Undominated Maximals: General Definition and Characterizations
Abstract
:1. Introduction
2. Basic Definitions
2.1. Basic Relational Definitions
2.2. Quasi-Transitivity, Quasi-Coherence, -Regularity
2.3. Nonsatiation and Topological Conditions
2.4. -Regularity and Quasi-Transitivity of Quasi-Coherence
2.5. Vector Spaces
3. Optimality Notions
3.1. Maximals and Greatest Elements: Definition
3.2. Undominated Maximality: Definition
3.3. Connections with Previous Definitions
3.4. Discussion
4. Undominated Maximals of Quasi-Transitive Relations
- 1.
- provided B is quasi-transitive.
- 2.
- provided B is -regular and quasi-transitive.
- 3.
- provided B is quasi-coherent.
- 1.
- provided B is a strict partial order.
- 2.
- provided B is a -regular strict partial order.
- 3.
- provided B is a coherent order.
- 1.
- provided B is a semiorder.
- 2.
- provided B is a -regular semiorder.
- 1.
- provided is a semiorder.
- 2.
- provided is a -regular semiorder.
- 3.
- provided B is -regular and is a semiorder.
- 4.
- provided is an interval order.
5. On -Regularity and Quasi-Transitivity
5.1. Relations Induced by Cones
- 1.
- The relation B is -regular.
- 2.
- The relation B is -regular and quasi-transitive (in particular, B is -regular and transitive) if C is convex.
5.2. Representable Semiorders
- C1.
- for all ;
- C2.
- u is upper unbounded;
- C3.
- u is continuous;
- C4.
- for some increasing function .
6. On Relations Induced by Cones
- 1.
- If C is τ-open and , then B is a -regular strict partial order and is open-valued for τ.
- 2.
- If C is τ-closed and , then B is a quasi-coherent preorder and B is closed-valued for τ.
6.1. A Brief Remark on Existence
- 1.
- If C is τ-closed, then .
- 2.
- If C is τ-open, then .
6.2. About Pareto Dominance
7. On Representable Semiorders
- 1.
- .
- 2.
- if for all .
7.1. A Brief Remark on Existence
7.2. About Scott-Suppes Representability
8. Conclusions and Open Questions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1.
- for all .
- 2.
- for all .
References
- Luce, R.D. Semiorders and a theory of utility discrimination. Econometrica 1956, 24, 178–191. [Google Scholar] [CrossRef]
- Peris, J.E.; Subiza, B. Choosing among maximals. J. Math. Psychol. 2002, 46, 1–11. [Google Scholar] [CrossRef]
- Subiza, B.; Peris, J.E. Strong maximals: Elements with maximal score in partial orders. Span. Econ. Rev. 2005, 7, 157–166. [Google Scholar] [CrossRef]
- Alcantud, J.C.R.; Bosi, G.; Zuanon, M. A selection of maximal elements under non-transitive indifferences. J. Math. Psychol. 2010, 54, 481–484. [Google Scholar] [CrossRef]
- Walker, M. On the existence of maximal elements. J. Econ. Theory 1977, 16, 470–474. [Google Scholar] [CrossRef]
- Alcantud, J.C.R. Characterization of the existence of maximal elements of acyclic relations. Econ. Theory 2002, 19, 407–416. [Google Scholar] [CrossRef]
- Schmidt, G. Relational Mathematics; Cambridge University Press: Cambridge, UK, 2011; Volume 132. [Google Scholar]
- Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S. A Compendium of Continuous Lattices; Springer: Berlin, Germany, 2012. [Google Scholar]
- Bridges, D.S.; Mehta, G.B. Representations of Preferences Orderings; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Aleskerov, F.; Bouyssou, D.; Monjardet, B. Utility Maximization, Choice and Preference; Springer: Berlin, Germany, 2007; Volume 16. [Google Scholar]
- Ok, E.A. Real Analysis with Economic Applications; Princeton University Press: Princeton, NJ, USA, 2007; Volume 10. [Google Scholar]
- Luc, D.T. Theory of Vector Optimization; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Quartieri, F. Coherent orders. J. Math. Psychol. 2019, 93, 102284. [Google Scholar] [CrossRef]
- Gensemer, S.H. Continuous semiorder representations. J. Math. Econ. 1987, 16, 275–289. [Google Scholar] [CrossRef]
- Gensemer, S.H. On numerical representations of semiorders. Math. Soc. Sci. 1988, 15, 277–286. [Google Scholar] [CrossRef]
- Campión, M.J.; Candeal, J.C.; Induráin, E.; Zudaire, M. Continuous representability of semiorders. J. Math. Psychol. 2008, 52, 48–54. [Google Scholar] [CrossRef]
- Mas-Colell, A.; Whinston, M.D.; Green, J.R. Microeconomic Theory; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Duggan, J. Uncovered sets. Soc. Choice Welf. 2013, 41, 489–535. [Google Scholar] [CrossRef]
- Quartieri, F. Existence of Maximals via Right Traces. MPRA Paper, No. 107189. 2021. Available online: https://mpra.ub.uni-muenchen.de/107189/ (accessed on 19 April 2021).
- Quartieri, F. A unified view of the existence of maximals. J. Math. Econ. 2022, 99, 102609. [Google Scholar] [CrossRef]
- Quartieri, F. On the existence of greatest elements and maximizers. J. Optim. Theory Appl. 2022, 195, 375–389. [Google Scholar] [CrossRef]
- Giarlotta, A.; Watson, S. Universal semiorders. J. Math. Psychol. 2016, 73, 80–93. [Google Scholar] [CrossRef]
- Wallace, A.D. A fixed-point theorem. Bull. Am. Math. Soc. 1945, 51, 413–416. [Google Scholar] [CrossRef]
- Bosi, G.; Candeal, J.C.; Induráin, E.; Oloriz, E.; Zudaire, M. Numerical representations of interval orders. Order 2001, 18, 171–190. [Google Scholar] [CrossRef]
- Candeal, J.C.; Induráin, E. Semiorders and thresholds of utility discrimination: Solving the Scott–Suppes representability problem. J. Math. Psychol. 2010, 54, 485–490. [Google Scholar] [CrossRef]
- Candeal, J.C.; Estevan, A.; García, J.G.; Induráin, E. Semiorders with separability properties. J. Math. Psychol. 2012, 56, 444–451. [Google Scholar] [CrossRef]
- Bosi, G.; Estevan, A. Continuous representations of interval orders by means of two continuous functions. J. Optim. Theory Appl. 2020, 185, 700–710. [Google Scholar] [CrossRef]
- Rébillé, Y. A representation of interval orders through a bi-utility function. J. Math. Psychol. 2023, 115, 102778. [Google Scholar] [CrossRef]
- Bosi, G.; Campión, M.J.; Candeal, J.C.; Indurain, E. Mathematical Topics on Representations of Ordered Structures and Utility Theory; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Bridges, D.S. Representing interval orders by a single real-valued function. J. Econ. Theory 1985, 36, 149–155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quartieri, F. Undominated Maximals: General Definition and Characterizations. Mathematics 2023, 11, 3879. https://doi.org/10.3390/math11183879
Quartieri F. Undominated Maximals: General Definition and Characterizations. Mathematics. 2023; 11(18):3879. https://doi.org/10.3390/math11183879
Chicago/Turabian StyleQuartieri, Federico. 2023. "Undominated Maximals: General Definition and Characterizations" Mathematics 11, no. 18: 3879. https://doi.org/10.3390/math11183879
APA StyleQuartieri, F. (2023). Undominated Maximals: General Definition and Characterizations. Mathematics, 11(18), 3879. https://doi.org/10.3390/math11183879