bifurcation diagram is presented in Figure 7 and more projections
in different coordinates in Figures 8 and 9.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
R

1.2

1.3

1.4

1.5

1.6

L2
ph

Figure 7. ABC flow bifurcation diagram of stationary and periodic solutions. Periodic orbits are
represented by color segments, bifurcating from the main stationary solution at R = 13.09 and from
the secondary secondary solutions at R = 13.122.
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Figure 8. The 3D bifurcation diagram of stationary and periodic solutions in different projections; see
(18) for the axes’ titles.
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Figure 9. The 3D diagrams for stabilized periodic orbits in different projections; see (18) for the axes’
titles.

The periodic orbits that emanated from the main branch lose stability almost immedi-
ately by the second Hopf bifurcation at R = 13.09 and, then, the third Hopf bifurcation at
R = 13.122; stable invariant 2D and 3D tori are presented in Figures 10 and 11, respectively,
along with stabilized periodic orbits. At R = 13.128, the 3D torus is transformed into the
2D torus given in Figure 12 by phase locking. This transition is equivalent to the bifurcation
scenario outlined in [69].
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Figure 10. 2D invariant stable torus for R = 13.123, left to right, top to bottom: projection and
stabilized periodic orbit, phase space projection to 3D subspace with plane section, phase space
projection to 2D subspace with plane section, 2D plane section. See (18) for axes titles.
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The dimension of the unstable manifold w.r.t. the stabilized periodic orbits is much 423

larger and 20 leading eigenvalues of the monodromy matrix for both periodic orbits are 424

complex-conjugate pairs located outside the unit circle, see figure 16. At this stage we 425

already obtained a set of bifurcations on the unstable stationary solution, see figure 7. Such 426

situation usually indicates the increase of the dimension of the unstable manifold. This is 427

partially confirmed by the Lyapunov exponents in figure 14, right, where all five leading 428
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stabilized periodic orbit, phase space projection to 3D subspace with plane section, phase space
projection to 2D subspace with plane section, 2D plane section. See (18) for the axes’ titles.
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Figure 11. 3D invariant stable torus for R = 13.125, left to right, top to bottom: projection and
stabilized periodic orbit, phase space projection to 3D subspace with plane section, phase space
projection to 2D subspace with plane section, secondary 2D plane section at different point. See (18)
for axes titles.

trajectories is presented around a base flow branch shown in figure 17 (right). This chaotic 438

intermittent behavior continuous at least until maximum R = 20, while more symmetries 439

are evolved and R = 20 almost fully developed chaos is formed, see figures 18 and 19. An 440

additional unstable stationary branch is obtained by acting of the S4 symmetry element on 441

the second branch; this symmetric branch solution L2 and L2ph norms coincide. 442

4. Discussion 443

In this paper we present a methodology and software for bifurcation and chaotic 444

analysis of abstract dynamic systems given by the formal equations (1). The software 445

assumes that the user side provides a correct and efficient implementation of the solution 446

methods for the abstract system, which is listed in figure 1. The provided approach for 447

compensated evolution of Runge-Kutta integration for floating point arithmetic allowed 448

us to trace attractors of higher dimensions (like a 3D invariant torus). It is interesting 449

to note that the structure of the bifurcation analysis software allows one to add new 450

methods and computational technologies without modifying the underlying algorithms. 451

Still, such an approach may not be optimal, for it is based on the heavy use of C++ template 452

metaprogramming with parallel heterogeneous architectures. Hence, the user experience 453

Figure 11. The 3D invariant stable torus for R = 13.125, left to right, top to bottom: projection and stabilized
periodic orbit, phase space projection to 3D subspace with plane section, phase space projection to 2D
subspace with plane section, secondary 2D plane section at different point. See (18) for the axes’ titles.
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Figure 12. 2D phase locking torus for R = 13.13, left to right, top to bottom: projection and stabilized
periodic orbit, phase space projection to 3D subspace with plane section, phase space projection to
2D subspace with plane section, 2D plane section. See (18) for axes titles.

must be quite high, and it is possible that modern programming languages like Python and 454

Julia can be more user-friendly for medium-sized problems. 455

In this research, we present the analysis of the ABC flow problem, mostly for demon- 456

stration purposes; we used only the reviewed software for the analysis. Most of the work, 457

like deflation and stability analysis of stationary solutions and deflation and tracing of 458

periodic solutions, was performed in an automated manner. However, one must point 459

out that the numerical analysis of the quasi-periodic solutions is still a challenging task 460

requiring manual labor. Some papers are known to deal with this problem, for example 461

[73], but additional research is required to determine whether such methods can be used 462

for large-scale problems and can be incorporated into the automated bifurcation analysis 463

software. 464

The ABC flow that was analyzed in the previous section is of separate interest on its 465

own. The initial stage of the transition to chaos is almost identical to the results from [69]. 466

In addition to the cited paper, we presented detailed bifurcation diagrams of stationary and 467

periodic solutions. This allowed us to reveal more information about the chaotic regime, 468

where chaos is being developed around unstable stationary solutions rather than unstable 469

periodic orbits. This gives us more information on the structure of chaos; it also forces 470

one to study not only unstable periodic orbits of the Navier-Stokes flow (for example, 471

see [74]), but also unstable stationary branches. Our future work will focus on perfecting 472

Figure 12. The 2D phase locking torus for R = 13.13, left to right, top to bottom: projection and
stabilized periodic orbit, phase space projection to 3D subspace with plane section, phase space
projection to 2D subspace with plane section, 2D plane section. See (18) for the axes’ titles.
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3.2. Analysis of Chaotic Regimes

Five leading Lyapunov exponents were calculated for the considered chaotic regimes to
indirectly indicate chaotic behavior (in general, we believe that such an indication is prone
to rounding errors and inaccuracy; see [71] for more details). The procedure of calculating
Lyapunov exponents is Jacobian-based with numerically stable reorthogonalization (which
is executed as soon as the iteration time is reached or the norm of perturbations increases by
100-times). Each iteration consists of 1× 105 time steps; for more information on calculating
Lyapunov exponents for large-scale problems see [72].

For R > 13.14, we observe a chaotic behavior; an example of such behavior is shown
in Figure 13. The chaotic attractor is located around an unstable periodic orbit, thus
producing low-dimensional chaos. The eigenvalues of the monodromy matrix, minus the
value at (1, 0), for the given periodic orbit indicate at most a three-dimensional unstable
manifold, partially confirmed by the Lyapunov exponents in Figure 14, left. This approach
is characterized by low-dimensional chaotic behavior. In this problem, we observed the
transition to chaos through 2D and 3D stable invariant tori, followed by phase locking.

Now, we turn our attention to the chaotic regimes of the considered problem beyond
low-dimensional chaos. Starting from R > 13.9, an intermittent pattern is formulated,
which cannot be explained by the stabilized periodic orbits; see Figure 15, where an
intermittent pattern with stabilized periodic orbits on this pattern is provided.
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Figure 13. Chaotic solution at R = 13.142 and stabilized periodic orbit (left) and leading eigenvalues
on the complex plane (with a unit circle for reference) of the monodromy matrix for the stabilized
periodic orbit (right).
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Figure 14. Convergence evolution of five leading Lyapunov exponents (λ1, ..., λ5) calculated for
R = 13.142 (left) and R = 15.0 (right). Each iteration consists of 1e5 time steps with stable reorthogo-
nalization.

the software and performing a detailed bifurcation analysis in different fluid dynamics 473

problems that are currently beyond the capabilities of other software. 474
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Figure 14. Convergence evolution of five leading Lyapunov exponents (λ1, . . . , λ5) calculated for
R = 13.142 (left) and R = 15.0 (right). Each iteration consists of 1× 105 time steps with stable
reorthogonalization.
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Figure 15. Time evolution at R = 15 and stabilized periodic orbit (left) and projection to the 2D phase
subspace with stabilized periodic orbits and stationary solution branches (right).

The dimension of the unstable manifold with respect to the stabilized periodic orbits is
much larger, and 20 leading eigenvalues of the monodromy matrix for both periodic orbits
are complex-conjugate pairs located outside the unit circle; see Figure 16. At this stage, we
already obtained a set of bifurcations on the unstable stationary solution; see Figure 5. Such
a situation usually indicates the increase of the dimension of the unstable manifold. This is
partially confirmed by the Lyapunov exponents in Figure 14, right, where all five leading
exponents are larger than zero.

Figure 16. The 20 leading eigenvalues on the complex plane (with the unit circle provided for
reference) of the monodromy matrix at R = 15.0 for the first (left) and second (right) stabilized
periodic orbits.

The chaotic dynamics is revealed when stationary solutions are considered. A zoomed
area is presented in Figure 17.
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Figure 17. Zoom of evolution at R = 15 around stationary solutions for more-probable trajectory
location (left) and less-probable trajectory location (right).

The trajectory is governed by the stable and unstable manifolds around stationary
solutions, represented by points in the plots (cut of bifurcation diagram in Figure 4 at
R = 15). The solutions are controlled by the inherited symmetry of the problem. The
stationary unstable solutions are likely to form heteroclinic connections around which the
chaotic intermittency is developed. A more-probable clustering of trajectories is presented
around new branches of unstable solutions presented in Figure 17 (left), and a less-probable
clustering of trajectories is presented around a base flow branch shown in Figure 17 (right).
This chaotic intermittent behavior continues at least until the maximum R = 20, while
more symmetries are evolved and R = 20, almost fully developed chaos is formed; see
Figures 18 and 19. An additional unstable stationary branch is obtained by the action of
the S4 symmetry element on the second branch; this symmetric branch solution’s L2- and
L2ph-norms coincide.
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Figure 18. Time evolution at R = 20 and stabilized periodic orbit (left) and projection to the 2D phase
subspace with stabilized periodic orbits and stationary solution branches (right).



Mathematics 2023, 11, 3875 21 of 25

	1.6

	1.65

	1.7

	1.75

	1.04 	1.06 	1.08 	1.1 	1.12 	1.14

d

c
simulation

stabilized	C0
stabilized	C1

base	solution

branch	1
branch	2
branch	3

	2.02

	2.04

	2.06

	2.08

	2.1

	2.12

	2.14

	2.16

	0.85 	0.9 	0.95 	1

d

c
simulation

stabilized	C0
stabilized	C1

base	solution

branch	1
branch	2
branch	3

Figure 19. Zoom of evolution at R = 20 around stationary solutions for more-probable trajectory
location (left) and less-probable trajectory location (right).

4. Discussion

In this paper, we presented a methodology and software for bifurcation and chaotic
analysis of abstract dynamic systems given by the formal Equations (1). The software
assumes that the user side provides the correct and an efficient implementation of the
solution methods for the abstract system, which is listed in Figure 1. The provided approach
for the compensated evolution of Runge–Kutta integration for floating-point arithmetic
allowed us to trace attractors of higher dimensions (such as a 3D invariant torus). It is
interesting to note that the structure of the bifurcation analysis software allows one to
add new methods and computational technologies without modifying the underlying
algorithms. Still, such an approach may not be optimal, as it is based on the heavy use of
C++ template metaprogramming with parallel heterogeneous architectures. Hence, the
user experience must be quite high, and it is possible that modern programming languages
such as Python and Julia can be more user-friendly for medium-sized problems.

In this research, we presented the analysis of the ABC flow problem, mostly for
demonstration purposes; we used only the reviewed software for the analysis. Most of the
work, such as the deflation and stability analysis of stationary solutions and the deflation
and tracing of periodic solutions, was performed in an automated manner. However,
one must point out that the numerical analysis of the quasi-periodic solutions is still a
challenging task requiring manual labor. Some papers are known to deal with this problem,
for example [73], but additional research is required to determine whether such methods
can be used for large-scale problems and can be incorporated into the automated bifurcation
analysis software.

The ABC flow that was analyzed in the previous section is of separate interest on its
own. The initial stage of the transition to chaos is almost identical to the results from [69].
In addition to the cited paper, we presented detailed bifurcation diagrams of stationary and
periodic solutions. This allowed us to reveal more information about the chaotic regime,
where chaos is being developed around unstable stationary solutions rather than unstable
periodic orbits. This gives us more information on the structure of chaos; it also forces
one to study not only unstable periodic orbits of the Navier–Stokes flow (for example,
see [74]), but also unstable stationary branches. Our future work will focus on perfecting
the software and performing a detailed bifurcation analysis of different fluid dynamics
problems that are currently beyond the capabilities of other software.
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