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Abstract: Respiratory viruses, such as COVID-19, are spread over time and space based on human-to-
human interactions. Human mobility plays a key role in the propagation of the virus. Different types
of sensors in smart cities are able to continuously monitor traffic-related human mobility, showing the
impact of COVID-19 on traffic volumes and patterns. In a similar way, traffic volumes measured by
smart traffic sensors provide a proxy variable to capture human mobility, which is expected to have an
impact on new COVID-19 infections. Adding traffic data from smart city sensors to machine learning
models designed to estimate upcoming COVID-19 incidence values should provide optimized results
compared to models based on COVID-19 data alone. This paper proposes a novel model to extract
spatio-temporal patterns in the spread of the COVID-19 virus for short-term predictions by organizing
COVID-19 incidence and traffic data as interrelated temporal sequences of spatial images. The model
is trained and validated with real data from the city of Madrid in Spain for 84 weeks, combining
information from 4372 traffic measuring points and 143 COVID-19 PCR test centers. The results
are compared with a baseline model designed for the extraction of spatio-temporal patterns from
COVID-19-only sequences of images, showing that using traffic information enhances the results
when forecasting a new wave of infections (MSE values are reduced by a 70% factor). The information
that traffic data has on the spread of the COVID-19 virus is also analyzed, showing that traffic data
alone is not sufficient for accurate COVID-19 forecasting.

Keywords: COVID-19 forecasting; traffic sensors in smart cities; deep learning models; traffic-enhanced
models; convolutional neural network; recurrent neural network

MSC: 68T07

1. Introduction

The COVID-19 pandemic has generated an unprecedented effort worldwide in under-
standing virus infection mechanisms and propagation patterns. Although the worst part
of the pandemic is over in many parts of the world thanks to vaccination campaigns, it is
estimated that COVID-19 still causes around 400 deaths per day in the US [1]. COVID-19
has significantly influenced each aspect of our society: health, economy, employment, and
mobility [2], but by using the data gathered during the pandemic, new models can be
designed to fight the current and future spread of similar respiratory viruses.

The propagation of the COVID-19 virus is influenced by people-to-people interactions
over time and space. At the same time, the spread of the virus has caused changes in
human mobility patterns. Human mobility volumes and patterns as well as the means
of transportation used have been influenced by the COVID-19 pandemic. Urban traffic
sensors, together with data analytics, are able to provide real-time insights into the impacts
of COVID-19 on urban governance [3]. Data-driven models can be used to characterize the
impact of the COVID-19 pandemic on public and private mobility [2]. Different regression
models have been shown to provide accurate results for traffic data estimation during
lockdown and mobility-restricted periods [2]. Internet of Things sensors and smart city
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data have played a crucial role in the COVID-19 crisis, shaping decision-making and
synchronized reactions as regards policy intervention [4].

Predictive methods for forecasting the dynamics of the virus play a major role in
saving lives and are being used by policymakers in different parts of the world to mitigate
the effects of the spreading of the virus, implement optimal policies, and optimize the use
of healthcare resources [5]. Human mobility significantly contributes to the spread of the
virus, and human mobility data have been shown to improve the accuracy of predictive
methods to estimate upcoming values for COVID-19 incidence [6].

Different types of methods and models have been proposed in previous research
studies in order to provide estimations for the spread of the COVID-19 virus, such as
epidemic [7], simulation-based [8], statistical [9], machine-learning-based [10], and hybrid
models [11]. The availability of open datasets that have been gathered during the pandemic
period provides an opportunity to design and optimize new data-driven models that will
help in mitigating not only the spread of the current COVID-19 virus but also to be better
prepared for other respiratory viruses. This paper proposes, implements, and validates a
new data-driven, machine-learning model to forecast COVID-19 infections, which makes
use of a convolutional neural network (CNN) to extract the spatial component of the
pandemic and a recurrent neural network (RNN) using long short-term memory (LSTM)
cells to find the temporal patterns of the spread of the virus. The major novelty of the model
is that it is able to extract patterns from sequences of images that combine a geolocated
time series of COVID-19 images (provided by the different healthcare centers measuring
virus incidence in each area) and geolocated temporal sequences of traffic images (from
intelligent traffic sensors in a smart city covering the same areas) as a proxy data source
to estimate the movements of the population to enhance the temporal predictions for the
spread of the virus. Real data for a period of 20 months are used to validate the proposed
model. Open data from the city of Madrid (Spain) are used. The major contributions of this
paper are as follows:

• Using a new deep learning model to combine both space and time information for
short-term COVID-19 forecasting;

• Using geolocated data on the number of new COVID-19 infections to generate
incidence maps;

• Using geolocated traffic data to generate traffic maps;
• Validation of the proposed model with real data in order to assess if spatio-temporal

patterns can be learned and used to improve the accuracy in the forecast of the
evolution of the COVID-19 pandemic for each location in a region.

This paper is divided into seven sections. Section 1 introduces and motivates the
research and objectives of the work conducted. Section 2 summarizes some previous
related work, showing the need for more studies extracting combined patterns from the
combination of spatial and temporal information (interleaving COVID-19 incidence and
traffic data together). Then, Section 3 presents the methods used in this paper to generate
sequences of images from traffic sensor data and from COVID-19 PCR reported data by
primary healthcare centers. Section 4 captures the details of the models proposed in this
paper. Section 4 also presents the baseline model that will be used to compare results
with previous research found in the literature. Section 5 describes the datasets that will be
used to train and validate the models presented in this paper, and Section 6 presents the
validation of the results. Finally, some major conclusions are presented in Section 7.

2. Related Work

COVID-19 incidence values and human mobility data, as measured by proxy vari-
ables such as traffic sensors in smart cities, have been previously combined in previous
research studies. Machine learning models have been proposed to either forecast traffic
values or COVID-19 incidence data. Regression models have been shown to accurately
anticipate traffic volumes influenced by COVID-19 data [6]. Regression Trees [12] and
Gaussian Process Regressors (GPR) [13] have shown the best performance as compared
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to other regression models for traffic volume forecasting [6]. Machine learning models
based on time-series analysis are able to achieve better COVID-19 short-term predictions
when using traffic data measured by smart city sensors [14]. Several machine learning
models have been proposed to provide answers to different COVID-19-related questions,
such as improving the diagnosis of positive cases based on reported symptoms [15], X-ray
images [16], or laboratory data [17] or estimating the probability that positive cases will
develop complications that will require hospitalization [18]. The current paper will focus
on forecasting the evolution of the COVID-19 pandemic based on the detection of similar
patterns in historic infection and traffic-based estimated mobility data. This section intro-
duces previous machine learning models that have been used for forecasting the evolution
of COVID-19 infection cases in general and based on the use of traffic data in particular.

Many of the existing data-driven models able to forecast the evolution of COVID-19
positive cases proposed in previous research studies are based on the analyses of mobility-
agnostic incidence-based time series. The authors in [19] made use of 3 different datasets,
gathered during the COVID-19 pandemic, in order to analyze several machine learning
models designed to process time series of COVID-19 incidence data to forecast upcoming
values. The authors studied 4 different models (the autoregressive integrated moving aver-
age model, the support vector machine model, the least-squares support vector machine,
and the autoregressive integrated moving average-support vector machine model) and
proposed a combined model to optimize results. The accuracy of different machine learning
models for short-term COVID-19 forecasting was compared using data from 32 European
countries in [20]. The authors concluded that ensemble models could be used to optimize
the results.

Different deep-learning-based models for time series data analysis have been used to
forecast COVID-19 incidence data. The authors in [21] used data from 12 different countries
to train several Recurrent Neural Network (RNN) architectures such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) in order to forecast new COVID-19 cases.
The authors found that LSTM-based models were able to provide the best results among
the tested models. Shahid et al. [22] used similar models to estimate deaths and recoveries
in 10 major countries showing that the bidirectional LSTM (Bi-LSTM) model was able to
generate more accurate predictions than other non-time series-oriented machine learning
models such as Support Vector Regression (SVR). Haviluddin et al. [23] analyzed different
variants of Convolutional Neural Networks (CNN) used in order to extract patterns in
temporal COVID-19 data showing their performance when using several loss functions.
The authors in [24] proposed to combine LSTM and CNN models over time series data
for COVID-19 forecasting, showing that such combined models were able to outperform
either LSTM-based or CNN-based models. The current paper will use this result in order
to propose a new way to organize the input data to better optimize the CNN part of the
combined model to further optimize results (the proposed model will be enhanced by
adding mobility data using a similar spatio-temporal format based on sequences of images
to capture the information that mobility has on the spread of the COVID-19 virus).

Although mobility-agnostic time-series-based forecasting models have shown promis-
ing results, the spread of the COVID-19 virus has both a spatial and a temporal component.
Models considering the spatial distribution of the virus to enhance time-series predic-
tions have also been developed. Huang et al. [25] used incidence data for the evolution
of the COVID-19 virus in 3 different countries (Spain, Germany, and Italy) to develop a
model based on a combined CNN and BiGRU which considered the location information
to improve predictions for the total number of cases. However, the contribution of the
spatial component was very limited since only three non-adjacent locations were used as
the input to the model. Graph Neural Networks (GNN) have also been used to extract
spatial patterns in mobility scenarios. The authors in [26] proposed a GNN to model the
interactions among individuals in order to spread the virus. A GNN is used together with
a Recurrent Neural Network to combine space and time interactions [27]. Liu et al. [28]
proposed the use of a Geographically Weighted Regression (GWR) model to include geo-
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graphic information. A different approach to using spatial data is proposed in [11]. The
authors generated COVID-19 incidence maps for Germany dividing the country into a
grid of 412 equally sized areas and added up the COVID-19 cases reported each week for
each area in order to generate an incidence image. The spatial images were used to extract
information to complement a temporal Susceptible-Undiagnosed-Infected-Removed (SUIR)
model, defining a hybrid model. The model applied a first machine learning method and a
subsequent epidemic model. The epidemic model tried to improve its prediction results by
inferring basic mobility data based on the number of COVID-19 cases in the adjacent areas
and using a configurable transition probability among areas. The model assumed a uniform
transition probability epsilon, that can be configured in the epidemic model to capture
mobility restriction policies. A related publication [29] has proposed and validated the use
of a combined CNN and LSTM deep machine learning model to extract both temporal and
spatial patterns from COVID-19 incidence images, similar to those used in [11] but applied
to data from the Madrid area in Spain. The proposed model was compared with machine
learning models found in previous studies and applied to the same dataset. By adding
the pattern extraction from COVID-19 incidence images to the model, the accuracy when
forecasting new and cumulated cases one week ahead was improved.

Human mobility has highly contributed to the spread of the COVID-19 virus.
Lau et al. [30] studied the correlation of domestic and international passenger volumes
with the temporal and spatial spread of the COVID-19 virus. The authors found a strong
linear correlation between passenger volumes in domestic flights and COVID-19 new cases
within China. A similar result is presented in [31]. Air traffic information however had
less influence when partial lockdowns were imposed on regions in which mobility was
restricted to such regions. A different source for estimating user mobility is used in [32].
The authors estimated people’s mobility based on cellular network traffic data and defined
a model to forecast the number of COVID-19 infections in the future. The model estimated
transition probabilities to define a Markov chain by analyzing user-level mobility events
between antennas from the cellular network connectivity logs. The authors showed that
mobility-aware models were able to improve the accuracy of a baseline linear regression
model that did not use mobility data as an input feature. The spread of the COVID-19
virus and its effects on traffic data have been analyzed in recent studies such as [33] where
using an Artificial Neural Network (ANN) traffic volumes were estimated in response to
COVID-19 imposed measures and [34] which showed that micro-mobility was profoundly
shaped by the COVID-19 pandemic. Traffic data, therefore, incorporate information about
the current state of the pandemic and can have an impact on its future evolution.

This paper expands the model validated in [29] to incorporate traffic images in order
to improve the accuracy when forecasting new COVID-19 infections one week ahead. Time
sequences of COVID-19 incidence images are combined with similar sequences of traffic
images in order to feed a CNN that extracts spatial patterns. The output of the CNN is
fed into an LSTM-based RNN in order to extract temporal patterns and perform one-week
ahead predictions for each point in the map. The model is validated with open data from
the Madrid city and compared with the model presented in [29] as the baseline in order to
assess the benefits of adding traffic data for COVID-19 forecasting. Related ideas have been
implemented for other chaotic time series predictions (non-linear systems that produce
non-periodic output sensitive to initial conditions [35]). The authors in [35] proposed a
combination of a former CNN model to extract deep features from chaotic time series and
a subsequent RNN to extract time patterns related to the models proposed in this paper.

A summary of the related studies categorized by the type of ML model used and the
variable that is predicted is captured in Table 1.
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Table 1. Summary of the related studies by model type and predicted variable.

References Model Types Predicted Variable

[6,12,13] Regression Trees, Gaussian processes Traffic volumes
[15–18] Shallow ML models COVID-19 diagnoses
[19,20] Shallow ML models COVID-19 incidence
[21–23] Deep ML models COVID-19 incidence

[11,25–27] Space-time models Mobility-enhanced COVID-19 estimations
[30–34] Shallow ML models Mobility estimations caused by COVID-19

3. Generating Images from Sensor Data

Smart cities capture data from different types of sensors that provide information
about the state of the city. This information can be used to optimize internal processes,
estimate the upcoming need for resources in the near future, or facilitate the decision-
making process by local authorities. This paper makes use of two COVID-19-related sensor
types in order to feed a new deep learning model to estimate the number of upcoming
COVID-19 infections. The first sensor type is related to the Polymerase Chain Reaction
(PCR) COVID-19 tests which are carried out daily in each primary care health center. Each
center is able to sense the amount of positive cases in a particular region. The second sensor
type is associated with each traffic measuring point able to sense the traffic intensity in the
particular location where it is installed. Traffic sensors provide valuable data for Intelligent
Transportation Systems (ITS), providing a real-time data source to assess the mobility in a
smart city. Both sensor types provide temporal series of space-distributed data. In order to
feed a deep learning model able to extract spatio-temporal patterns, the sensed data have
to be processed into a sequence of images.

A similar approach as the one presented in [11] will be used to generate COVID-19
incidence images. The region under study will be divided into a grid of equal-sized squares
(areas) covering it. Each primary health center performing PCR COVID-19 testing will
contribute with the measured positive cases to the square (area) in the image according to
its coordinates. An image like the one captured in Figure 1 is obtained by adding the cases
measured for the same period of time for all the primary health centers. The number of
vertical and horizontal pixels in the generated image should be adjusted to the number of
COVID-19 measuring points so that there are not many measuring points per square, or
many squares in the image without any associated measuring point. In order to optimize
the training of the machine learning models, a normalization process could be applied.
Figure 1 shows a COVID incidence image after applying a linear scaling so that the values
are normalized between 0 and 1 following the expression in (1).

in =
i− imin

imax − imin
(1)

where i represents the number of positive cases in a particular square of the image, imin
the minimum value in all the incidence images, and imax the maximum value in all the
incidence images. The same normalization values are therefore applied to all the images in
order to preserve the relative weekly changes in COVID-19 incidence values.
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Traffic images are computed from traffic intensity data provided by traffic flow sensors.
The same region in space will be divided using the same grid of squares as in the COVID-19
incidence image. The value for each square in the image will be calculated as the average
value for the traffic intensity measures provided by all traffic sensors located in that square.
A similar normalization process could be applied to the generated traffic images in order
to speed up the training of the machine learning model. Figure 2 shows an example of a
generated traffic image.
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4. Models

The new model proposed in this paper is captured in this section. The model uses a
combined traffic mobility and COVID-19 incidence data input representation from which
to extract the patterns governing the spread of the virus. The results will be compared
with a baseline model that will only use the COVID-19 incidence data in order to generate
COVID-19 incidence short-term predictions. The baseline model will be used to assess the
model gain when adding mobility information. The proposed model will be divided into
2 different versions which are described in Sections 4.1 and 4.2. Section 4.1 describes a new
model in which both COVID-19 incidence and traffic images are processed together using
a single Convolutional Neural Network (CNN) in order to extract common spatial patterns.
Section 4.2 proposes a small modification of the model in Section 4.1 in which a different
CNN is used to extract spatial patterns for each type of image and then the outputs of
both CNNs are combined in order to feed the final long short-term memory (LSTM)-based
Recurrent Neural Network (RNN). The baseline model is presented in Section 4.3. In the
baseline model, only a single type of image is fed into the CNN. The baseline model was
trained with COVID-19 data from the Community of Madrid (Spain) region in [29] and
was compared with previous methods found in related literature showing better results
for the same dataset. In the current paper, we will use the baseline model with COVID-19
images from the city of Madrid (located in the center of the Community of Madrid in Spain).
We will also use the baseline model when trained with traffic-only images to assess how
much COVID-19 information can be extracted by analyzing traffic patterns to complement
previous studies such as [32].

4.1. Combined Traffic and COVID-19 Incidence Images Model

In this first version of the proposed model, the COVID-19 incidence and the traffic
images for each instant of time are combined into a “n by n by 2” image. A sequence
of m consecutive images will be used to feed the model. Figure 3 captures a graphical
representation of the model while the implementation details using the Keras [36] library
are captured in Figure 4. A convolutional layer is first applied to each of the combined
images. The size and the number of filters in the convolutional layer can be optimized
to achieve optimal results. After the convolutional layer, a max pooling layer is used to
reduce the size of the output. The size of the max pooling layer is another parameter that
can be optimized. A final dense layer (or fully connected layer) will provide a summary of
the information in the combined image to be used as the input for the time pattern analysis
which will be performed using an LSTM-based RNN. The number of memory units in each
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LSTM cell is another parameter of the model. After the final time step in the RNN, a dense
layer will be used to generate a one-week-ahead estimation for the new expected cases for
each square in the incidence image.
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The model in Figure 3 performs a spatial pattern extraction using filters that com-
bine the traffic volumes and infected cases together. The idea is to use the information
about both traffic volumes and COVID-19 incidence for each location when processing the
spatial patterns.

The input layer in Figure 4 is divided into five input boxes, each one receives the
combined input image for one of the five previous weeks. Each image contains two colors,
one for traffic data and the other for COVID-19 data. A different CNN model is applied to
each image in Figure 4.

4.2. Independent Traffic and COVID-19 Incidence Images

The second version of the proposed model will extract the spatial patterns for COVID-
19 incidence images and traffic images independently using different CNNs. The idea is
that each CNN could be fine-tuned to capture the particularities of each type of sensor.
Figure 5 captures a graphical representation of this version of the proposed model while
Figure 6 captures its implementation in Keras [36]. The summary of the spatial patterns
extracted from each image (after the CNN model) at a particular instant of time are fed as
inputs to one LSTM cell. LSTM cells are connected to an RNN model. A final dense layer is
used as in the previous version of the model to provide a one-week-ahead estimation for
the COVID-19 expected new cases.

The input layer in Figure 6 contains 10 input boxes; the first 5 receive the COVID-19
input images for each of the five previous weeks, and the last 5 receive the equivalent traffic
images. A different CNN model is applied to each image in Figure 6.
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4.3. COVID-19 and Traffic Only Models

The model validated in [29] for COVID-19 images was adapted to the dataset in
this paper and used as a baseline model in order to assess the results of the models in
Sections 4.1 and 4.2. This baseline model was also used for learning from traffic-only
images in order to assess how much COVID-19 information can be extracted from traffic
images. Figure 7 captures the graphical representation of the model while Figure 8 shows an
implementation of the model in Keras [36]. The results from the baseline model for COVID-
19-only data were compared in [29] with previous research studies proposing different
machine learning models for COVID-19 short-term forecasting, showing promising results.
The results in the current paper can be compared with previous similar studies using the
results in [29].
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The input layer in Figure 8 contains five input boxes; each one receives a COVID-19
monochromatic input image for one of the five previous weeks. No traffic information is
used in this case. A different CNN model is applied to each image in Figure 8.

5. Datasets

Two major sources of data were used to validate the model proposed in this paper:
traffic data from traffic sensors in the city of Madrid and COVID-19 incidence data for the
same region as measured by the public health service.

Data gathered by the traffic sensors are obtained from [37]. Data for 4372 sensors
since 2013 using a sampling frequency of 15 min are available. The data are provided as
separate files per month. Traffic sensors provide information for the intensity of the traffic,
the occupation of the road, and the average speed as measured on a particular location of
the city. Some of the sensors are located in urban streets of the city of Madrid while others
measure traffic data on high-speed segments.

The dataset describing the coordinates where each traffic sensor is located can be
downloaded from [38]. Each sensor is identified using a unique identifier that links the
data in [38] with the data in [37]. The dataset in [38] also provides descriptive information
about each traffic sensor such as the city district in which the sensor is placed and some
information about the street that is sensed.

Figure 9 shows the location of the traffic sensors in [37,38]. Different colors are used
for urban and highway sensors.
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Figure 9. Location of the traffic sensors in the city of Madrid.

COVID-19 incidence data in the Madrid region are also publicly available as provided
by the regional government in [38]. New weekly COVID-19 infection data together with
cumulative values are captured. COVID-19 infections are diagnosed and recorded at
primary care health centers (each one covering a basic health area or zone). In this way,
new infections can be assigned to a particular area in the city. The dataset also contains
information about the geographic shape of each health zone. Figure 10 captures the
locations for the 143 health zones in Madrid.
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Three different consecutive periods of data have been recorded in [39]. Different
data-gathering protocols were used for each period. In the first period, which covers the
first months of the COVID-19 pandemic until July 2000, the newly detected COVID-19
infections were reported on a daily base. The second period spans from 2 July 2020 to
29 March 2022. In the second period, COVID-19 data was reported on a weekly basis.
Finally, the third period started in April 2022 when the majority of COVID-19-related
restrictions in Spain were lifted. During the first period, there were not enough PCR tests
available, and not all the cases were therefore recorded. During the third period, many
cases were not detected or diagnosed and only cases concerning people over 60 years
old were PCR tested. For those reasons, only the data in the second period were used in
this paper.
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6. Results

This section captures the results when applying the models presented in Section 4
to the traffic and COVID-19 incidence images computed from the datasets described in
Section 5 using the mechanisms presented in Section 3. The models in Section 4 contain a set
of configurable parameters that can be optimized to optimally learn spatial and temporal
patterns from the datasets described in Section 5. The first subsection is dedicated to
performing a parameter optimization. The best parameters are then used in Section 6.2 to
validate the results.

6.1. Parameter Optimization

The models in Figures 3, 5 and 7 have five major parameters that can be optimized:

• Num_filters: the number of filters used by the CNN layer. The higher the number of
filters the more spatial patterns can be extracted from the input images but more input
data could be needed to prevent overfitting;

• Filter_size: the convolution operation will be applied to a square region in the input
image. The filter_size parameter controls the size of the area used in the convolution
operation. The models in Section 4 use square filters of filter_size by filter_size that
go through the input images to extract the different spatial features. The bigger the
size of the filters the higher the impact of faraway locations in the input image but the
lower the spatial granularity;

• Pool_size: the max pooling operation performs a summary of the output of the convo-
lution operation. The size of the summary is controlled by the pool_size parameter.

• Num_neurons_input_LSTM: represents the number of neurons at the output of the
dense layer after the max pooling layer. The output neurons provide a final summary
of the spatial information for each input image at each instant of time and should be
able to capture the information required by the LSTM-based RNN at the final part of
the models to perform optimal estimations;

• LSTM_units: represents the number of memory units in the LSTM cells. The mis-
sion of the memory units is to store the temporal information to be able to perform
temporal forecasting. The number of memory units should therefore be enough to
extract temporal patterns but not bigger than required in order to minimize overfitting
training effects.

The results of the optimization process for the three models using the datasets de-
scribed in Section 5 are captured in Table 2. An Adam optimizer was used for the training of
the models using 300 epochs and a learning rate of 0.001. Those parameters were tuned to
achieve stable convergence of the training process in all cases. The increase in the validation
loss after 10 epochs was used to stop the training in order to avoid overfitting. Models in
Figure 3 (combined traffic and COVID-19 incidence images) and Figure 5 (independent
traffic and COVID-19 incidence images) show similar results for the parameters, except
for the number of filters used by the CNN layer. The major difference between models in
Figures 3 and 5 is the way in which the CNN layer is applied to the input images and the
num_filters parameter is able to capture that difference. The graphical representations for
the different Mean Squared Errors (MSE) obtained for different values for the input param-
eters when applied to optimize the model in Figure 3 are presented in Figures 11 and 12.
Figure 11 shows the combined MSE errors for the filter_size and num_neurons_input_LSTM
averaged for the rest of the parameters. Figure 12 captures the average results for num_filters
parameter for the model in Figure 3. MSE errors varied from 0.004 to 0.0055 for input
images that were normalized to the range from 0 to 1 as described in Section 3.
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Table 2. Optimal values for the parameters in the models.

Parameter/Model Figure 3 Figure 5 Figure 7

Num_filters 4 16 32
Filter_size 3 3 4
Pool_size 2 2 2

Num_neurons_input_LSTM 8 8 16
LSTM_units 16 16 32
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The results in Table 2 show that the baseline model in Figure 7 tends to require a
higher number of neurons inside the different layers of the model as compared to the model
presented in this paper. The baseline model is a simpler model that only focuses on a single
type of image and compensates for the simplicity of the model with higher values for the
parameters and operations.

6.2. Validation Results

The results for applying the models described in Section 4 to the dataset described
in Section 5 are shown using three different validation strategies: 5-fold cross-validation,
10-fold cross-validation, and removing an entire wave in the spread of the virus when
training and using it for validation. The data used for validating the models comprise data
from July 2020 to March 2022 as presented in Section 5. This period of time captures data
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from the second to the sixth wave of COVID-19 cases in the Madrid area (and in Spain in
general). The sixth wave shows a slightly different time sequence since it was dominated
by the new Omicron variant of the COVID-19 virus and therefore we used the information
in the fifth wave to validate the model. Both lockdown policies and vaccination campaigns
have had an impact on the spread of the virus [31–34]. Major lockdowns in Spain were lifted
on June 2020 and vaccination campaigns reached the majority of the population by the end
of 2021. In this paper, a period of time has been selected after major lockdowns were lifted.
In order to avoid the effect of vaccinations on the model performance, the sixth wave has
not been used for validation purposes. In future work, lockdown measures or vaccination
rates will be added to the proposed models to improve their prediction performance.

The model in Figure 7 (baseline model) is applied independently to COVID-19 in-
cidence images and to traffic intensity images. Using the baseline model for COVID-19
incidence images replicates the results presented in [29] for the particular case of the city
of Madrid in order to compare the results obtained by the models proposed in this paper
(models in Figures 3 and 5), which are also applied to the datasets described in Section 5
for the city of Madrid. The baseline model was applied to data for the entire community of
Madrid in [29] and was compared to previous models found in previous research studies
using the same dataset, showing that the spatial information provided by COVID-19 images
was able to improve the accuracy of one-week ahead forecasting. The models proposed in
this paper add traffic information to the input of the models. This section compares the
validation results for the proposed models as compared to the baseline model using the
three different validation approaches described in the previous paragraph. The baseline
model is also trained and validated using traffic-only information in order to complement
the previous study in [29] and provide a baseline about how much COVID-19-related
information can be extracted from traffic images.

Figure 13 shows the validation results for the models described in Section 4 applying
the 3 different validation strategies. The model in Figure 5 (“independent images”) shows
the best results for both 5-fold and 10-fold cross-validation while the model in Figure 3
(“combined images”) is able to outperform the model in Figure 5 when using it to predict a
new wave (the 5th wave in the dataset). Both 5-fold and 10-fold cross-validation strategies
use random information in the entire dataset for training and validation. The training
set therefore will contain information for parts of all the different waves (as well as the
validation set which will contain the remaining parts of all the COVID-19 waves). Removing
an entire wave from the dataset for training and using that information for validation is a
more challenging scenario in which the trained model has not seen the details for an entire
segment of the dataset. The MSE errors for both models in Figures 3 and 5 are higher when
used to predict the 5th wave but the model in Figure 3 is able to better generalize to this
validation scenario.

Figure 13 also captures the validation results for the baseline model (Figure 7) when
applied to COVID-19-only and traffic-only images. The validation results show that the
COVID-19-only images provide enough information to train the baseline model to get
similar results as models in Figure 3 (“combined images”) and Figure 5 (“independent
images”) when using 5-fold and 10-fold cross-validation schemes and the MSE errors for
the validation set in both cases are similar. However, the validation results when using
COVID-19-only images worsened significantly as compared to models in Figures 3 and 5
when predicting the entire fifth wave of the spread of the virus. By extracting traffic spatio-
temporal patterns and using them to complement COVID-19 images, models are able to
provide better estimates for a new wave of COVID-19 cases (models in Figures 3 and 5).
Finally, applying the baseline model to traffic only images provided worse results for all
the validation schemes. Traffic information can therefore be used to enhance COVID-19
data but do not provide good enough predictions when used alone.
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Figures 14–21 show the results for the different models when using a 10-fold cross-
validation approach for estimating both new cases one week ahead for a particular location
(latitude = 40.412585 and longitude = −3.6928138). The results in Figure 14 (for the model
in Figure 3), Figure 15 (for the model in Figure 5), and Figure 16 (for the model in Figure 7
when applied to COVID-19-only images) are visually similar in accordance with the results
presented in Figure 13 (similar MSE errors are achieved in these scenarios). The results for the
same location and using a similar 10-fold cross-validation when applying the baseline model
in Figure 7 to traffic only images are captured in Figure 17. The estimations are visually worse
than in previous cases. This result shows that traffic-only information does not have enough
information in order to provide accurate predictions for new COVID-19 infections.
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The results for the models applied to the data when the fifth wave is removed from
the training set are presented in Figures 18–21. The fifth wave took place between July
and August 2021. The data from 22 June to 7 September 2021 are used in this case for
validation. Figure 18 captures the use of the combined model for estimating the fifth wave.
The results in Figure 18 show that the model can estimate the instances of time when the
new COVID cases are going to increase or decrease but the peak levels are not properly
predicted. Figure 19 shows similar results for the case of using the model in Figure 5 for
estimating the fifth wave for the same location. Results are very similar as expected from
MSE error values in Figure 13. Figure 20 captures the results when using the baseline model
in Figure 7 with COVID-19-only images. The results in this case worsen as compared with
the models using both COVID-19 and traffic data. Traffic data can provide information
about the movement of the population in the region under study which helps with the
propagation of the COVID-19 virus and is able to improve the estimation of results one
week ahead for models in Figures 3 and 5 compared to the baseline model in Figure 7 (using
COVID-19 only images). Finally, Figure 21 captures the use of traffic-only images to try to
estimate COVID-19 upcoming cases when removing the 5th wave for training. The model
is not able to follow the COVID-19 incidence curve in this case. The fact that the fifth wave
took place during the summer holiday period significantly affected the traffic patterns and
the population movements in and out the Madrid region for the holiday period.

6.3. Model Explanation

The estimation of the importance of the input features in order to explain the achieved
prediction results is a key part of explainable AI models. Different methods have been
proposed for estimating the importance of the input features in explaining the outputs of
AI models such as [40,41]. The best-performing machine learning model presented in this
paper, as evaluated in Section 6.2, is the one combining COVID-19 and traffic information
into two-colored sequences of images (as presented in Figure 3). The Integrated Gradient
method [40] is used in this section in order to assess the importance of the input features
since the method scales better for sequences of input images than Shapley values [41].

Integrated gradients (IG) should be calculated for each input feature. In our case,
each point in the sequences of COVID-19 and traffic images was an input feature to the
forecasting model. Since far-away in-space points are expected to play a less significant
contribution to the generated results the IG has been computed for a six-by-six image
containing the information in the surrounding area of the geographical location for which
COVID-19 incidence will be estimated. An example of the results achieved in the fifth
wave for the geographical location used in Section 6.2 is captured in Figure 22 (for the
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COVID-19 images) and Figure 23 (for the traffic images). The information to be estimated
by the model is the COVID-19 incidence for a time t in the fifth wave (July 2021) for the
spatial location with indexes (3,3) in a time sequence of input images. The model uses the
previous five weeks (from t-1 to t-5) to provide an estimation for the COVID-19 incidence
at time t and location with indexes (3,3).
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Figure 22 shows that the last week COVID-19 data is the most relevant information for
the model in order to estimate the incidence values one week later. Figure 22 also captures
the surrounding areas which have a higher impact on the estimation of the result. Figure 23
performs a similar analysis for the traffic data. Again, traffic data one week before show
a higher impact on predictions. The traffic in the predicted location shows a significant
impact while geographic areas farther in space and time show a smaller contribution to the
generated one-week ahead COVID-19 estimations.

6.4. Ablation Study

In order to investigate the performance of the proposed model in Figure 3 when
assessing the importance of each internal block in the model in the contribution to the
final result, an ablation study has been performed. The combined images (COVID-19 and
traffic) model in Figure 3 is based on 5 major building blocks that extract spatial features
independently from an input image in the temporal sequence using a CNN which are then
fed into an LSTM layer. An ablation study is presented by removing the CNN processing
each sequential image at a time and comparing the MSE values with the overall model.

Table 3 captures the results for the MSE values when removing the different CNN
blocks in Figure 4. The optimal value for the MSE is when the entire model is preserved.
When removing the processing of an input instant of time in the image sequence processing,
the most important blocks are those processing images which are closer in time to the image
being forecasted. These results are aligned with the results in Figures 22 and 23 in which
information in closer images in time is able to better explain the results of the model.
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Table 3. Ablation study removing the CNN processing each instant of time in the sequence of
combined images.

Block Removed MSE Values

None 0.003242
CNN processing image at t-5 0.003245
CNN processing image at t-4 0.004514
CNN processing image at t-3 0.005416
CNN processing image at t-2 0.005744
CNN processing image at t-1 0.006095

7. Conclusions

This paper proposed and validated a new machine learning model able to combine
spatio-temporal traffic information with COVID-19 data in order to forecast new infections
one week in advance. The model is based on sequences of traffic and COVID-19 incidence
images that are generated from geolocated sensor data. The results are compared with
a baseline model based on a single type of images (either traffic or COVID-19 incidence
images). The baseline model has already been validated in previous research when based on
COVID-19 images and showed better results than non-spatial temporal machine learning
models for COVID-19 new cases estimation. Both n-fold cross-validation and leave-one-
wave-out validation approaches have been used for all cases (using combined traffic and
COVID-19 incidence images, independent images, or traffic or incidence images alone).
Leaving an entire wave of infections out from the training data and using the trained model
to estimate that wave of information provides worse estimation results in all the cases
(showing that the time series information is not fully time independent). Using traffic
data does not have a significant impact when using a 5-fold or 10-fold cross-validation
strategy. However, traffic information is able to increase the accuracy of one week ahead of
new COVID-19 case estimations when using the models to predict an entire wave of the
pandemic spread. Traffic data is therefore able to add the required information in the input
to the machine learning model to compensate for the time dependencies in the COVID-19
alone data.

The results of the paper also show that traffic-only images do not provide enough
information for accurate estimations in the evolution of the pandemic. Traffic images will be
combined with other mobility modalities in future work to better estimate human mobility
and its contribution to the spread of the virus. As a future work, models able to consider
air traffic and long traffic movements in and out of the Madrid area will be developed. The
proposed model is likely to apply to the forecasting of similar respiratory viruses. As a
future study, the model will be applied to influenza and other examples.

The major limitation of the proposed method is the availability of homogeneous data
over time and space. Several methods have been used for COVID-19 data collection as
described in the paper and traffic sensors are continually been added and removed to
monitor the traffic in Madrid. As a future study, a method to homogenize data will be
developed, which will make the model more generalizable to other zones.
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