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Abstract: This paper proposes a general definition of an undominated maximal of a relation on
a constraint set. No specific requirement is imposed on either the asymmetry of the objective
relation or the constraint set (which might, or might not, coincide with the ground set of the objective
relation). Several characterizations are formulated that express undominated maximals of an objective
relation as maximals of some trace associated with that objective relation. By means of some of these
characterizations, the structure of the entire set of undominated maximals is examined in the particular
case of relations induced by open and closed convex cones—among them, the weak and strong Pareto
dominance—and, in the case of semiorders, that admit certain types of representability. The results of
the last part of the examination allow the construction of many examples of relations whose entire
sets of maximals and undominated maximals are completely identifiable in an elementary way.
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1. Introduction

By making use of a version of Duncan Luce’s famous sugar example in [1], the article [2]
by Peris and Subiza makes the point that the maximal elements of a relation may be
different from one another. The observation is motivated by the fact that two maximals of
a relation can bear different connections with the other feasible alternatives and that this
difference might make a maximal “more attractive” than another to a decision maker. More
precisely, this difference might induce an ordering on the alternatives that complements
the primitive preference–indifference relation and that the decision maker might take into
consideration when making a choice. Driven by this motivation, the authors originally
proposed an optimality notion, called undominated maximality, which selects from the
set of maximal elements of an asymmetric objective relation the alternatives that are also
maximal elements of the global trace of the objective relation. Undominated maximality is
the subject of the present work.

The original definition of an undominated maximal proposed in [2]—as well as that
adopted by [3,4]—restricts attention to asymmetric relations and to constraint sets that
coincide with the entire ground set of the objective relation. A quite dissatisfying aspect
of this definition is its lack of generality and applicability. Many objective relations of
economic interest are not asymmetric relations, and hence, one cannot apply the original
definition of an undominated maximal when trying to refine the set of maximals of those
relations. Furthermore, many optimization problems of economic interest, especially in
consumer theory, are properly constrained optimization problems (see, e.g., [5] p. 472) and,
perhaps even more importantly, many objective relations of economic interest (e.g., the two
usual Pareto dominance relations on spaces of “utility levels”) do not possess unconstrained
maximals and so one cannot hope to select anything by means of the original definition of
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undominated maximality. There is therefore a clear need to extend the original definition
of undominated maximality. But how? How can we extend the original definition of an
undominated maximal so as to deal with objective relations that are not asymmetric? How
can we extend the definition of an undominated maximal so as to deal with constrained
optimization problems?

The previous two questions are not equally problematic. The extension of the defini-
tion of an undominated maximal that accommodates to relations that are not necessarily
asymmetric can be carried out by applying the original definition of an undominated
maximal of an asymmetric relation to the sole asymmetric part of an objective relation.
This seems to be, by far, the most natural extension that accommodates to relations that are
not necessarily asymmetric; however, admittedly, it is just one of the possible generaliza-
tions. The extension of the definition of an undominated maximal that accommodates to
constrained optimization problems is much less obvious. By relying on the fact that the
maximals of a relation on a constraint set are equal to the maximals of the restriction of the
objective relation to that constraint set, one might be tempted to define an undominated
maximal on a constraint set as an unconstrained undominated maximal of the restriction of
the relation to the constraint set: probably, this is the definition of constrained undominated
maximality tacitly used in Example 2 in [6]. On the other hand, it is natural to define con-
strained undominated maximals as those constrained maximals that are also constrained
maximals of the global trace of the asymmetric part of the primitive objective relation. The
problem is that these two possible definitions of a constrained undominated maximal are
different definitions. Asymmetrization and restriction commute with one another, and
hence the asymmetric part of the restriction of a relation coincides with the restriction of
the asymmetric part of that relation: this is the reason why the maximals of a relation on a
constraint set are equal to the maximals of the restriction of that relation to that constraint
set. However, the global trace of the asymmetric part of the restriction of a relation (does
coincide with the global trace of the restriction of the asymmetric part of that relation but)
does not generally coincide with the restriction of the global trace of the asymmetric part of
that relation: this is the reason why the maximals of the global trace of the asymmetric part
of a relation on a certain constraint set do not generally coincide with the maximals of the
restriction to that constraint set of the global trace of the asymmetric part of that relation.
Two simple examples in Section 3.4 illustrate the point.

The first, and main, purpose of this work is to provide a general definition of an
undominated maximal that accommodates to possibly not asymmetric objective relations
and to constrained optimization problems. Once we have provided this general definition,
we characterize the set of undominated maximals of an objective quasi-transitive relation
as the set of maximals of the global trace associated with the asymmetric part of that
objective relation. This identification allows the direct application of many results of the
large amount of literature on maximals (in particular, of many existence results). For
classes of quasi-transitive objective relations that satisfy some regularity conditions—called
T -regularity and quasi-coherence (precisely defined and discussed in Sections 2.2 and 2.4
as well as in Section 5)—we further clarify the connection with the set of maximals of
the right trace of the asymmetric part of the objective relation and with the very set of
maximals. Establishing the exact structure of the set of undominated maximals can be a
hard exercise even when one is dealing with a seemingly simple objective relation and
a seemingly simple constraint set. The last part of this work focuses on two classes of
T -regular relations and obtains the exact structure of their sets of undominated maximals.

This paper is organized as follows. Section 2 recalls and introduces basic notions.
Section 3 proposes a definition of undominated maximality and discusses its generality.
Section 4 provides several characterizations of the set of undominated maximals. Section 5
presents two classes of T -regular and quasi-transitive relations, while Sections 6 and 7
examine the structure of the sets of undominated maximals of those two classes. Section 8
concludes and indicates some open issues. Appendix A contains some auxiliary results.
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2. Basic Definitions

Section 2 provides all of the basic definitions and notation used in the rest of the
paper. Sections 2.1–2.4 pertain to relations, while Section 2.5 relates to vector spaces.
(For an introduction to relational mathematics see, e.g., [7,8]: for its applications to social
sciences and, in particular, to mathematical economics see, e.g., [9–11], while see [12] for its
connections with the related field of vector optimization. Many examples can be found in
the books just mentioned as well as in various authoritative handbooks of mathematical
economics not cited here). With the exception of quasi-coherence and T -regularity, no
definition provided here is new. In point of fact, not even quasi-coherence is new as it
was previously examined in [13]. Furthermore, a regularity notion somehow related to
T -regularity was used in [14,15] (and sufficient conditions for the T -regularity of a relation
are also implicit in Theorem 3.5 in [16]).

2.1. Basic Relational Definitions

A relation B on a (ground) set X is a subset of X × X. Let X be a set and B be a
relation on X. We view the second factor of X × X as the domain of B and the first as its
codomain. The membership (y, x) ∈ B reads “y is preferred or indifferent to x through B”:
this reading is, however, immaterial to the goal of the present paper. The upper section
of B at x ∈ X is the set B(x) = {y : (y, x) ∈ B}. The restriction of B to a subset Y of
X is the relation (Y × Y) ∩ B on Y. The converse of B is the relation Bc on X defined by
Bc(x) = {y : (x, y) ∈ B} at all x ∈ X. The lower section of B at x ∈ X is the upper section
of Bc at x. The right trace of B is the relation TB on X defined by

TB(x) = {y ∈ X : B(y) ⊆ B(x)}

at all x ∈ X. The relation T c
Bc is the left trace of B. Therefore,

T c
Bc(x) = {y ∈ X : Bc(x) ⊆ Bc(y)}

at all x ∈ X. The relation
GB = TB ∩ T c

Bc

on X is the global trace of B. The irreflexive part of B is the relation Bi on X defined by
Bi(x) = B(x)\{x} at all x ∈ X. The asymmetric part of B is the relation Ba on X defined
by Ba(x) = B(x)\Bc(x) at all x ∈ X. The membership (y, x) ∈ Ba reads “y is preferred to
x through B”: this reading is, however, immaterial to the goal of the present paper. For all
(p, q) ∈ {a, c} × {a, c}, we write Bpq instead of (Bp)q.

Remark 1. Conversion and asymmetrization commute with each other and hence Bac = Bca.
Asymmetrization is idempotent and hence Baa = Ba.

A relation B on a set X is: irreflexive if B = Bi (if the negated membership x /∈ B(x) is
true for all x ∈ X); asymmetric if B = Ba (if B is irreflexive and B = Ba, if the implication
y ∈ B(x) ⇒ x /∈ B(y) is true for all (y, x) ∈ X × X); total if B ∪ Bc = X × X (if either
y ∈ B(x) or x ∈ B(y) for all (y, x) ∈ X × X); reflexive if TB ⊆ B (if the membership
x ∈ B(x) is true for all x ∈ X); transitive if B ⊆ TB (if the implication [z ∈ B(y) and
y ∈ B(x)] ⇒ z ∈ B(x) is true for all (z, y, x) ∈ X × X × X); a strict partial order if
B ⊆ T a

B (if B is irreflexive and transitive, if B is asymmetric and transitive); a coherent
order if B = T a

B ; a preorder if B = TB (if B is transitive and reflexive); Ferrers if TB is
total (if the implication [z ∈ B(y) and x ∈ B(w)] ⇒ [z ∈ B(w) or x ∈ B(y)] is true
for all (z, y, x, w) ∈ X × X × X × X); interval order if B is irreflexive and TB is total
(if B is irreflexive and Ferrers; if B is a Ferrers strict partial order); a semiorder if B is
irreflexive and GB is total (if B is an interval order satisfying the implication [z ∈ B(y) and
y ∈ B(x)]⇒ [either w ∈ B(x) or z ∈ B(w)] for all (z, y, x, w) ∈ X× X× X× X).
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2.2. Quasi-Transitivity, Quasi-Coherence, T -Regularity

Henceforth, in this Section, let X be a set and B a relation on X. The relation B is
quasi-transitive if Ba is transitive (if Ba ⊆ TBa , if Ba ⊆ T a

Ba ).

Remark 2. By the idempotence of asymmetrization, B is quasi-transitive if and only if Ba is
quasi-transitive. It is readily checked that B is quasi-transitive if B is transitive.

The relation B is T -regular if GBa = TBa (if TBa ⊆ T c
Bca ).

Remark 3. By the idempotence of asymmetrization, B is T -regular if and only if Ba is T -regular.
It is readily noted that B is a semiorder if B is a T -regular interval order.

The relation B is quasi-coherent if Ba is a coherent order (if Ba = T a
Ba).

Remark 4. By the idempotence of asymmetrization, B is quasi-coherent if and only if Ba is quasi-
coherent. Moreover, B is quasi-coherent if B is a coherent order. (If B is a coherent order, then B = T a

B
and hence Ba = T aa

B with T aa
B = T a

B . If B is a coherent order, then B is asymmetric, and hence,
B = Ba. Thus, the equality Ba = T a

Ba is true if B is a coherent order).

2.3. Nonsatiation and Topological Conditions

Henceforth, in this Section, let X be a set and B a relation on X. We say that B is
quasi-nonsatiated if [(y, x) ∈ X × X and Ba(x) 6= ∅ = Ba(y)] ⇒ y ∈ Ba(x); nonsatiated
if Ba(x) 6= ∅ for all x ∈ X. Henceforth, in this Section, assume that X is a set endowed
with some topology τ and hence that (X, τ) is a topological space. As usual, a subset S
of X is said to be τ-compact if S endowed with the relative topology is compact. The
topological closure of a subset S of X is denoted by cl S, while the topological interior of S
is denoted by int S. We say that B is conditionally locally nonsatiated for τ if [x ∈ X and
Ba(x) 6= ∅]⇒ x ∈ cl Ba(x); locally quasi-nonsatiated for τ if B is quasi-nonsatiated and
conditionally locally nonsatiated for τ; and locally nonsatiated for τ if B is nonsatiated
and conditionally locally nonsatiated for τ (if x ∈ cl Ba(x) for all x ∈ X). (Figure 1 in [13]
conveniently summarizes some implications about the various notions of nonsatiation.
Clearly, conditional local quasi-nonsatiation (is implied by local quasi-nonsatiation but)
neither implies nor is implied by quasi-nonsatiation. For an economic interpretation of
(local) nonsatiation the reader is referred to [17]). Finally, we say that B is open-valued
for τ if B(x) is a τ-open subset of X for all x ∈ X; closed-valued for τ if B(x) is a τ-closed
subset of X for all x ∈ X.

2.4. T -Regularity and Quasi-Transitivity of Quasi-Coherence

Every quasi-coherent relation—and hence every coherent order—is T -regular and
quasi-transitive.

Proposition 1. Let X be a set and B a quasi-coherent relation on X. The relation B is T -regular
and quasi-transitive.

Proof. It is clear from Section 2.2 that B is quasi-transitive. Thus, to conclude the proof, we
only need to show that B is T -regular and hence that TBa ⊆ T c

Bca . Suppose (y, x) ∈ X× X
and y ∈ TBa(x). The last membership is equivalent to

Ba(y) ⊆ Ba(x). (1)

Now, by way of contradiction, suppose y 6∈ T c
Bca(x). The last negated membership is

equivalent to Bca(x) 6⊆ Bca(y) and hence to the nonemptiness of Bca(x)\Bca(y). Pick an
arbitrary z ∈ Bca(x)\Bca(y). Then x ∈ Ba(z) and y /∈ Ba(z). As B is quasi-coherent, the
last membership and the last negated membership are equivalent to Ba(x) ⊂ Ba(z) and
Ba(y) 6⊂ Ba(z), respectively; a contradiction with (1).
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Many simple classes of quasi-coherent relations are considered in [13]: see Theo-
rem 6, Theorem 9 (and Corollary 3), Theorem 10 (and Corollary 4) and Theorem 12 of the
mentioned article. Corollary 4 in [13] serves as a lemma in the rest of the paper.

Lemma 1 ([13], Corollary 4). Let (X, τ) be a topological space and B a transitive relation on X.
If B is closed-valued for τ and locally quasi-nonsatiated for τ, then B is quasi-coherent.

2.5. Vector Spaces

The set of the reals (of nonnegative reals, of positive reals) is denoted by R (R+, R++).
For every positive integer n, the n-ary Cartesian power of R (R+, R++) is denoted by
Rn (Rn

+, Rn
++). The usual preorder relation on the set R∪{+∞,−∞} is denoted by ≥ (its

asymmetric part by >, its converse by ≤, the asymmetric part of its converse by <). When
S is a subset of R∪{+∞,−∞}, the supremum of S is denoted by sup S (sup S = −∞ when
S = ∅); if a maximum of S exists in R, it is denoted by max S. A vector space over the reals
(a real vector space) is abbreviated by RVS. A topological vector space over the reals (a real
topological vector space) is abbreviated by RTVS. When X is an RVS and the sets S and T
are subsets thereof, the set {x ∈ X : −x ∈ S} is denoted by−S, and the Minkowski sum of
S and T is denoted by S + T, whereas the sum of S and−T is denoted by S− T; when S is a
singleton, say {s}, we just write s+ T and s− T instead of {s}+ T and {s}− T, respectively.
By a cone in X, we mean any subset C of X satisfying the implication x ∈ C ⇒ λx ∈ C for
every λ ∈ R++. A cone might be empty and need not contain the zero vector.

3. Optimality Notions

This Section recalls the usual definitions of a maximal and of a greatest element and
provides a general definition of an undominated maximal element.

3.1. Maximals and Greatest Elements: Definition

Let X be a set and B a relation on X. The set of maximals of B on a subset Y of X is
the setM(B, Y) defined by

M(B, Y) = {y ∈ Y : Ba(y) ∩Y = ∅}.

The set of unconstrained maximals of B is the setM(B) defined by

M(B) = {y ∈ X : Ba(y) = ∅}.

Clearly,M(B) =M(B, X).

Remark 5. If B is an asymmetric relation on X, thenM(B, Y) = {y ∈ Y : B(y) ∩ Y = ∅} for
all Y ⊆ X andM(B) = {y ∈ Y : B(y) = ∅}.

The maximals of a relation are the maximals of the asymmetric part of that relation.

Remark 6. Let X be a set and B a relation on X. By the idempotence of asymmetrization,
M(B, Y) =M(Ba, Y) for all Y ⊆ X andM(B) =M(Ba).

The set of greatest elements of B on a subset Y of X is the set M(B, Y) defined by

M(B, Y) = {y ∈ Y : Y ⊆ Bc(y)}.

The set of unconstrained greatest elements of B is the set M(B) defined by

M(B) = {y ∈ X : X ⊆ Bc(y)}.
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Clearly, M(B) = M(B, X). In addition, M(B, Y) ⊆ M(B, Y) for all Y ⊆ X and
M(B) ⊆M(B).

Remark 7. Let X be a set and B a total relation on X. Then M(B, Y) =M(B, Y) for all Y ⊆ X
and M(B) =M(B).

3.2. Undominated Maximality: Definition

Let X be a set and B a relation on X. The set of undominated maximals of B on a
subset Y of X is the set U (B, Y) defined by

U (B, Y) =M(B, Y) ∩M(GBa , Y).

(For clarity, U (B, Y) =M(B, Y)∩M(TBa ∩ T c
Bca , Y) =M(B, Y)∩M(TBa ∩ T c

Bac , Y) for all
Y ⊆ X and U (B) =M(B) ∩M(TBa ∩ T c

Bca) =M(B) ∩M(TBa ∩ T c
Bac)).

The set of unconstrained undominated maximals of B is the set U (B) defined by

U (B) =M(B) ∩M(GBa).

Clearly, U (B) = U (B, X).

Remark 8. If B is an asymmetric relation on X, then U (B, Y) =M(B, Y) ∩M(GB, Y) for all
Y ⊆ X and U (B) =M(B) ∩M(GB).

The undominated maximals of a relation are the undominated maximals of the asym-
metric part of that relation.

Remark 9. Let X be a set and B a relation on X. By the idempotence of asymmetrization,
U (B, Y) = U (Ba, Y) for all Y ⊆ X and U (B) = U (Ba).

Remark 10—that follows from Remark 7—points out that every undominated maximal
of a total relation is a greatest element.

Remark 10. Let X be a set and B a total relation on X. Then U (B, Y) ⊆M(B, Y) for all Y ⊆ X
and U (B) ⊆M(B).

Example 1 shows that a greatest element of a total and quasi-transitive relation need
not be an undominated maximal. Example 2 shows that an undominated maximal of a
reflexive and quasi-transitive relation need not be a greatest element even when at least
one greatest element exists.

Example 1. Let {x, y, z} = X be a set with three distinct elements and B the total and quasi-
transitive relation on X defined by B(x) = {x, y} and B(y) = B(z) = {x, y, z}. It is readily
checked that

U (B) = {x} ⊂ {x, y} =M(B) = M(B).

Example 2. Let {x, y, z} = X be a set with three distinct elements and B the reflexive and quasi-
transitive relation on X defined by B(x) = {x, z}, B(y) = {y, z} and B(z) = {x, y, z}. It is
readily checked that

M(B) = {z} ⊂ {x, y, z} =M(B) = U (B).

3.3. Connections with Previous Definitions

The definition of unconstrained undominated maximality was first provided in [2] for
the case of at least asymmetric relations with a finite ground set. The finiteness assumption
was relaxed in [3,4]. Remark 11 clarifies that in the case of an asymmetric objective relation,
the definition of an unconstrained undominated maximal given here coincides with the one
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that can be found in the literature: attention will be focused on the definition provided
in [4].

Remark 11. Henceforth, in this Remark, assume that B is an asymmetric relation. We have already
pointed out in Remark 8 that U (B) =M(B) ∩M(GB). As the idempotence of asymmetrization
impliesM(GaB) =M(GB), we infer

U (B) =M(B) ∩M(GaB). (2)

If we identify B with the asymmetric relation denoted by � in [4], then the global trace GB is
the relation denoted in [4] by %D (the right and left traces TB and T c

Bc are denoted in [4] by %∗∗

and %∗, respectively). If we denote the asymmetric part of %D by �D, then we can equivalently
rewrite the equality in (2) as

U (�) =M(�) ∩M(�D).

Thus, there should be no doubt that the notion of an unconstrained undominated maximal of an
asymmetric relation is exactly the same as that in [4], where attention is restricted to unconstrained
undominated maximals of (at least) asymmetric relations.

3.4. Discussion

It is well known and readily verified that a constrained maximal is an unconstrained
maximal of the restriction of the objective relation to the constraint set. An analogous
statement does not hold true, in general, in the case of undominated maximals. (A similar
observation extends to the Fishburn shading as defined in [18]: see Section 5.4 in [19] for a
longer and more detailed discussion). The following Remark clarifies the previous point.

Remark 12. Let X be a set and B be a relation on X. Suppose Y ⊆ X and denote the restriction of
B to Y by R. It is readily verified that

M(B, Y) =M(R).

(If needed, see part 2 of Proposition A.1 in [20] for proof).
However—and this is clear from Examples 3 and 4 below—it is well possible that

U (B, Y) 6= U (R).

Example 3 shows that the set of undominated maximals of a relation on a constraint
set might be strictly included in the set of unconstrained undominated maximals of the re-
striction of that relation to that constraint set. Example 4 shows that the set of undominated
maximals of a relation on a constraint set might strictly include the set of unconstrained
undominated maximals of the restriction of that relation to that constraint set.

Example 3. Put X = R2 and let Y be the subset of X defined by

Y = {(3, 3), (3, 2)}.

Consider the relation B on X defined by B(x) = x +R2
++ and denote the restriction of B to Y

by R. Then
U (B, Y) = {(3, 3)} 6= {(3, 3), (3, 2)} = U (R)

and hence
U (B, Y) ⊂ U (R).

Example 4. Put X = R2 and let Y be the subset of X defined by

Y = {(3, 3), (2, 2), (4, 1)}.
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Consider the relation B on X defined by B(x) = x +R2
+ and denote the restriction of B to Y

by R. Then
U (B, Y) = {(3, 3), (4, 1)} 6= {(3, 3)} = U (R)

and hence
U (R) ⊂ U (B, Y).

Thus far, the literature has provided a definition only of an unconstrained undomi-
nated maximal and only for asymmetric relations. When generalizing that definition to
arbitrary relations and when allowing for constraint sets, several alternative definitions
are possible, in principle. Needless to say, from a purely mathematical viewpoint, there is
no compelling reason to favor one definition over another. In the personal opinion of the
author of the present paper, the conceptually most suitable definition of an undominated
maximal should make use of the traces generated by the asymmetric part of the primitive
objective relation (namely, by the primitive preference relation of a decision maker) rather
than by its many restrictions to the various constraint sets that can be admitted by the
ground set of the primitive objective relation (and that are compatible with the decision
problem faced by the decision maker).

4. Undominated Maximals of Quasi-Transitive Relations

The set of undominated maximals of a quasi-transitive relation B equals the set of
maximals of the global trace of the asymmetric part of B. By making use of this fact, we can
provide several characterizations of the set of undominated maximals of relations that are
at least quasi-transitive. Let X1 and X2 be sets, B1 a relation on X1 and B2 a relation on X2.
We say that B1 is quasi-extended by B2 if X1 = X2 and Ba

1 ⊆ Ba
2 . Put X = X1 and suppose

B1 is quasi-extended by B2: note thatM(B2, Y) ⊆M(B1, Y) for all Y ⊆ X.

Lemma 2. Let X be a set and B a quasi-transitive relation on X. Then B is quasi-extended by GBa .

Proof. Suppose (y, x) ∈ X× X and y ∈ Ba(x). Then

Ba(y) ⊂ Ba(x) (3)

in that Ba is a strict partial order. Clearly, x ∈ Bac(y). The converse of any strict partial
order is a strict partial order. Thus, Bac is a strict partial order and the last membership
implies Bac(x) ⊂ Bac(y): so

Bca(x) ⊂ Bca(y) (4)

in that conversion and asymmetrization commute with each other. The inclusions in (3)
and (4) immediately imply y ∈ GaBa(x): to see this, just note that the previous membership
is true if and only if either [Ba(y) ⊂ Ba(x) and Bca(x) ⊆ Bca(y)] or [Ba(y) ⊆ Ba(x) and
Bca(x) ⊂ Bca(y)].

Theorem 1. Let X be a set, Y a subset of X and B a relation on X.

1. U (B, Y) =M(GBa , Y) provided B is quasi-transitive.
2. U (B, Y) =M(TBa , Y) provided B is T -regular and quasi-transitive.
3. U (B, Y) =M(B, Y) provided B is quasi-coherent.

Proof. Suppose B is quasi-transitive. Lemma 2 ensures that B is quasi-extended by
GBa . Therefore, M(GBa , Y) ⊆ M(B, Y) and hence U (B, Y) = M(B, Y) ∩M(GBa , Y) =
M(GBa , Y). This proves part 1 of Theorem 1. Part 2 of Theorem 1 is a consequence of
part 1 of Theorem 1 and of the definition of T -regularity. The idempotence of asym-
metrization implies M(B, Y) = M(Ba, Y) and M(TBa , Y) = M(T a

Ba , Y); recalling that
the quasi-coherence of B is equivalent to the validity of the equality Ba = T a

Ba , part 3 of
Theorem 1 is a consequence of Proposition 1 and part 2 of Theorem 1.
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Corollary 1. Let X be a set, Y a subset of X and B a relation on X.

1. U (B, Y) =M(GB, Y) provided B is a strict partial order.
2. U (B, Y) =M(TB, Y) provided B is a T -regular strict partial order.
3. U (B, Y) =M(B, Y) provided B is a coherent order.

Proof. Every strict partial order is asymmetric and so B = Ba if B is a strict partial order.
Furthermore, every strict partial order is quasi-transitive. Finally, Remark 4 has already
pointed out that every coherent order is a quasi-coherent relation. Recalling these facts,
Corollary 1 is a consequence of Theorem 1.

Corollary 2. Let X be a set, Y a subset of X and B a relation on X.

1. U (B, Y) = M(GB, Y) provided B is a semiorder.
2. U (B, Y) = M(TB, Y) provided B is a T -regular semiorder.

Proof. Every semiorder is a strict partial order possessing a total global trace. Furthermore,
every interval order is a strict partial order possessing a total right trace. Finally, Remark 3
has already pointed out that every T -regular interval order is a (T -regular) semiorder.
Recalling these facts, Corollary 2 is a consequence of Remark 7 and parts 1 and 2 of
Corollary 1.

Remark 13. It should be clear from Remark 6 that Theorem 1 and Corollary 1 hold invariantly
true if one replacesM(GBa , Y),M(TBa , Y),M(B, Y),M(GB, Y),M(TB, Y) withM(GaBa , Y),
M(T a

Ba , Y),M(Ba, Y),M(GaB , Y),M(T a
B , Y), respectively.

By means of Theorem 1 and Corollaries 1 and 2, one can infer several statements on
(and even characterizations of) the existence of undominated maximals of quasi-transitive
relations. For instance, keeping in mind Remark 13 and recalling that traces are transitive,
one can use Theorem 4 in [6] and part 1 of Theorem 1 above to characterize the existence
of an unconstrained undominated maximal of a quasi-transitive relation. Just to provide
other examples, one can use Theorem 4 in [20] and part 1 of Theorem 1 above to charac-
terize the existence of an undominated maximal of a quasi-transitive relation on every
nonempty compact subset of its ground set, or else (note that the global and right traces of
any semiorder are total preorders), one can use Corollaries 3.1 and 3.2 in [21] and part 1 of
Corollary 2 above to characterize the existence of an unconstrained undominated maximal
of a semiorder as well as the existence of an undominated maximal of a semiorder on every
nonempty compact subset of its ground set. The range of possible applications is not limited
to the previous examples. In the rest of this paper, we do not go into the details of such
applications, and the existence of undominated maximals are considered only marginally;
rather, we focus on deriving simple descriptions of the entire set of undominated maximals
of some classes of T -regular relations that illustrate when and how undominated maximal-
ity actually selects maximality. Before providing such descriptions, this Section shows some
special consequences for the unconstrained undominated maximals of (a relation whose
asymmetric part is) an interval order and for the undominated maximals of a relation
whose asymmetric part is a semiorder.

Corollary 3. Let X be a set and B an interval order on X. Then M(T c
Bc) = M(T c

Bc) =
M(T ca

Bc ) ⊆ U (B).

Proof. The left trace of any interval order is total and hence M(T c
Bc) = M(T c

Bc) by
Remark 7; clearly,M(T c

Bc) = M(T ca
Bc ) by the idempotence of asymmetrization. To con-

clude the proof we only need to show that M(T c
Bc) ⊆ U (B). Assume that y ∈ M(T c

Bc)
and, by way of contradiction, suppose y /∈ U (B). As B is a strict partial order, the last
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negated membership is equivalent to y /∈ M(GB) by part 1 of Corollary 1. The membership
y ∈M(T c

Bc) implies
Bc(t) ⊆ Bc(y) for all t ∈ X. (5)

The negated membership y /∈ M(GB) implies the existence of x ∈ X such that either
[B(x) ⊂ B(y) and Bc(y) ⊆ Bc(x)] or [B(x) ⊆ B(y) and Bc(y) ⊂ Bc(x)]; from (5), we then
infer that B(x) ⊂ B(y) and Bc(y) = Bc(x). The last inclusion implies B(y) 6= ∅, and the
fact that B is a strict partial order implies that Bc is a strict partial order. Pick an arbitrary
z ∈ B(y); then y ∈ Bc(z) and hence Bc(y) ⊂ Bc(z) in that Bc is a strict partial order.
However, the inclusion Bc(y) ⊂ Bc(z) is in contradiction with (5).

By means of Corollary 3, one can infer several statements on (yet not characterizations
of) the existence of unconstrained undominated maximals of an interval order B. For
instance, when B is an interval order (the left trace of any interval order is a total preorder),
one can use Corollary 3.2 in [21] and Corollary 3 above to characterize the existence of an
unconstrained greatest element of T c

Bc , thus obtaining sufficient conditions for the existence
of an unconstrained undominated maximal of B. Just to provide another example, when B
is an interval order, one can use Theorem 4 in [6] and Corollary 3 above to characterize the
existence of an unconstrained maximal of T ca

Bc , thus obtaining sufficient conditions for the
existence of an unconstrained undominated maximal of B; interestingly—keeping in mind
Lemma 3 in [4]—Theorem 4 in [6] and Corollary 3 above imply Theorem 1 in [4] (if B is an
interval order and if we alternatively denote B by �, then T ca

Bc is the relation denoted by
�∗ in [4]). Corollary 4 and a discussion close this Section.

Corollary 4. Let X be a set, Y a subset of X and B a relation on X.

1. U (B, Y) = M(GBa , Y) provided Ba is a semiorder.
2. U (B, Y) = M(TBa , Y) provided Ba is a T -regular semiorder.
3. U (B, Y) = M(TBa , Y) provided B is T -regular and Ba is a semiorder.
4. M(T c

Bca) =M(T c
Bca) =M(T ca

Bca) ⊆ U (B) provided Ba is an interval order.

Proof. Recalling that asymmetrization and conversion commute with each other, this is
just a consequence of Remarks 3 and 9 and Corollaries 2 and 3.

Some authors adopt a “dual” definition of an interval order and a semiorder; see, for
instance, the definition of an interval order and a semiorder in [22]. A feature of those
“dual” definitions of an interval order and a semiorder is that their asymmetric parts are,
respectively, an interval order and a semiorder in the sense of the present paper. In a way,
Corollary 4 reformulates Corollaries 2 and 3 in terms of those “dual” definitions.

5. On T -Regularity and Quasi-Transitivity

Section 2.4 showed that quasi-coherent relations form a class of T -regular and quasi-
transitive relations. This Section presents two other classes of this kind.

5.1. Relations Induced by Cones

Let X be an RVS and C a cone in X. The relation induced by C on X is the relation B
on X defined by B(x) = x + C for all x ∈ X. If B is the relation induced by C on X, then
Ba is that induced by the cone C\ − C (in X) on X and Bc is that induced by the cone −C
(in X) on X. Proposition 2 shows that any relation induced by a cone—whether convex or
not—is a T -regular relation.

Proposition 2. Let X be an RVS, C a cone in X and B the relation induced by C on X.

1. The relation B is T -regular.
2. The relation B is T -regular and quasi-transitive (in particular, B is T -regular and transitive)

if C is convex.
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Proof. The fact that the relation induced on an RVS by a convex cone in it is a transitive—and
hence a quasi-transitive—relation is well known and its proof is omitted. We show only
the T -regularity of B: the proof does not require the convexity of C. Put C• = C\ − C.
Suppose (y, x) ∈ X × X and Ba(y) ⊆ Ba(x). As Ba(x) = x + C• and Ba(y) = y + C•, the
last inclusion is equivalent to y + C• ⊆ x + C• and hence—by virtue of the properties of a
real vector space—to the inclusion x− C• ⊆ y− C•. The observation that Bca(x) = x− C•

and Bca(y) = y− C• concludes the proof.

5.2. Representable Semiorders

Let X be a set and B a relation on X. We say that B is 〈u, v〉-representable if u and v
are real-valued functions on X satisfying the double implication y ∈ B(x)⇔ u(y) > v(x)
for all (y, x) ∈ X× X; and Scott–Suppes 〈u, v, K〉-representable if B is 〈u, v〉-representable
and there exists a real number K ≥ 0 such that v(x) = u(x)+K for all x ∈ X. The number K
is sometimes referred to as the “discriminating threshold”. Proposition 3 provides sufficient
conditions for an irreflexive and nonsatiated relation on a connected topological space to
be T -regular and quasi-transitive. For clarity, a real-valued function f on a subset of the
reals is increasing if the implication y ≥ x ⇒ f (y) ≥ f (x) holds true for all y and x in the
domain of f .

Proposition 3. Let (X, τ) be a connected topological space and B an irreflexive and nonsatiated
relation on X. The relation B is T -regular and quasi-transitive (in particular, B is a T -regular
semiorder) if B is 〈u, v〉-representable and u is a continuous function such that u = f ◦ v for some
increasing f : v[X]→ R.

Proof. Assume that B is 〈u, v〉-representable. By Remark A1, the 〈u, v〉-representable
relation B is Ferrers. Consequently, the irreflexive relation B is an interval order and hence
a quasi-transitive relation. Now, assume also that u is a continuous function such that u =
f ◦ v for some increasing f : v[X]→ R. Then the implication v(y) ≥ v(x)⇒ u(y) ≥ u(x)
holds true for all (y, x) ∈ X × X; from Lemma A1, we immediately infer the validity of
the implication y ∈ TB(x) ⇒ y ∈ T c

Bc(x) for all (y, x) ∈ X × X. Therefore, TB ⊆ T c
Bc and

hence B is T -regular in that B = Ba by the asymmetry of B (and because asymmetrization
and conversion commute with each other). By Remark 3, the T -regular interval order B is
a semiorder.

Corollary 5. Let (X, τ) be a connected topological space and B a 〈u, v〉-representable relation on
X. The relation B is T -regular and quasi-transitive (in particular, B is a nonsatiated T -regular
semiorder) if each of the following four conditions is satisfied:

C1. u(x) ≤ v(x) for all x ∈ X;
C2. u is upper unbounded;
C3. u is continuous;
C4. u = f ◦ v for some increasing function f : v[X]→ R.

Proof. A consequence of Remark A1, Lemma A2 and Proposition 3.

Corollary 6. Let (X, τ) be a connected topological space and B a Scott–Suppes 〈u, v, K〉-representable
relation on X with u continuous and upper unbounded. Then B is T -regular and quasi-transitive
(in particular, B is a nonsatiated T -regular semiorder).

Proof. A consequence of Remark A1, Corollary 5 and the very definition of Scott–Suppes
〈u, v, K〉-representability.

Example 5 shows that the right and left trace of (the asymmetric part) of a relation
that satisfies all assumptions of Corollary 6 need not coincide. Example 6 shows that in
Corollary 6, we cannot simply drop the assumption that u is upper unbounded.
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Example 5. Let X = [0,+∞) be endowed with the usual topology inherited from R and B the
relation defined by B(x) = {y : y > x + 2}. We have that

TB(1) = [1,+∞) ⊂ [0,+∞) = T c
Bc(1)

and hence that TB(1) 6= T c
Bc(1). (Clearly, TB = TBa and T c

Bc = T c
Bca = T c

Bac by the asymmetry
of B).

Example 6. Let X = (−∞, 0] be endowed with the usual topology inherited from R and B the
relation defined by B(x) = {y : y > x + 2}. We have that

T c
Bc(−1) = [−1, 0] ⊂ [−2, 0] = TB(−1)

and hence that the asymmetric relation B is not T -regular. (Clearly, TB = TBa and T c
Bc = T c

Bca =
T c

Bac by the asymmetry of B).

6. On Relations Induced by Cones

The undominated maximals of the relation induced by an open convex cone in an
RTVS are, exactly, the maximals of the relation induced by the topological closure of that
cone. The undominated maximals of the relation induced by a closed convex cone in an
RTVS are, exactly, the maximals of that relation.

Lemma 3. Let (X, τ) be an RTVS and C a convex cone in X. Denote the relation induced by C on
X by B.

1. If C is τ-open and 0 /∈ C, then B is a T -regular strict partial order and Bc is open-valued
for τ.

2. If C is τ-closed and ∅ 6= C, then B is a quasi-coherent preorder and B is closed-valued for τ.

Proof. Recall that B is T -regular and transitive (and hence quasi-transitive) by part 2 of
Proposition 2. Recalling this fact, suppose for a moment that C is τ-open and 0 /∈ C; the last
negated membership implies that B is irreflexive, while the assumption that C is τ-open
implies that Bc is open-valued for τ. (Note that Bc(v) = v− K for all v ∈ V and recall
that the topology of any RTVS is invariant under translation and under multiplication
by nonzero scalars). We have thus proved part 1 of Lemma 3 and we conclude the proof
by showing the validity of part 2 of Lemma 3, as follows. Assume that C is τ-closed and
∅ 6= C. The assumption that C is τ-closed implies that C is closed-valued for τ. (Note that
Bc(v) = v− K for all v ∈ V and recall that the topology of any RTVS is invariant under
translation and under multiplication by nonzero scalars). As C is a cone, the implication

(λ, c) ∈ R++ × C ⇒ λc ∈ C (6)

is true. Suppose k ∈ C. Every neighborhood of the zero vector of an RTVS is absorbing;
from (6), we then infer that, for every τ-neighborhood of the zero vector of X, there
exists a positive scalar λ that makes the vector λk an element of the intersection of that
τ-neighborhood with the cone C. Thus, 0 ∈ cl C and hence 0 ∈ C by the τ-closedness
of C. The last membership implies the reflexivity of B. Thus, B is a preorder. By virtue
of Lemma 1, to conclude the proof it suffices to show B is locally quasi-nonsatiated. Put
C• = C\ − C and note that Ba is the relation induced on X by the cone C•. If C• = ∅, then
Ba(x) = ∅ for all x ∈ X; if C• 6= ∅, then Ba(x) 6= ∅ for all x ∈ X. We then infer that B is
quasi-nonsatiated, and hence we are finished if we prove that B is conditionally locally
nonsatiated. To show this fact, suppose x ∈ X and Ba(x) 6= ∅. The inequality Ba(x) 6= ∅ is
equivalent to the inequality C• 6= ∅. Now, suppose k ∈ C•. As C• is a cone, the implication

(λ, c) ∈ R++ × C• ⇒ λc ∈ C• (7)
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is true. Every neighborhood of the zero vector of a real topological vector space is absorbing;
from (7), we then infer that, for every τ-neighborhood of the zero vector of X, there
exists a positive scalar λ that makes the vector λk an element of the intersection of that τ-
neighborhood with the cone C•. Thus, 0 ∈ cl C• and hence x ∈ x + cl C•. As the topology of
any RTVS is translation invariant, the previous membership is equivalent to x ∈ cl(x + C•).
We conclude that x ∈ cl Ba(x), and hence that B is conditionally locally nonsatiated.

Theorem 2. Let (X, τ) be an RTVS and C a τ-open convex cone in X. Denote the relation induced
by the cone C on X by B and denote the relation induced by the cone cl C on X by R. Then

U (B, Y) = U (R, Y) =M(R, Y) ⊆M(B, Y)

for every subset Y of X.

Proof. Let Y ⊆ X. If C = ∅, then cl C = ∅ and the proof of Theorem 2 is obvious in that B
and R are the empty relation on X. Thus, suppose C 6= ∅. In any RTVS, the topological
closure of a convex cone is a closed convex cone. Consequently, cl C is a τ-closed convex
cone in X. Clearly, cl C 6= ∅. As C is nonempty and τ-open, the membership 0 ∈ C implies
C = X in that every neighborhood of the zero vector of an RTVS is absorbing and C is a
cone in X; moreover, in this case, the proof of Theorem 2 is obvious in that B = R = X× X.
Thus, suppose 0 /∈ C. Part 1 of Lemma 3 ensures that B is a T -regular strict partial order
and Bc is open-valued for τ. Part 2 of Lemma 3 ensures that R is a quasi-coherent preorder
relation and that R is closed-valued for τ. From part 3 of Theorem 1, we then infer that

U (R, Y) =M(R, Y)

and hence that U (R, Y) =M(TR, Y) by the definition of a preorder provided in Section 2.
We have

y + C ⊆ x + C ⇒ cl(y + C) ⊆ cl(x + C)⇔ y + cl C ⊆ x + cl C (8)

and

y + cl C ⊆ x + cl C ⇒ int(y + cl C) ⊆ int(x + cl C)⇔ y + int(cl C) ⊆ x + int(cl C) (9)

for all (y, x) ∈ X× X. (The double implications in (8) and (9) are true because the topology
of any RTVS is translation invariant). In any RTVS, a nonempty open convex set coincides
with the interior of the closure of that set; consequently, int(cl C) = C. By making use of the
last equality, from (8) and (9) we infer that TB = TR and hence thatM(TB, Y) =M(TR, Y)
for every subset Y of X. As B is a strict partial order, part 2 of Corollary 1 and part 1 of
Proposition 2 imply U (B, Y) =M(TB, Y) for every subset Y of X. We are in a position to
conclude that

U (B, Y) = U (R, Y)

for every subset Y of X. Clearly, the definition of an undominated maximal entails that

U (B, Y) ⊆M(B, Y)

for every subset Y of X, and this last observation concludes the proof.

Theorem 3. Let (X, τ) be an RTVS and C a τ-closed convex cone in X. Denote the relation
induced by the cone C on X by B. Then B is a quasi-coherent transitive relation and

U (B, Y) =M(B, Y)

for every subset Y of X.
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Proof. If C = 0, then B is quasi-coherent and transitive in that B is the empty relation on
X. If C 6= 0, then B is a quasi-coherent preorder by part 2 of Lemma 3. Thus, part 3 of
Theorem 1 implies the desired result.

The assumption that C is τ-open cannot be simply dropped in Theorem 2: Examples 7
and 8 prove this claim.

Example 7. Let X = R2 be endowed with the usual topology and understood as an RTVS. Consider
the convex cone

C = ({0} ×R+) ∪ (R++ ×R)

and its closure
cl C = R+ ×R.

Let B denote the relation induced by C and R the relation induced by cl C. Putting

Y = {(0, 0), (0, 1)},

it can be checked that

U (B, Y) = {(0, 1)} ⊂ {(0, 0), (0, 1)} =M(R, Y).

Example 8. Let X = R3 be endowed with the usual topology and understood as an RTVS. Consider
the convex cone

C = (R+ ×R+ ×R++) ∪ {(t, t, 0) ∈ R3 : t ≥ 0}

and its closure
cl C = R3

+.

Let B denote the relation induced by C and R the relation induced by cl C. Putting

Y = {(0, 0, 0), (1, 0, 0)},

it can be checked that

M(R, Y) = {(1, 0, 0))} ⊂ {(0, 0, 0), (1, 0, 0)} = U (B, Y).

6.1. A Brief Remark on Existence

While indicating simple conditions for the existence of undominated maximals,
Corollary 7 shows some implications of the results shown so far in Section 6.

Corollary 7. Let (X, τ) be an RTVS and C a convex cone in X and Y be a nonempty compact
subset of X. Denote the relation induced by the cone C on X by B and the relation induced by the
cone cl C on X by R.

1. If C is τ-closed, then ∅ 6= U (B, Y) = U (R, Y) =M(R, Y) =M(B, Y).
2. If C is τ-open, then ∅ 6= U (B, Y) = U (R, Y) =M(R, Y) ⊆M(B, Y).

Proof. In any RTVS, the topological closure of a (possibly empty) convex cone is a closed
convex cone. Therefore, cl C is a τ-closed convex cone in X. The relation induced by
any convex cone in an RVS is a transitive relation. Therefore, R is transitive. As the
topology of any RTVS is translation invariant, the τ-closedness of cl C implies the closed-
valuedness of R for τ. Thus, one of the versions of Wallace theorem on the existence of
maximals (if needed, for a proof of this result essentially due to [23] see Corollary 2 in [20])
ensures that M(R, Y) 6= ∅. The τ-closedness of C implies the validity of the equality
cl C = C, and we thus observe that U (B, Y) = U (R, Y) andM(R, Y) =M(B, Y) when C
is closed. AsM(R, Y) 6= ∅, the previous observation and Theorems 2 and 3 imply the
desired conclusion.
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6.2. About Pareto Dominance

For every positive integer n, endow the n-dimensional Euclidean space with the usual
topology. Let DS

n and DWn be the relations on Rn, respectively, defined by

DWn (x) = x +Rn
+ and DS

n(x) = x +Rn
++

at all x ∈ Rn. Understanding Rn as the set of all possible “utility levels” of a group
of n agents, we call DWn the weak Pareto dominance relation and DS

n the strong Pareto
dominance relation.

Corollary 8. Let n be a positive integer. Then

U (DSn , Y) = U (DWn , Y) =M(DWn , Y) ⊆M(DSn , Y)

for every subset Y of Rn and U (DSn , Y) 6= ∅ for every nonempty compact subset Y of Rn.

Proof. A consequence of Theorem 2 and Corollary 7.

Computing the set of all undominated maximals might well be quite a complicated
exercise, even when one considers elementary relations and elementary constraint sets.
Corollary 8 shows that the set of undominated maximals of the strong and weak Pareto
dominance relation coincides with the set of undominated maximals of the weak Pareto
dominance relation. This fact greatly simplifies the computation of the entire sets of
undominated maximals of the strong and weak Pareto dominance relations, as in the
following Example.

Example 9. Put n = 2 and let Y be the subset of R2 defined by

Y = Y1 ∪Y2

with
Y1 = [0, 2]× [0, 1] ⊆ R2 and Y2 = [0, 1]× [0, 2] ⊆ R2.

It is readily noted that
M(DWn , Y) = {(1, 2), (2, 1)}

and that

M(DSn , Y) = ([0, 1]× {2}) ∪ ({1} × [1, 2]) ∪ ([1, 2]× {1}) ∪ ({2} × [0, 1]).

From Corollary 8, we immediately infer that

U (DSn , Y) = U (DWn , Y) = {(1, 2), (2, 1)}.

7. On Representable Semiorders

The undominated maximals of a 〈u, v〉-representable relation on a connected ground
set satisfying conditions C1–4 of Corollary 5 are, exactly, the (constrained) maximizers of u.

Lemma 4. Let X be a set, B a relation on X and Y ⊆ X. Assume that B is irreflexive and
〈u, v〉-representable (for clarity, u[Y] = {u(y) : y ∈ Y} and v[Y] is defined analogously).

1. M(B, Y) = {y ∈ Y : v(y) ≥ sup u[Y]}.
2. M(TB, Y) = {y ∈ Y : v(y) = sup v[Y]} if y ∈ TB(x) ⇔ v(y) ≥ v(x) for all (y, x) ∈

X× X.

Proof. Remark A1 points out that B is an interval order and hence an asymmetric relation.
By Remark 5,M(B, Y) = {y ∈ Y : x ∈ Y ⇒ x /∈ B(y)} and soM(B, Y) = {y ∈ Y : x ∈
Y ⇒ u(x) ≤ v(y)} in that B is 〈u, v〉-representable; this suffices to infer the validity of
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part 1 of Lemma 4. The right trace of any interval order is total, and henceM(TB, Y) =
M(TB, Y) = {y ∈ Y : y ∈ TB(x) for all x ∈ Y}. Thus,M(TB, Y) = {y ∈ Y : v(y) ≥ v(x) for
all x ∈ Y} when the double implication in part 2 of Lemma 4 is true; this suffices to infer
the validity of part 2 of Lemma 4.

Theorem 4. Let (X, τ) be a connected topological space, B a relation on X and Y ⊆ X. Assume
that B is 〈u, v〉-representable. Then

M(B, Y) = {y ∈ Y : v(y) ≥ sup u[Y]}

and
U (B, Y) = {y ∈ Y : u(y) = sup u[Y]}

if conditions C1–4 of Corollary 5 are satisfied.

Proof. Assume that conditions C1–4 of Corollary 5 are satisfied. The mentioned Corollary 5
ensures that B is a nonsatiated T -regular semiorder. Thus, part 1 of Lemma A1 and Lemma
4 imply M(B, Y) = {y ∈ Y : v(y) ≥ sup u[Y]} and M(TB, Y) = {y ∈ Y : u(y) =
sup u[Y]}, while part 2 of Corollary 1 implies U (B, Y) =M(TB, Y).

By making use of Example 10 presented in Section 7.2, one can check that in Theorem 4,
the assumption that condition C2 is true cannot be simply dropped.

7.1. A Brief Remark on Existence

While indicating simple conditions for the existence of undominated maximals, Corol-
lary 9 shows an implication of Theorem 4.

Corollary 9. Let (X, τ) be a connected topological space, B a 〈u, v〉-representable relation on X
and Y a nonempty τ-compact subset of X. Then

∅ 6= U (B, Y) = {y ∈ Y : u(y) = m} ⊆ M(B, Y) = {y ∈ Y : v(y) ≥ m}

with
m = max u[Y]

if conditions C1–4 of Corollary 5 are satisfied.

Proof. Clearly, U (B, Y) ⊆M(B, Y) by the very definition of a undominated maximal. By
Weierstrass theorem, m is a well-defined real number satisfying the equality m = sup u[Y]
when u is continuous. Said this, Theorem 4 readily implies the desired conclusion.

7.2. About Scott-Suppes Representability

We conclude restricting attention to relations that admit a Scott-Suppes representability.
The simplicity of the conditions involved, allow the production of many simple, yet
interesting examples of semiorders where undominated maximality effectively refines
maximality. One of these examples is Example 2 in [4], to which the reader is referred.

Corollary 10. Let (X, τ) be a connected topological space, B a relation on X and Y ⊆ X. Assume
that B is Scott–Suppes 〈u, v, K〉-representable with u continuous and upper unbounded. In addition,
suppose Y is nonempty and compact. Then

∅ 6= U (B, Y) = {y ∈ Y : u(y) = m} ⊆ {y ∈ Y : u(y) ≥ m− K} =M(B, Y)

with
m = max u[Y].
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Proof. As B is Scott–Suppes 〈u, v, K〉-representable, v(x) = u(x) + K for all x ∈ X for some
real number K ≥ 0. Thus, Corollary 9 immediately implies the desired conclusion.

The assumption that u is upper unbounded cannot be simply dropped in Corollary 10:
Example 10 proves this claim.

Example 10. Let R be endowed with the usual topology and let B be the relation on R that is
Scott–Suppes 〈u, v, K〉-represented by

u(x) =


9 if x ∈ [9,+∞)
x if x ∈ [0, 9)
0 if x ∈ (−∞, 0)

with threshold K = 8. Put Y = [5, 6] and m = 6 noting that m = max u[Y]. It can be checked that

M(B, Y) = {y ∈ Y : u(y) ≥ m− K} = [5, 6] = U (B, Y)

and hence that
U (B, Y) 6= {y ∈ Y : u(y) = m} = {6}.

8. Conclusions and Open Questions

This paper proposes a general definition of undominated maximality. Restricting
attention to classes of relations that are at least quasi-transitive, several characterizations of
the definition of an undominated maximal are provided. Many of these characterizations
express undominated maximals as maximals of some trace associated with the objective
relation. For the case of quasi-coherent relations, an equivalence is shown between maximal-
ity and undominated maximality. Moreover, focusing on some specific classes of “regular”
relations, a complete description is provided as to the structure of the set of undominated
maximals. In the author’s view, the merit of this last part of the examination is that of
providing simple tools that can be used to create examples of optimization problems whose
entire set of undominated maximals can be easily recovered and that show how and when
undominated maximality refines maximality.

There are many open questions left to be answered. For instance, it is unclear whether
it is possible to characterize an undominated maximal as a maximal of some relation
associated to the primitive objective relation when the latter is not quasi-transitive. The
existence of unconstrained undominated maximals of relations with a finite ground set
that are not necessarily quasi-transitive was examined in [2]; however, the problem of the
existence of undominated maximals when the objective relation is not quasi-transitive and
does not possess a finite ground set is uninvestigated. Moreover, this paper points out (at
the end of Section 4) that the existence of undominated maximals is not, in a sense, a real
issue in the case of a quasi-transitive relation provided one is willing to impose conditions
directly on some trace (e.g., the global trace) associated with the objective relation. However,
traces are not easy to handle, in general, and it is often unclear what these conditions directly
imposed on traces (in particular, on the global trace) actually imply in terms of conditions
on the objective relation. These implications need further study.
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Appendix A

Remark A1. Let X be a set and B a 〈u, v〉-representable relation on X. Then B is Ferrers. Further-
more, the relation B is irreflexive if and only if u(x) ≤ v(x) for all x ∈ X (equivalently, the relation
B is an interval order if and only if u(x) ≤ v(x) for all x ∈ X). Consequently, the Scott–Suppes
〈u, v, K〉-representability of B implies the irreflexivity of B.

There exists a large amount of literature on the 〈u, v〉-representability of interval
orders (in addition to some of the already cited literature see, e.g., Chapter 6 in [9] or the
more recent [24–28] as well as [29] and the many references contained in the mentioned
articles and books). A result of this literature, Theorem 4.1 in [30], provides some sufficient
conditions for the function v of a pair (u, v) of functions that 〈u, v〉-represent an interval
order to be a “utility representation” of the right trace associated to the interval order.

Lemma A1 ([30], Theorem 4.1). Let (X, τ) be a connected set and B a nonsatiated and irreflexive
relation on X. Assume that B is 〈u, v〉-representable and that u is continuous.

1. y ∈ TB(x)⇔ v(y) ≥ v(x) for all (y, x) ∈ X× X.
2. y ∈ T c

Bc(x)⇐ u(y) ≥ u(x) for all (y, x) ∈ X× X.

Proof. Remark A1 points out that B is Ferrers. Thus, the irreflexive relation B is an interval
order, and a moment’s reflection shows that part 1 of Lemma A1 is nothing but Theorem
4.1 in [30]. Furthermore, observe that the membership y ∈ T c

Bc(x) is equivalent to the
inclusion Bc(x) ⊆ Bc(y), and hence—by virtue of the 〈u, v〉-representability of B—to the
inclusion {t ∈ X : u(x) > v(t)} ⊆ {t ∈ X : u(y) > v(t)}; from this simple observation, one
immediately infers the validity of part 2 of Lemma A1.

Lemma A2 provides a sufficient (but not necessary) condition for the nonsatiation of
a 〈u, v〉-representable relation. Corollary A1, of independent interest, clarifies that such a
condition is necessary in the case of a Scott–Suppes 〈u, v, K〉-representable relation with
positive threshold K and nonempty ground set.

Lemma A2. Let X be a set and B a relation on X. Assume that B is irreflexive and 〈u, v〉-
representable. If u is upper unbounded, then B is nonsatiated.

Proof. We previously pointed out in Remark A1 that the irreflexivity of B is equivalent
to the validity of the inequality u(x) ≤ v(x) for all x ∈ X in that B is 〈u, v〉-representable.
Therefore, sup u[X] ≤ sup v[X]. By virtue of the last inequality, the upper unboundedness
of u implies the upper unboundedness of v and hence the existence, for every x ∈ X, of at
least one yx ∈ X such that v(yx) > u(x). As B is 〈u, v〉-representable, we have just shown
that the upper unboundedness of u implies the nonsatiation of B.

Corollary A1. Let X be a nonempty set and B a relation on X. Assume that B is Scott–Suppes
〈u, v, K〉-representable with K > 0. Then B is nonsatiated if and only if u is upper unbounded.

Proof. Remark A1 previously pointed out that the Scott-iSuppes 〈u, v, K〉-representability
of B implies the irreflexivity of B. The “if part” of Corollary A1 thus follows from Lemma A2.
Henceforth, assume that B is nonsatiated. If u were upper bounded, then the nonemptiness
of X would imply sup u[X] = l for some l ∈ R, and hence the existence of x ∈ X satisfying
the inequality u(x) +K > l in that K is a positive real number. However, the nonsatiation of
B and the Scott–Suppes 〈u, v, K〉-representability of B would in turn imply the existence of
y ∈ X such that u(y) > u(x) + K and this would lead to a contradiction with sup u[X] = l.
Thus, u is upper unbounded.
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