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Abstract: Image segmentation is one of the pivotal steps in image processing due to its enormous
application potential in medical image analysis, data mining, and pattern recognition. In fact, image
segmentation is the process of splitting an image into multiple parts in order to provide detailed
information on different aspects of the image. Traditional image segmentation techniques suffer from
local minima and premature convergence issues when exploring complex search spaces. Additionally,
these techniques also take considerable runtime to find the optimal pixels as the threshold levels are
increased. Therefore, in order to overcome the computational overhead and convergence problems of
the multilevel thresholding process, a robust optimizer, namely the Levy flight and Chaos theory-
based Gravitational Search Algorithm (LCGSA), is employed to perform the segmentation of the
COVID-19 chest CT scan images. In LCGSA, exploration is carried out by Levy flight, while chaotic
maps guarantee the exploitation of the search space. Meanwhile, Kapur’s entropy method is utilized
for segmenting the image into various regions based on the pixel intensity values. To investigate
the segmentation performance of ten chaotic versions of LCGSA, firstly, several benchmark images
from the USC-SIPI database are considered for the numerical analysis. Secondly, the applicability of
LCGSA for solving real-world image processing problems is examined by using various COVID-19
chest CT scan imaging datasets from the Kaggle database. Further, an ablation study is carried
out on different chest CT scan images by considering ground truth images. Moreover, various
qualitative and quantitative metrics are used for the performance evaluation. The overall analysis of
the experimental results indicated the efficient performance of LCGSA over other peer algorithms in
terms of taking less computational time and providing optimal values for image quality metrics.

Keywords: gravitational search algorithm; levy flight; chaos theory; image segmentation; COVID-19;
medical imaging

MSC: 60; 68; 90

1. Introduction

The process of optimization involves locating the ideal solution within a challenging
search space. Numerous engineering issues in various disciplines can be categorized as
optimization challenges. For instance, computer engineers use image processing techniques
to produce the best pixel images, civil engineers design structures that are both affordable
and durable, mechanical engineers design machines that have high component life or low
production costs, and chemical engineers design the processing facility that ensures the best
production rate, while electrical engineers create communication networks that provide
the shortest time possible for communication from one node to another, and industrial
engineers create systems that minimize the overall turnaround time. Therefore, the best
solution for any problem remains a research area that has remained popular for years.
Additionally, using algorithms created in this discipline has proven to be a successful
way to solve engineering challenges, and consequently, new novel algorithms have been
introduced as a result of efforts to optimize more complicated situations.

Mathematics 2023, 11, 3913. https:/ /doi.org/10.3390/math11183913

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11183913
https://doi.org/10.3390/math11183913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0351-7705
https://orcid.org/0000-0002-7417-5095
https://doi.org/10.3390/math11183913
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183913?type=check_update&version=2

Mathematics 2023, 11, 3913

2 of 56

Meta-heuristic algorithms, which are utilized to address optimization problems, are
frequently motivated by simple notions such as physical facts, animal behavior, and evolu-
tionary patterns. In comparison to traditional optimization techniques, they can find the
optimum in a wide variety of problem types because of their simplicity, non-derivative
nature, flexibility, and avoidance of local optima. However, there is no meta-heuristic
method that gives the optimum result for every problem type [1]. Some metaheuristics
may work best for one type of problem but may be inadequate for another. The fact that
the most successful algorithm is different for each problem type allows for the creation of
new meta-heuristic algorithms or the improvement of existing ones. In the literature, it is
possible to come across studies on improved versions of optimization algorithms [2], hybrid
algorithms created by combining conventional ones [3,4], or newly created algorithms [5,6].

The heuristic algorithms can generally be examined under two basic headings: sin-
gle solution-based and population-based. A candidate solution is used to begin the sin-
gle solution-based procedure. Iterations are used to generate this solution [7]. On the
other hand, in population-based meta-heuristics, the search begins with a set of solutions
(population) and is developed through iterations [8-17]. Moreover, population-based
meta-heuristics have a full comprehension of the solution area. Furthermore, they have the
benefit of being able to avoid local optima more easily than single solution-based techniques.
Normally, population-based metaheuristics can be grouped as Swarm Intelligence [18-21],
Physics-based [22-24], Mathematics-based [5,25], Evolution-based, etc. algorithms [26-28].

It has been seen that there are few vaccinations and medicines produced to prevent
or treat COVID-19 [29-35]. Yet, usually, a new virus strand is added to the ever-growing
list of COVID-19 variants [36]. The vaccine’s efficiency for this modified virus strand is
uncertain [37]. Accurate and early diagnosis of COVID-19 cases is crucial in the early
phases of medical treatment and prevention, as infected patients who are not correctly
identified continue to disseminate the virus to healthy individuals, allowing the pandemic
to spread at an uncontrollable rate. As a result of these factors, physicians are in severe
need of an early diagnosis method for COVID-19 [38]. Reverse Transcription Polymerase
Chain Reaction (RT-PCR) is a widespread but flawed method of detecting COVID-19
infections. It has a relatively low positive rate and may fail to detect the virus. In addition,
the procedure is costly and time-consuming [39]. Medical imaging techniques (X-ray, CT)
have an accelerated detection rate and can show patients affected by the virus within hours
of infection. Therefore, medical imaging techniques are much more reliable than RT-PCR
in the early diagnosis of COVID-19 [40,41]. Automatic recognition of COVID-19 disease
utilizing chest X-ray and CT-scan images will aid in reducing the pandemic’s influence
on human society. However, these scans have many similar imaging features that make
distinguishing COVID-19 from other kinds of pneumonia difficult. Moreover, because
of the uneven forms, varying sizes, and indistinct borders between normal and infected
tissues, reliably segmenting COVID-19-infected lesions on CT scans remains a difficult
process [38]. This challenge may be overcome by employing a variety of image-processing
approaches to differentiate such characteristics in terms of similarities and differences.

Image segmentation is one of the best techniques that can be used in medical imaging
because it provides detailed information that can be vital to the success of any medical
procedure. This is especially true when it comes to MRI and CT scans. The area of concern
can be determined during the examination using image segmentation, which physicians
can use to diagnose the illness [42—44]. In fact, image segmentation is the process of
splitting an image into multiple parts in order to provide detailed information on different
aspects of the image [45]. This is performed by separating a larger image into smaller, more
manageable sections and then identifying the specific characteristics in each section. The
particular section represents a different feature or class. Image segmentation algorithms
are used in a wide range of areas, such as computer vision, machine learning, pattern
recognition, medical imaging, and many more [46—48]. They provide an invaluable tool
for simplifying complex tasks and enhancing efficiency. As such, they make it possible for
researchers and students alike to perform analysis on large amounts of data while offering
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much greater accuracy than manual rectifications would ever provide. In computer vision
and machine learning, image segmentation is a technique that extracts characteristics from
images and uses them for data analysis. Medical image segmentation is often applied to
MRI and CT scans to identify the part of the body that needs treatment or attention [49,50].
As a result, healthcare providers can focus on treating the area where there is a problem. It
can also be used as a way of organizing information since the binary images created can be
chosen and classified dynamically by sorting them based on various criteria like storage
space, robustness against noise, or speed of computation [51].

Image segmentation may be accomplished using a number of approaches, such as
edge detection, thresholding, etc. [52]. Edge detection is the process of identifying which
parts of an image are edges and which areas contain mostly noise or flat surfaces [53].
Its typical task is usually to detect edges in an image without relying on complicated
mathematical methods like morphology, which generally require multiple measurements
from different points in the image. Moreover, edge detection can be used to identify objects
in an image, find the edges of text, distinguish between foreground and background, or
extract a contour map [54].

Thresholding, on the other hand, is a set of techniques used for image segmentation
when an image is represented by pixels. Thresholding is extensively utilized because of
its simplicity and robustness [55]. This technique can be used in image enhancement or
filtering as well as geometric segmentation [56]. It usually defines different regions in
an image with a simple threshold value, allowing us to separate objects that may be too
similar. Unlike other segmentation methods, it does not require any form of complex
data processing or image manipulation beforehand. There are two types of thresholding
processes: bi-level thresholding and multi-level thresholding. These approaches refer to
how many levels the algorithm uses to divide the image into segments, rather than how it
calculates the level between segments [57].

Bi-level thresholding is similar to binary thresholding in that after a given intensity
value is assigned, all pixels below that level are set to that single intensity value. It
creates a binary image with transparent pixels, or white ones, and opaque pixels, or
black ones. This means that any pixel that has both “black” and “white” layers is either
completely black or completely white. In contrast, multilevel thresholding assigns multiple
intensities in a hierarchical manner. It is a more complex form of bi-level thresholding
where multiple levels are set throughout the image rather than just one level, as in binary
images [58-60]. Otsu’s method and Kapur’s scheme are the two well-known bi-level
thresholding techniques [61]. These approaches show consistent results while still having
more flexibility than other approaches. Both methods use a binary decision rule to decide
whether a pixel is above or below a given threshold [62]. But these two techniques differ
in their treatment of edge pixels, which makes them a perfect case study of how different
approaches can yield distinct results. Otsu’s method maximizes class variance, whereas
Kapur’s scheme maximizes histogram entropy [63]. While they may perform well in simple
structures or with low threshold numbers, as the number of thresholds increases, so does
the processing cost. In other words, computational overhead is the main problem with
traditional thresholding approaches. Heuristic algorithms, on the other hand, with their
simplicity and high convergence speed, can minimize computing costs while increasing
decision accuracy. They can be successfully applied to graph theory, optimization, computer
vision, and machine learning [10,25,64-67].

The main motivation of our research is to improve the segmentation capability of stan-
dard image segmentation techniques like Kapur’s entropy method. It has been seen that
traditional image segmentation techniques suffer from local minima and premature conver-
gence issues while exploring the complex pixel search space. Moreover, these techniques
also take considerable time to find the optimal pixels as the threshold levels are increased.
Therefore, in order to overcome the computational overhead and convergence problems of
the segmentation process, we have employed an efficient hybrid optimizer, namely LCGSA.
The LCGSA is able to provide widely expected segmentations at a faster speed and with
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less computing cost. In LCGSA, the parameters are adjusted by utilizing both Levy flight
and Chaos theory in order to improve segmentation results. The efficiency of LCGSA is
benchmarked using numerous state-of-the-art techniques. The method presented is fast,
precise, and reliable, and it can be employed in a complicated background environment.
Furthermore, we employed the LCGSA approach to chest CT scans in order to rapidly
and efficiently evaluate the severity of COVID-19 disease. It is expected that by using
this novel technique, many more people will be able to receive treatment on time, as the
patients most likely to suffer from COVID-19 pneumonia will be diagnosed before clinical
symptoms appear.
The following are the primary contributions of this paper:

e  Anovel hybrid image segmentation technique, namely LCGSA, is developed to over-
come the inadequacies of traditional segmentation approaches and provide predicted
segmented output at a faster speed and reduced processing cost.

e  To enhance segmentation results, the algorithm parameters are updated using Levy’s
flight and Chaos theory.

e  The algorithm incorporates the Levy flight to enhance exploration capabilities and
obtain a suitable balance between the exploration and exploitation stages.

e  Chaos theory prevents the algorithm from getting trapped in local optima and, hence,
increases the chances of locating feasible regions of the search space.

e  The proposed LCGSA approach is applied to two benchmark images from the USC-
SIPI database.

e  Moreover, LCGSA is also applied to three chest CT scan images in order to quickly
and efficiently assess the severity of COVID-19 disease.

e  An ablation study is carried out on COVID-19 images and infection masks to further
authenticate the optimal performance of LCGSA.

e LCGSA’s performance is evaluated and compared with 12 state-of-the-art heuristic
algorithms.

The other parts of this paper are structured as follows: Section 2 deals with the
literature survey of heuristic approaches for multilevel thresholding. Section 3 covers the
methodology related to GSA, chaotic maps, and Levy flight. Section 4 explains the LCGSA
and its application in image segmentation. Subsequently, the experimental results of the
benchmark and CT scan images are discussed in Section 5. Moreover, Section 6 presents the
ablation study in which COVID-19 and ground truth images are analyzed for segmentation
purposes. Section 7 illustrates the overall analysis of the experimental results. Lastly, the
conclusion and future scope of this study are presented in Section 8.

2. Literature Survey

In the recent period when optimization studies have increased, heuristic algorithms
have been widely employed for image segmentation method development. Segmentation
involves breaking down an image into clusters of meaningful, non-overlapping, homoge-
neous parts. Kandhway et al. [68] carried out the segmentation of standard images by using
a recently proposed heuristic technique, namely the water cycle algorithm. Meanwhile,
in order to find the optimal pixels in the complex pixel search space, they employed the
Masi and Tsallis methods. The experimental results confirmed the efficient performance of
the Masi entropy-based water cycle algorithm. Similarly, Reptile Search Optimizer (RSO),
Arithmetic Optimization Algorithm (AOA), and Aquilia Optimizer (AO) have also been
employed for the multilevel thresholding of the benchmark and medical images. The
authors utilized the K-means algorithm, Kapur’s entropy, and Otsu’s variance schemes
to find the best pixels in the problem space. The simulation results showed the optimal
performance of AOA, AO, and RSO over other competitive algorithms [69-71]. Further-
more, Su et al. [72] suggested a multilayer thresholding image segmentation approach that
was based on horizontal and vertical search processes by utilizing an updated Ant Bee
Colony (CCABC) algorithm to increase the efficacy of the traditional ABC method. They
utilized the above approach to segment COVID-19 X-ray images. The novel technique’s
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performance was compared with fifteen different algorithms over benchmark functions.
They claimed that the proposed strategy produced higher-quality results.

Chakraborty et al. [73] utilized Kapur’s entropy-based fitness function to segment
six benchmark images and three different COVID-19 chest X-ray images in a multilevel
thresholding strategy to assess the efficacy of the modified WOA (mWOAPR). Based on the
findings, they claimed that the suggested method outperforms several metaheuristics such
as WOA, Heap-Based Optimizer (HBO), Hunger Games Search (HGS), SMA, and some
variant algorithms of WOA.

CLACO, a new ant colony optimization method developed by Liu et al. [43], was
created by merging the Cauchy mutation with the greedy Levy mutation. They used
the algorithm to segment COVID-19 X-ray images, utilizing Kapur’s entropy as a fitness
function, and found that it performed better than other approaches. In addition, they stated
that CLACO outperformed other algorithms considering 30 benchmark functions in terms
of search capability and convergence speed.

Singh et al. [38] presented FFQOAK, a novel image segmentation approach built on
the K-means clustering method and the Fast Forward Quantum Optimization Algorithm
(FFQOA). They aimed to segment CT scan images of the chest in order to properly detect
infected regions. They evaluated the suggested strategy on multiple chest CT scan images
of COVID-19 patients using multiple comparative image segmentation techniques and con-
cluded that the FFQOAK technique outperformed the others based on various performance
assessment parameters.

Zhang et al. [74] designed GBSFSSSA, a new segmentation approach that combines
SSA with Gaussian barebone and stochastic fractal searches. They used it for the image
segmentation of COVID-19 CT scans and compared it with other techniques on several
benchmark problems. They stated that GBSFSSSA is a more trustworthy and efficient
approach than other methods after assessing the outcomes using three distinct metrics:
PSNR, SSIM, and FSIM.

Houssein et al. [75] presented an enhanced form of the Equilibrium Optimizer that
blends conventional operators with dimension learning hunting (I-EO). They evaluated the
technique against a set of benchmark functions. They contended that the findings validate
the suggested algorithm’s resilience when compared to other optimization approaches. In
addition, they employed I-EO for the segmentation of a set of COVID-19 CT images using
multi-level thresholding. It was stated that the suggested technique is effective for image
segmentation.

Zhao et al. [76] aimed to develop an automated method for segmenting lung CT
images by assessing and comprehending the tissue properties of the segmented regions
and investigating clinically interpretable information. The aim of this study was to help
radiologists diagnose COVID-19 disease. For this purpose, they proposed a new method
(SP-V-Net) that integrates a three-dimensional V-Net with Shape Priorities and detects
COVID-19 using interpretable characteristics obtained from segmentation findings. They
noted that the suggested method performs well and facilitates the automated identification
of COVID-19 disease on chest CT images.

Munusamy et al. [39] developed the FractalCovNet model, which employs fractal
blocks and U-Net to segment and classify chest CT scan images. They evaluated seg-
mentation results with models such as U-Net, DenseUNet, and other models, as well as
classification results from ResNet5-, Xception, and other models. They stated that, when
compared to previous techniques, the suggested model can reliably predict COVID-19
infection with high accuracy values.

Jin et al. [77] developed a self-correction model based on field adaptation (DASC-Net)
for detecting COVID-19 infection from CT images. DASC-Net is comprised of a new domain
adaption model for dealing with domain changes and a self-correcting learning mechanism
for improving segmentation outcomes. They claimed that DASC-Net outperformed other
coronavirus infection segmentation algorithms in extended trials on three COVID-19 CT
datasets.
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Nama [78] suggested a new Quasi-Reflected SMA (QRSMA) that merges the SMA
with a quasi-reflection-based learning system. QRSMA'’s performance was evaluated by
comparing it with other algorithms using various benchmarking functions, and it was
stated that the results can considerably increase QRSMA'’s convergence speed and solution
accuracy. Furthermore, the method was applied to COVID-19 X-ray images. The simulation
outcomes revealed that QRSMA is a more efficient multilevel thresholding technique than
other recent methods. In Table 1, a summary of the related works dealing with heuristic
image segmentation approaches is provided. It is evident that Kapur’s entropy scheme is
a widely used objective function for image segmentation. It is because HAs treat image
segmentation as an optimization problem in which an objective function is necessary
for checking the quality of the searcher agents. The survey also depicts that heuristic
segmentation methods have high exploitation capability and require less computational
overhead to find the best pixels from the segmented image. Moreover, USC-SIPI image
database benchmarks like Lena, Cameraman, Aeroplane, Hunter, etc. are often used by
researchers for performance evaluation. Furthermore, it can also be seen that MSE, PSNR,

FSIM, and SSIM are commonly used performance metrics for multi-level thresholding.

Table 1. Meta-heuristic methods for multilevel image thresholding.

Reference Algorithm Thresholding Performance Comparative Performance
Used Technique Algorithms Metrics
Improved
segmentation of
Abualigah et al., RSA-SSA Otsu’s variance COVID-19 images ~ AO, WOA, SSA, RSA, Fslillﬁ,s Ix)/sall\llllzls B:Iizl
2023 [71] scheme and reduction in MPA, and PSO . . !
. statistical tests
computational
overhead
PSNR, SSIM, MSE,
Fuzzy C-means, DSC (Dice
Jamazi et al., 2023 Improved brain U-Net, Z-Net, e
AO K-means . . Similarity
[69] tumor detection Adaptive K-means, .
Coefficient), and
SegNet, and so on e
Sensitivity
Improved ABC, SCA, MFO, PSO,
Su et al., 2022 CCABC Kapur entro performance with SSA, CBA, ACWOA, PSNR, SSIM, and
[72] p Py high threshold IWOA, IGWO, and FSIM
values HHO
Nama, 2022 Improved accuracy SMA, MFO, SCA,
[7é] QRSMA Shannon entropy and convergence SHO, SOA, STOA, MSE and PSNR
speed TSA, and WOA
. Increased accuracy,
Houssein et al., ! AGDE, GWO, MFO, PSNR, SSIM, and
2022 [75] I-EO Fuzzy entropy PSNR%?&VL and g0 A HHO, and TSA FSIM
Abualigah et al., AOA Kapur entro Improved quality AO, WOA, SSA, PSO, gsgriglsffr\g’sigﬁi
2021 [70] P Py of segmentation MPA, and DE P values
WOA, HBO, HGS
Chakraborty et al., Enhanced ’ T
2021 [73] mWOAPR Kapur entropy performance SMA, and variant PSNR and SSIM

algorithms of WOA
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Table 1. Cont.
Reference Algorithm Thresholding Performance Comparative Performance
Used Technique Algorithms Metrics
GWO, MFO, PSO,
ACOR (ant colony
optimization (ACO)
Improved for continuous
. performance of domains), SCA, WOA,
Liu et[zij, 2021 CLACO Kapur entropy search capability OBLGWO (boosted PSNR’FE%I\E/I ,and
i and convergence GWO), mSCA
speed (modified SCA), and
OBSCA
(opposition-based
SCA)
MSE, PSNR,
Singh et al., 2021 . . Improved MSE, GAK, PSOK, DPSOK, Jaccard Similarity
[38] FFQOAK Euclidean distance  poNp o1 jsC and ACOK Coefficient (JSC),
and MSE
Improved
performance of
medical image
Zhang et al., 2021 . PSO, SCA, BA, FA, PSNR, SSIM, and
[74] GBSFSSSA Kapur entropy segmentatl(?r}, MFO, WOA, and HHO FSIM
search capability,
and convergence
speed
Improved accuracy,
Zhao et al., 2021 Sigmoid sensitivity, and MC-V—Net Optimal
[76] SP-V-Net cross-entrop accelerated (multi-channel V-Net) segmentation
y and V-Net &
convergence
U-Net, DenseUNet,
Improved accurac Segnet, FCN,
Munusamy et al., FractalCovNet Cross-entro precision and Y ResnetUNet, ResNet5, F-measure and
2021 [39] Py P . li Xception, Inception- Dice Coefficient
eca ResNetV2, and
VGG-16
Sensitivity,
. U-Net, U2-Net, o /
Jinetal, 2021 DASC-Net Cross-entropy Improvef:l AdaptSegNet, and Specificity, ] accard,
[77] segmentation and Dice
ADVENT .
Coefficient
Kandhway et al., WCA Masi/Tsallis Convergence BAT, PSO, WDO, PSNR, MSE, FSIM,
2019 [68] entropies speed MBO, and GOA and SSIM
To enhance
segmentation and GSA, PSO, PSOGSA,  PSNR, SSIM, MSE,
Proposed method LCGSA Kapur entropy resolve CPSOGSA, SCA, SSA, FSIM, BV, STD,
computational BBO, and so on and so on
issues

3. Methodology

The LCGSA is a hybrid strategy that has powerful exploration and exploitation capa-
bilities. Actually, LCGSA is a combination of standard GSA, Levy flight distribution, and
ten chaotic maps. In this section, the mathematical foundation of the LCGSA technique is
laid out.

3.1. Gravitational Search Algorithm (GSA)

Each optimization algorithm draws inspiration from natural, physical, anthropological,
or chemical processes. There are also a lot of heuristic techniques that are inspired by nature,
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such as PSO, GWO, ACO, etc. The gravitational search algorithm (GSA) is one of the
heuristic techniques that draws inspiration from physics. In the GSA optimization process,
mass initialization is the first stage since searcher agents adopt the shape of masses. It is
based on Newton’s rule of global gravity and motion, which states that “the gravitational
force between two masses is proportional to their product and inversely proportional to
the square of the distance between them”. If we consider a system of N masses, then the
position of the i mass in the search space is given by Equation (1).

i X1,1 el e X1,i X1,n—1 X1,n ]
X211 el e X2i ce X2,n
Xi = : Do : : : (M)
XN-11 -+ -+ XN-1,i e XN-1,n
L XN1 e XN,i XNn—1 XN,

At a specific time ‘t’, we define the force, FZ.’;’. acting on mass ‘i’ from mass j’, as follows:
Fi(t) = G(t)
1]

M i(t)Ma‘(t)
B woEal GIOREAC) @)

The active and passive attractive masses in Equation (2) are Mg;(t) and Mp;(t). Actually,
M,j(t) denotes the attracting force acting on a point mass. Likewise, My;(f) indicates the
attractive force exerted by a point mass in a gravitational field. In addition, R;i(f) and
€ represent Euclidean distance and a small constant, respectively.

Having the correct balance between diversification and intensification stages is vital
in GSA. Consequently, ‘G’, a gravitational constant, assists in locating the solution space’s
feasible regions. Furthermore, it helps in creating consistency in the solutions during the
optimization operation. It is expressed by Equation (3).

cry

G(t) = Gto) el 31 ©)
where G(f) and G(t), respectively, are the initial and final values of G, and « signifies a
minor coefficient. Additionally, CI and MI represent the current iteration and the maximum
number of iterations, respectively. In addition, it is important to calculate the masses
existing in the solution area. Aside from the active and passive masses, there is also an
inertia mass that quantifies particle resistance to external forces. It is obvious that the bigger
the mass, the greater the gravitational attraction. The value of gravitational mass (M;) is
calculated as shown in Equation (6), when the values of active (m,;), passive (m,;), and
inertial (1m;;) masses are equal as indicated in Equation (4).

My =My =My =M;i=1,2,3,.,N 4)
o fit(t) —worst(t)
mi(t) = best(t) — worst(t) ©)
o m(t)
M = ©

The fitness function represented by m;(t) in Equation (5) measures the quality of the
masses in a particular environment, whereas best (t) and worst (t) are parameters of fit;(t)
that determine whether the problem is minimization or maximization one. In Equation (6),
‘m’ represents point mass candidate solutions in the search space. Likewise, Newtonian
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mechanics utilizes Equation (7) to determine the total gravitational force that will be used
to find the masses that can attract other masses toward themselves.

m

Fid(t) = Z]':Lj#i ’YyFi‘]i'(t) (7)

In Equation (7), y y is a random variable. It is also apparent that, according to Equation (2),
heavier masses will have a stronger gravitational field. Furthermore, in the whole search
domain, feasible neighborhoods will be discovered. As a consequence, the quality of the
solutions is maintained by employing the kbest (cardinality constraint) strategy, as demonstrated
in Equation (8).

de(t) = Z;n:kbest,j;éi ')’jPi?(t) (8)

When a physical system undergoes acceleration, it necessarily produces a force. Masses
in the solution space constantly exert a force on each other, which causes acceleration and
directs solutions toward feasible regions. In Equation (9), Fid(t) is the force generated by
the masses on each other.

= ©)
mii(t)
In contrast, inertial mass is represented by M;;(t) in GSA. Each point mass has a
position and velocity. Meanwhile, at the end of the iteration process, just one mass with a
significant gravitational field remains. Because of this, it is critical to calculate the velocity

v?(t) and position x?(t) in order to find an optimal solution, as shown in Equations (10)
and (11).
of (t+1) = o] (1) +af (1) (10)
(1) =xf (1) +of (t+1) (11)

3.2. Levy Flight and Chaos Theory-Based Gravitational Search Algorithm (LCGSA)

This section provides a solid groundwork for the suggested LCGSA technique by
explaining Levy flight and Chaos theory concepts. In LCGSA, Levy flight is utilized to
guarantee global exploration of the search space and maintain a proper balance between
exploration and exploitation phases. Moreover, chaotic maps help in the convergence of
candidate solutions towards the global optimum.

3.2.1. Levy Flight

Exploration is crucial for handling complicated and large-scale optimization problems,
according to a number of investigations [79,80]. In actuality, optimization and premature
convergence problems are brought on by a decrease in the diversity of candidate solutions.
Additionally, GSA encounters difficulties with exploration while attempting to solve mul-
tidimensional and challenging multimodal problems. Therefore, Levy flight distribution
has been combined with the gravitational constant of GSA to solve diversity difficulties in
HAs and ease the exploration problem of GSA [81,82]. In general, numerous studies have
shown sufficient experimental support for the use of Levy flight to address diversity issues
in HAs [81,82].

A random walking strategy called Levy flight [83] is based on the probabilistic dis-
tribution of position changes that take place during the motions of living objects. The
magnitude of the step made by the moving element varies in dynamical systems. The
Levy distribution, which is based on the Fourier transform, as indicated in Equation (12),
determines this variability.
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F(k) = exp|—alkl’|, 0< p < 2 (12)

where « is a scaling coefficient, § is the Levy index, and k is the characteristic equation
variable.
If B =2, then E(k) = exp [—akﬂ (13)

whose inverse Fourier is consistent with a Gaussian distribution.
Orif p =1, then F(k) = exp[—a|k|] (14)

which is consistent with a Cauchy distribution [84].

Brownian random walks are less effective than Levy flights [85]. Levy-like flights or
movements have been observed in a variety of animals, including insects, monkeys, and
more. In addition, there are other physical processes that, under the right circumstances,
exhibit Levy-flight behavior, such as the spreading of fluorescent molecules. The reason for
this is that Levy flights can maximize the effectiveness of resource discovery in unstable
environments [86,87].

Levy flight is used in the proposed LCGSA technique to offer stability between diver-
sification and intensification, which solves the problem of local minima. Additionally, the
infinite variation of the Levy distribution ensures that the GSA’s difficulties with sensitive
initialization and slipping into local minima will be resolved. In fact, Levy flight with big
step sizes enhances the feasible solution diversity, while with small step sizes, there is a
strong convergence of the solutions to the optimal neighborhood.

3.2.2. Chaos Theory

Most metaheuristic methods make significant use of long-period random number
sequences. The likelihood of the algorithm becoming trapped in local optima may rise
by amassing a collection of randomly produced numbers in a particular region or by
producing the same values. The numbers generated should not be identical and must have
a spread spectrum in order to address these limitations [88].

Chaos-based methods are based on a class of functions called chaotic maps. Discretized-
time systems with chaotic behavior are known as chaotic maps. It has been demonstrated
that chaotic maps generate numbers that are unpredictable and non-periodic in nature.
Values derived from chaotic visualizations are used instead of random variables, which are
frequently chosen in heuristic algorithms that incorporate them [89,90].

A chaotic sequence is represented by the total of the chaotic variables employed
during a particular iteration. The use of chaotic sequences demonstrates the versatility
of the algorithm by allowing it to break free of local minima while looking for the global
minimum. By doing so, HAs can circumvent inaccessible portions of the search space [91].
Therefore, it is anticipated that creating viable solutions for optimization issues using
metaheuristic algorithms with chaotic maps will be quicker and more efficient when the
initial random number string is determined [92-101]. Ten chaotic maps were used in this
effort to improve GSA’s performance and fix its optimization issues. The chaotic maps
employed in this work are shown in Figure 1, among the numerous described in the literature.
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Figure 1. Stochastic behavior of chaotic maps.

4. Image Segmentation Using LCGSA

In this part, a modified version of the classic GSA that is based on two very intriguing
mathematical methods, Levy flight and Chaos theory, is proposed for the image segmenta-
tion challenge. The GSA suffers from the disadvantage of skipping real solutions during
the optimization process, as well as from delayed convergence and entrapment in local
minima issues. Two methods are used to address the aforementioned problems.

The Levy flight distribution is used in the first strategy to address the standard GSA’s
diversity problem. Actually, the Levy distribution’s unlimited variance and adjustable step
size aid in solving the local optimum problem. In other words, it broadens the diversity
of the search process. Equation (15) illustrates the mathematical computation of the Levy
flight [83] using Mantegna’s technique.

Levy (u, v) = ¢’ " ;
0|7

oy (15)

where ¢’ is a multiplicative constant having a value of 0.01; # and v are normal distributions;
and B is a Levy index with a value of 1.5.

In the second strategy, ten different chaotic maps are employed to overcome slow
convergence and the local searching issues of standard GSA. The chaotic maps create huge
changes in the output when the initial conditions of the maps are modified. This helps
search agents move out of the local minima traps. Moreover, chaotic normalization aids in
the proper balance between exploration and exploitation. It is mathematically calculated as
shown in Equation (16).

(Ci(t) —a) x (D = ¢)
(b—a)

Cromm(t) = +c (16)
In Equation (18), (a, b) is the range of the chaotic map; i represents a chaotic index

value from 1 to 10 because ten chaotic maps were considered; and (c, D) is the chaotic

normalized interval where c has a value of zero, while D is calculated using Equation (17).

t
. 7
D= MI— M (Max — Min) (17)



Mathematics 2023, 11, 3913

12 of 56

Here, MI and t represent the maximum number of iterations and the current iteration,
respectively. In addition, adaptive intervals are indicated by Max and Min with values of 20
and 1 x 10710, respectively. Therefore, the chaotic normalization equations of ten chaotic
maps can be written as follows:

(Gi(t) —a) * (D

C{mrmg) _ (b - a) — C) + c(ChebysheV) (18)

so on to. ..
(Cro(t) —a)* (D —c¢)
(b—a)

According to Equation (3), the gravitational constant (G) is the primary parameter in
standard GSA that governs the gravitational field’s intensity. The right balance between
the phases of exploration and exploitation depends on this parameter. In reality, the value
of G declines exponentially throughout the preliminary iteration phase, ensuring solution
diversification. Additionally, the value of G varies gradually through the final iterations,
encouraging the adoption of potential solutions in the direction of the overall optimum.
Therefore, G is selected since it is a key governing parameter of the conventional GSA
that enables the exploration and exploitation stages to move more quickly. Levy flight
and chaotic sequences are integrated with the GSA gravitational constant in the proposed
LCGSA. Consequently, the sum of Equations (3), (15) and (16) yields the Levy—Chaotic
gravitational constant (GFC(1)).

Cio™ (1) =

+ ¢(Tent) (19)

GLC(t) = Leoy (1, 0) + Cprorn (£) + G(tg)e! 31 (20)

On the basis of the chaotic normalization of the search space, ten chaotic versions of
LCGSA are also illustrated below:

GLC1(t) = Levy (u,v) + Cruom (t) + G(to)e(*“ﬁ) (ChebyshevVersion) (21)

GLC, (1) = Levy (u,v) 4+ Cynom (t) + G(to)e(*”‘ﬁ)(CircleVersion) (22)

soonto....
GEC10(t) = Levy (u,v) + Crgrom (£) + G(to)e(_“ﬁ)(TentVersion) (23)

There is no doubt that the Levy—Chaotic Gravitational constant, G'(t), possesses
the intriguing traits of Levy randomness, chaotic stochasticity, and heuristic adaptive
learning capacity. In general, GEC(t) possesses all the necessary traits for resolving standard
GSA'’s entrapment in local minima, intensification, and diversification problems. Figure 2
shows the flowchart of LCGSA algorithm while Figure 3 displays the multilevel image
thresholding scheme, which is based on the LCGSA.
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Figure 2. Flow chart of the LCGSA algorithm.
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Figure 3. LCGSA-based image segmentation process.

5. Experimental Results and Discussion

The simulation analysis of image segmentation based on ten chaotic versions of
LCGSA, that is, LCGSA1 to LCGSA10, has been benchmarked using two standard images
and three COVID-19 chest CT scan images. The benchmark images, namely Airport and
Boat, were taken from the USC-SIPI database, while COVID-19 chest images, namely CT1,
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CT2, and CT3, were acquired from the Kaggle database. The images have a symmetrical
pixel distribution, that is, a pixel range of 0-255. The histogram representation of the
standard test images and CT scan images is shown in Figures 4-8, respectively. Both
traditional and robust HAs were employed for the empirical analysis, such as PSO, GSA,
PSOGSA, SCA, SSA, DE, BBO, CPSOGSA, MFO, ABC, GWO, and SMA. The initial values
of the competitive algorithms were acquired from the base papers of the algorithms.

Airport
0.025
0.02
>
2 oots
]
=
S
- 001
0.005
)
o 50 100 150 200 250 300
Gray level

Figure 4. (a) Grayscale background of the Airport image. (b) Histogram of the Airport image.

Boat
0.025
0.02
>
2 oo1s
@
=
g
- oot
0.005
o
o 50 100 150 200 250 300
Gray level

Figure 5. (a) Grayscale background of the Boat image. (b) Histogram of the Boat image.

cT1
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o 50 100 150 200 250 300
Gray level

(b)

Figure 6. (a) Grayscale background of the CT1 image. (b) Histogram of the CT1 image.
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Figure 7. (a) Grayscale background of the CT2 image. (b) Histogram of the CT2 image.

CT3
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Figure 8. (a) Grayscale background of the CT3 image. (b) Histogram of the CT3 image.

The simulation’s results were documented with a constant population size of 20 and
a maximum iteration count of 300. Ten trials of the algorithms were completed before
recording the experimental data. Additionally, the participating HAs” optimization process
comes to an end when they produce identical results for 10% of the total iterations. The
source codes will be available online at https://github.com/SAJADAHMADI1 (accessed
on 5 June 2023). Moreover, the simulation analysis was performed using the 3.40 GHz i7
Intel core CPU and the R2013a MATLAB version.

The quality of the output segmented image was evaluated using a variety of per-
formance measures, including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), and Feature Similarity Index Measure (FSIM). In reality, PSNR
examines the segmented image’s dependability by taking into account the threshold values
in subsequent iterations. Equation (18) illustrates how PSNR is expressed mathematically.

255°
PSNR = 10 l0g19 3 re (24)
1 R o . .
MSE = =), Yoy (1) =0 (i,4))? (25)

The matrix’s rows and columns are represented by R and C, respectively, in Equation (25). I
and O stand for the standard input image and segmented output image, respectively. SSIM,
another image quality metric, measures how uniform and similar the segmented image
is to the input standard image. Given that it indicates the presence of high-quality pixels
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in the segmented image, the value of SSIM should be high. Equation (26) illustrates how
SSIM is expressed mathematically.

(2pxpty + €1) (200 + 2)
(B+m+cr) (F+od+a)

SSIM (x, y) = (26)

Such that yiy and j, are the mean intensities of input and segmented images; 02 and 05
represents standard deviation; oyy is the covariance; and <cy, c;> are the small constants.

FSIM is another image assessment metric that deals with examining the quality of
the segmented image by assessing the pixels in the local neighborhood of the image.
Meanwhile, FSIM inspects the values of Phase Congruency (PC) and Gradient Magnitude
(GM), which are essential for locating the best pixel values to determine the accuracy of the
output image. The mathematical formulation of FSIM is shown in Equation (27).

~ Yreq SL(x)PCp(x)
FSIM (x) = EZXEQ PCm(x)

Whereas the domain of the pixel search space is represented by (), and Sy (x) is the
similitude of the image. If PC; and PC, are the symmetrical phases of two mathematical
functions, then PC is given by Equation (28).

(27)

PC,, (x) = max (PC; (x), PCa(x)) (28)

Likewise, for the similitude content of the segmented image, Sy (x) is formulated in
Equation (29).

S1.(x) = [Spc(x)]*[Sc(x)]P (29)

Such that 2PCy (x)PCa(x) + T
X x)+
Spc(x)= — o2 ! (30)
PCf (x) PC5 (x) + Th

_ 261(x)Ga(x) + To
Gi (x) G (x)+ T
where S and Spc are the similitude of Gradient and Phase Congruency while constants are

denoted by &, 8, T1, and T». As the image segmentation task is a maximization problem, the
higher value of FSIM shows the capability of locating the best pixels in the solution space.

Sc(x)

(31)

5.1. Experimental Analysis of Benchmark Images

The LCGSA is a hybrid heuristic technique that is used to find the optimal solution in
a non-linear search space. It is clear that LCGSA has robust exploration and exploitation
operators to handle complex problem spaces. Therefore, in order to authenticate the
problem-solving capability of LCGSA, it was applied to two benchmark images, namely
the Airport and the Boat. The LCGSA will be mainly tested and benchmarked for its
capability of finding efficient values for the image thresholds and providing optimal values
for various image quality assessment measures like PSNR, SSIM, and FSIM. Moreover, it
will be interesting to see how LCGSA will deal with the computational overhead problem
as the values of the image thresholds increase.

5.1.1. Simulation Results of the Airport Image

The simulation outcomes of competitive algorithms for the Airport image are pre-
sented in Tables 2 and 3. It can be clearly seen that all ten versions of LCGSA have better
values for the image thresholds at k =2, 4, 6, 8, and 10. The minimum values of standard
deviation (STD) and MSE for LCGSA show the stability of the optimization process and
the high quality of the pixels. It can also be observed that LCGSA has acquired large
values for the mean as the threshold levels are increased. It indicates that LCGSA was
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successful in obtaining better pixels in successive generations. Moreover, LCGSA versions,
particularly LCGSA2, LCGSA4, and LCGSAS, have large values for PSNR, FSIM, and SSIM,
which shows superior quality of the output image and efficient segmentation capability.
Furthermore, LCGSA takes less runtime (in seconds) to find the best pixels in the search
space. It can also be seen that SCA, BBO, and ABC provide appreciable values for the image
quality metrics. In contrast, MFO, ABC, SSA, SMA, and GWO provide sub-optimal results for
the statistical measures and image quality metrics. As far as best values for Kapur’s objective
function are concerned, it can be seen that SCA, DE, and BBO provide better values, while
GSA, PSOGSA, PSO, CPSOGSA, MFO, ABC, SSA, SMA, and GWO provide smaller values,
indicating optimization problems while handling uneven optimization landscapes.

Table 2. Simulation results for the Airport image using classical, hybrid, and recent HAs.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM ‘Ziite ﬁgﬂa
2 121,136 15.94 078 489826  11.23 023 0.75 1676  4.8409
4 71,89,118,158 17.22 009 171812 1578 0.60 0.88 2031 133771
GSA 6 197,206,147, 221, 176, 205 17.82 032 644158  10.04 0.11 0.67 2875 117766
8 160,163,125, 156, 180, 194, 141, 160 27.89 052 509327  11.06 0.22 0.73 3336 191112
10 }gg’ ;17(7) 187,204,133, 191, 174, 183, 35.39 025 510371  11.05 0.22 0.74 3703 19.6661
2 7,21 0.44 041 510120  11.05 0.20 043 8.41 4.6734
4 5/17,26,29 10.50 065 417327  11.92 0.25 043 1545  11.6513
PSO 6 22,36,54,81,59,76 2332 0.92 933.84 18.42 071 0.75 23.85 14316
8 16,22,25,46,72,76,77, 114 27.54 1.11 47948 2132 0.89 091 2881 155366
10 8,18,29,32,33,77,103, 90, 69, 93 29.16 1.18 684.62 19.77 0.82 0.85 3380  17.4482
2 12,15 8.35 051 588114 1043 0.15 0.42 9.75 4.1786
4 17,39,70,74 037 047 130379 1697 0.66 0.73 1656  10.9052
PSOGSA 6  14,23,31,34, 36, 51 22.72 089 223151  14.64 0.40 0.55 2475  9.0639
8 1,6,21,33,64,69,93,106 19.72 0.41 59323  20.39 0.85 0.87 31.88 123254
10 1,51, 55,68,79,85,97,107, 128, 134 30.09 0.45 502.64 2111 0.84 0.90 3456  15.9034
2 6,22 8.15 039 497821  11.16 021 043 1065  4.5809
4 7,7,34,52 13.75 053 218365  14.73 0.42 057 1676  11.5291
CPSOGSA 6  25,32,36, 60,102, 111 16.03 0.24 55538 20.68 0.88 0.89 2632 9.1880
8 7,10,32, 36,57, 60, 61, 63 17.89 097 166374 1591 0.52 0.64 3069  14.0344
10 2,14,22,29,31, 48, 64, 101, 109, 114 3147 043 41451 21.95 0.90 0.90 3437 159678
118,79 8.12 097 237167 1438 052 0.86 1693 60754
4 146,94, 44,220 16.49 0.72 654.73 19.97 0.87 0.92 2055  11.2251
BBO 6 63,194,59,33,215, 146 18.29 0.82 96947 1826 0.78 0.83 2516 159688
8  82,24,255,105,198, 198, 134, 37 19.81 0.89 49516  21.18 0.90 0.94 3262 219184
10 185,203, 92,230, 123,238,120,5,77,93  39.99 111 169875 1582 0.63 0.89 4487 23952
250, 106 12.51 185 389923  12.22 0.32 0.80 1692 63959
4 227,59,235,150 20.81 160  1907.83 1532 0.60 0.81 2351 11.1228
DE 6 43,141,88, 41,167,218 26.01 2.18 568.21 20.58 0.89 0.93 2998 159738
8 225,196,194, 140, 61, 250, 157, 17 30.10 242 124134 17.19 0.75 0.87 36.64 222046
10 117,40, 188,219, 137,39, 41,21, 74,7 34.98 2.68 369.53 2245 0.93 0.95 4405 237699
7,143 9.97 163 223937 1462 0.55 0.87 1725 56035
4 79,132,151, 3 18.86 179 221869  14.66 0.56 0.89 2443 143033
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Table 2. Cont.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM ‘Zjite %“m“e
SCA 6 108, 157,37,240,8, 59 2867 256 47157 2139 0.91 0.94 3114 138524
8 24,8, 133, 166, 248, 40, 118, 174 3047 281 114566  17.54 0.76 0.82 3938 228713
10 178,26,50, 2, 70, 84, 188, 37, 66, 194 4033 326  539.14 2081 0.84 0.85 4754 216741
2 25,1 997 397 462125 1148 0.23 0.43 1259 51492
4 97,22,131,9 1741 195 158580  16.12 0.71 0.87 1827 141512
SSA 6 206,215,255, 1,253, 255 1452 319 761313 931 0.03 0.49 2564 13.2537
8 255,54, 255, 255, 254, 205, 255, 2 2962 384 228554 1454 0.46 0.66 2924 243640
10 ;gg ;gg 255,255,133, 115, 228, 255, 3168 963 442680 1166 0.28 0.77 3427 21.0928
2 2551 1362 146 798100 9.1 0.01 0.40 1572 39914
4 255,240,1,1 1071 591  7981.00 9.1 0.01 0.40 1974 63647
MFO 6 1,2,255,1,255,1 1996 358 798100 9.1 0.01 0.40 2588 85121
8  254,1,2, 1,255,254, 255, 1 3081 281 781801  9.19 0.02 0.41 2626 108618
10 254,255,255, 141, 1,255, 225,255, 1,254 3123 567  6075.18 1029 0.15 0.70 3600  13.6318
2 213,229 1273 194 787028 917 0.01 0.49 1432 102643
4 153,192,193, 214 1738 209 664710  9.90 0.09 0.65 2028 174111
ABC 6 196,249, 152, 215, 243, 175 2197 224 660516  9.93 0.10 0.65 2735  24.8882
8 183,180,201, 184, 211, 220, 232, 164 2678 233 695569 970 0.07 0.60 3171 30.8205
10 gg 255, 242,226,235, 204, 225,187, 2734 286 737175 945 0.04 0.54 3258 37.8003
2 33,40 1323 126 302212 1332 031 0.44 1126 3.0042
4 75,83,82,2 1896 183 252406  14.10 0.48 0.78 1484 55414
GWO 6 3,40,0,0,7 650 493 703306  9.65 0.07 0.42 1408 80195
8 0,32,91,250,01 1206 725 375731 027 0.44 0.43 1455  9.9017
10 0,1,2,0,0,0,1,5,3,0 080 458 798100 9.1 0.01 0.40 816 129664
2 144,140 473 233 637353  10.08 0.11 0.69 666 35162
4 200,201,180, 190 490 237 769286  9.26 0.02 0.50 680  5.8604
SMA 1,1,1,2,5 10 459 244 798100 9.1 0.01 0.40 677 84221
8 197,191,189, 188, 190, 178, 197, 197 479 232 762113 931 0.02 051 683 107873
10 4,56,3,44,8946 477 234 749803 938 0.04 0.42 683 134375
Table 3. Simulation results for the Airport image using ten LCGSA versions.
Algorithm k  Optimal Thresholds Mean STD ~ MSE  PSNR  SSIM  FSIM oot un
2 156,242 1270 013 682227 979 0.08 0.64 1769 2% 10
4 92,160,239,28 2403 123 123668 1720 0.78 0.89 2616  2x10°6
LCGSAT 6 156,240, 32, 161, 244, 26 3140 170 286317 1356 0.49 0.65 3480  2x 106
8 192,39, 235,26,91, 160, 242, 61 3698 185 44117 2168 0.90 0.92 8317 3x10°6
10 ;ﬁg: 20.18,86, 138, 18L 248,101 4559 307 78181 199 0.84 0.93 5246 1x 106
2 92,163 1749 057 310040 1321 0.42 0.86 1760 1x10°°
4 154,243,20,153 2486 132 399581 1211 0.39 0.66 2616 2 x 106
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Table 3. Cont.
Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSIM  Dest Run
Value Time
LCGSA2 6 95,161,243, 37, 206, 55 3041 146 45994 2150 0.91 0.93 3226  2x10°6
8 143,232, 28, 148, 245, 30, 213, 32 3765 195 254277 1407 0.56 0.70 4146 3 x10°6
10 ?5'1159' 235,29,85,142,188,241,49, 457 247 3737 2047 0.93 0.95 4966  1x10°°
2 130,227 1223 021 557781  10.66 0.18 0.73 1767 2 x 10
4 142,232,160, 69 1872 049 209973  14.90 0.57 0.87 238  1x10°6
LCGSA3 6  161,77,140,199,97, 186 2321 123 208379  14.94 0.55 0.88 281  2x10°6
8 120,175,112,192, 142,86, 164,79 2849 176 214092  14.82 0.54 0.88 3872  3x10°6
10 128/162,207,91,158,88,135 168, 4179 596 261809 1395 0.47 0.86 427 1x10°6
208, 114
2 92,160 1752 050 307778 1324 0.42 0.86 1770 2x10°6
4 204,27,95,160 238 141 124681 1717 0.78 0.89 2548  2x10°6
LCGSA4 6 148,245,32, 156,239, 30 3122 229 277950  13.69 0.52 0.68 3520  2x 106
8 97,161,246,28, 92, 162, 240, 55 4044 300 50516  21.09 0.89 0.93 28  3x10°6
10 };Z 28,156,245,27,201,32,234,32,  y331 370 28898 1361 0.49 0.65 5230  1x 106
2 93,160 1750 070 312886  13.17 041 0.86 1769 2 x 10
4 91,160,238, 32 2380 163 107338  17.82 0.81 0.90 2616  2x10°6
LCGSA5 6 71,100,132, 165, 199, 242 2943 113 169659 1583 0.61 0.90 3537  3x10°6
8 181,18,97, 162,237, 29, 155, 244 3591 220  1163.83 1747 0.79 0.89 317 1x10°6
10 }gg 246,23,158,244,63,199,26,92, 4740 439 61847 2021 0.88 0.93 5174 2x10°6
2 94,160 1741 092 315014  13.14 0.41 0.85 1769 2x10°6
4 97,161,249, 25 2399 118 141796 1616 0.75 0.89 2548  2x10°6
LCGSA6 6 155,248, 16,223, 27,157 3129 235 330306 1294 0.45 0.65 231 1x10°6
8 90,145, 189, 245, 36, 154, 241, 34 4011 273 76818 1927 0.86 0.92 4158  3x10°6
10 gé';éo' 245,39,222,36,150, 238,40, 4515 320 68361  19.78 0.87 0.91 5210  2x10°6
2 152,250 1282 060 669582  9.87 0.09 0.65 1769 2 x 10
4 227,30,237,17 2021 060 391873 1219 0.27 0.46 2615  1x10°6
LCGSA7 6  93,160,242,28, 100, 163 3407 248 112244 1742 0.79 0.89 3537  2x10°6
8 88,162,250,32,205,17, 151,238 3614 207 96427  18.28 0.83 091 4316  3x10°6
10 ?2'7159' 236,22,91, 147,186,242, 44, 4959 504 53464 2085 0.89 0.93 5237 3x10°6
2 2319 1354 032 656959  9.95 0.10 0.44 1770 2x10-6
4 90,160,240, 27 2425 073 123674  17.20 0.78 0.89 2548  1x10°6
LCGSAS 6 91,162,237, 19, 154, 241 2974 176 166313 1592 0.70 0.89 3537  2x10°6
8 84,132, 176,247, 6, 154, 241, 57 3999 291 82307 1897 0.80 0.92 £51  3x10°6
10 %2(1) 8,101,160, 247,22, 154, 240,31, yo50 339 114889 1752 0.79 0.88 5083  1x10°°
2 95,159 1758 053 318970  13.09 0.40 0.85 1770 2 x 10
4 95,160,246, 25 2424 083 142686 1658 0.75 0.89 2616  2x10°6
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Table 3. Cont.

Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSIM  Dest Run
Value Time
LCGSA9 6 93,162,249, 24, 225, 30 3071 146 111057 1767 0.80 0.89 3538  2x10°6
8 210,24, 242, 31,157, 246, 18, 151 3772 306 291751 1348 0.50 0.67 317 2x10°6
10 }SS 5;3' 18,86,142,190,246,26,  4o9¢ 311 114498  17.54 0.80 091 5249  1x10°6
2 98,163 1750 064 331515  12.92 0.39 0.84 17.69 5.6194
4 237,15,239,22 2017 082 497772 1116 021 0.43 2548 12.0170
LCGSAI0 6  93,149,192,245,29, 154 3411 181 111971 1763 0.80 0.91 3537 14.0934
8 158, 241,33, 89, 142, 184, 243, 39 3962 374 65114  19.99 0.87 0.92 053 207450
10 193,243,22,150,242,34,205,9,175, 4440 258 261551 1395 0.53 0.67 5092 23.7940

31

The segmented images and histogram curves of LCGSA are shown in Figure 9. It is clear
that as the number of thresholds increases, the clarity and contrast of the output segmented
image also increase. Further, the convergence curves and box plot graphs are depicted
in Figures 10 and 11, respectively. The convergence curves show that LCGSA takes less
computational time to find the best pixels in the problem space. Moreover, LCGSA exhibits
appreciable exploitation capability as its convergence speed is better than all other peer
algorithms. Besides, the convergence curves of GWO and SMA are at the bottom, indicating
lower values for the objective function and the presence of outliers in the segmentation
output. It also indicates that both SMA and GWO have serious issues while handling
the complex pixel problem spaces and are unable to locate the optimal pixels during the
optimization process. Likewise, SSA, MFO, ABC, PSOGSA, GWO, and SMA have small
values for Kapur’s fitness function, indicating issues in the optimization capability. The box
plots also validated the optimal performance of LCGSA, as it has the highest symmetrical
fitness values in the range of 50 for the image pixels. It is worthwhile to mention that GWO,
SMA, SSA, GSA, MFO, PSOGSA, ABC, PSO, and CPSOGSA give sub-optimal values for the
average and inter-quartile range, highlighting difficulties in the exploration.

5.1.2. Simulation Results of the Boat Image

The simulation outcomes for the Boat image are recorded in Tables 4 and 5. It can
be observed that LCGSA versions show smaller values for standard deviation and mean
square error, implying coherence in the image pixel values. It can also be noted that
standard GSA has minimum values for image quality metrics like PSNR, SSIM, and FSIM,
indicating difficulties in handling non-linear problem spaces. Further, GSA has <15.39,
21.06, 26.35, 32.39, 39.77> values for Kapur’s objective function, which are nowhere near the
values provided by LCGSA, such as LCGSA1 <18.10, 24.24, 35.75, 44.86, 52.55>. Moreover,
when we closely look at the mean values of the LCGSA and peer algorithms, it is clear that
the LCGSA has better mean values, and they are also close to Kapur’s objective function
value. It shows that LCGSA has lower presence of outliers and noise in the segmented
output. Furthermore, LCGSA takes less runtime to locate the optimal pixels, while ABC,
BBO, DE, GSA, and SSA take more computational time, indicating optimization issues.
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Figure 9. LCGSA segmented images, colormap images, and histogram curves for the Airport

benchmark image at k = 2, 4, 6, 8, and 10.
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Figure 11. Box plots for the Airport image.

Table 4. Simulation results for the Boat image using classical, hybrid, and recent HAs.

Algorithm k  Optimal Thresholds Mean STD ~ MSE  PSNR  SSIM  FSIM o AU
2 53,65 1394 024 624047 1017 036 057 1539 53828
4 146,173,136, 154 1725 019 374277 1239 046 064 2106  8.6466

GSA 6 79,150,111, 160, 149, 84 2421 029 82141 1898 073 083 2635 117598
§ 153,101, 181,95, 113, 146,92, 75 2603 009 59021 2042 077 087 3239 151586
10 106 Z S M6 2108 509 047 sese2 1875 073 079 3977 174477
2 37,45 1292 044 920382 849 0.26 052 1487 42307
4 24,34,66,62 1881 086 598536 1035 04l 057 1946 73875

PSO 6 7,22,26,62,65,52 2426 077 611030 1027 040 056 2671 100751
§ 6,6,11,28,44,44,55,73 2582 099 507680 1107 045 059 3052 124567
10 8,13, 19, 23,28, 34, 46, 40, 49, 69 3244 080 569905 1057 043 058 3759 147040
2 11 962 184 1874449 540 0 035 1133 42504
4 4,11,13,38 1485 045 1059233 7.8 0.24 050 1758  6.6844
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Table 4. Cont.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM ‘Zjite %“m“e
PSOGSA 6  28,44,45, 60,71, 80 17.59 047 438580 1171 0.46 0.60 2438 91286
8  21,31,37,40, 45,109, 118, 138 30.58 0.64 74222 1942 0.80 0.80 3397 115332
10 3,47,50, 66,77, 87,133,134, 154, 156 3223 065 53314  20.86 0.81 0.86 3803 144190

3,56 7.42 056 767936 927 0.32 0.56 1358  3.8311

4 14,15,27,35 18.79 055 1095140  7.73 0.22 0.48 1808 64918

CPSOGSA 6  16,22,71,94,97,97 17.21 072 279397  13.66 0.58 0.67 2356 95377
8  5,10,13,14,17,31,71,73 19.70 123 523526  10.94 0.46 0.60 31.95  11.4005
10 1,17,17,17,35,41, 87,92, 94, 109 3313 120 179939 1557 0.66 0.72 3688  14.2903

95,169 12.23 046 235958  14.40 0.59 0.75 1794  7.0360

4 188,232,140, 152 2141 062 453757 1156 0.41 0.62 2363  6.1897

BBO 6 242,40,199, 115,228,194 25.32 051 143341 1656 0.70 0.79 2699  8.8856
8 40, 68,190,197, 192, 234, 115, 185 29.89 055 110177  17.70 0.74 0.82 3930 201073

10 42,1,204,191, 41,111, 58,9, 11, 243 28.37 126 135584  16.80 0.74 0.81 4170 255141

2 89,141 16.53 056 130454 1697 0.66 0.77 1755 65577

4 175,153,191, 111 1845 269  1489.05 1640 0.66 0.80 2424 65118

DE 236, 156, 127, 252, 183, 160 2325 299 218101 1474 0.60 0.73 3263  9.0063
8 16,144,113, 12, 240, 19, 190, 250 33.26 198 94548 18.37 0.77 0.80 3946 205685
10 56,230, 60, 69, 65, 161,226, 87,189, 14  43.40 141 187132 1540 0.67 0.77 4673 252107

2 85,152 12.76 142 190169 1533 0.60 0.76 1780 55593

4 243,16,34,103 22.46 186 237721 1437 0.64 071 2474  9.8259
SCA 64,104, 216, 9, 163, 205 29.26 237 120549 1731 0.74 0.83 3231 134399
8 123,194,255, 4, 25, 60, 36, 130 33.50 3.05 761.59 19.31 0.79 0.83 4173 170773
10 61,73,107,227, 33, 61,225, 3, 14, 115 41.10 365 141737 1661 071 0.77 4741 194771

2 75,225 9.58 228 527521 1090 0.42 0.62 1438 55763

4 223,255,254, 216 2313 405 1822745 552 0.01 0.46 1834  9.7626
SSA 143,1, 1,117, 65, 73 19.40 5.34 78102  19.20 0.76 0.83 2503 129424
8 255,255,255, 255, 173, 255, 1, 255 24.60 638 1512267 633 0.09 051 2350  18.0670
10 112,88, 76,164,137, 7, 146,93, 1, 8 25.63 679 45203 2157 0.85 0.87 3423 18.4091

2 245,255 13.20 210 1899439 534 0 0.40 1735  3.6887

4 255,13,255,3 21.90 196 1823318 552 0.02 0.45 2157  6.9507

MFO 4,1,255, 1,255, 255 21.86 317 1798076 558 0.03 045 2828  9.0449
8 61,209,255, 1,255,252, 35, 249 21.90 257 1034616  7.98 0.25 0.53 3448 129243
10 1,255,255,1,77,255, 1,255,211, 1 21.96 284 458643 1151 0.48 0.67 4172 14.0383
2 91,21 13.09 177 166124 1592 0.62 0.73 1713 10.0483
4 164,127,160, 168 18.15 195 228128  14.54 0.58 071 2133 19.0667
ABC 6 116,165,200, 144, 195, 164 18.25 228 140322  16.65 0.69 0.80 2594 247383
8 176,159,175, 205, 180, 230, 190, 154 18.35 251 981484 821 023 0.55 3087  34.3259
10 gg o7, 197, 168, 208, 143, 170, 169 1897 276 552127 1071 0.37 0.61 3537 39.0609

1,0 1.77 155 1848808 546 0.01 0.37 1172 32673

4 51,44,25,46 1657 285 817859  9.00 031 0.53 1880 57354
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Table 4. Cont.

Algorithm k  Optimal Thresholds Mean STD  MSE PSNR  SSIM  FSIM Dot Run
Value Time

GWO 6 14,80,26,26,51,4 2360 208 427755 1181 0.50 062 2409 80261
8 19,60, 40, 46, 70, 20,32, 70 3002 269 544394 1077 043 058 2664 103239
10 0,0,1,1,1,1,0,0,0,1 308 853 1874449 540 0 036 3290  14.1903

2 185,185 536 250 1656217 593 0.05 0.50 718 34958

4 126,120,123, 125 530 244 288171 1353 052 0.65 703 62318

SMA 6 0,1,20,0,3 485 268 1900291 534 0 0 718 89006
8 179,178, 177,179,179, 178, 179, 178 552 204 1599853  6.09 0.07 0.51 718 116382
10 170171,172,176, 176,176, 176, 176, 492 267 1573455 616 0.07 051 719 14.0558

175,176
Table 5. Simulation results for the Boat image using ten LCGSA versions.
Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSIM oot Run

Value Time

2 1326 1390 034 310349 1321 051 0.63 1810 3x 107

4 175,153,191, 111 2417 269 148905 1640 0.6 080 2424  2x10°

LCGSA1 6  63,124,237,6, 116,238 3002 130 121214 1729 070 076 3575 2x10°
8  106,233,9, 114,239, 9, 69, 127 4134 429 101005 1808  0.72 077 4486  2x10°°

S USIS020 AL L8NS yges 378 aase 26 083 089 5255  2x10°6

2 112,246 1287 019 273725 1375 055 0.68 1813  1x10°

4 119,245,6,118 2520 130 232503 1446 059 068 2687 1x10°6

LCGSA2 6  75122,181,246,5,118 3404 246 98193 1821 0.74 082 3560 2x10°
8  127,5109,179,245,47,181,246 3577 225 72125 1954 078 084 4273  1x10°6

10 0% 82692185, 24646. 210, 100 359 146480 1647 072 080 5143  2x10°6

2 105176 1789 042 219989 1470 0.6l 0.75 1812 2x10°

4 134,99,193,78 1788 160 82987 1894 074 083 2457  1x10°

LCGSA3 6  121,188,78,128,190,93 2875 163  890.16 1863  0.72 0.81 3238  1x10°6
8  103,139,201,98,187,86,185 151 2845 128 68458 1977 076 085 3914  1x10°

10 122180102145, 184,153, 104,179, 5636 291 90672 1855 075 083 4632 2x10°6

105, 145

2 108,177 1752 164 215898 1478 061 0.75 1811  2x10°

4 71,125,245,8 2423 108 131459 1694 071 077 2584 1x10°¢

LCGSA4 6  108,180,245,5,107, 178 3426 322 199259 1513 0.64 075 3624 2x10°6
8  114,243,25117,238,28,182,242 3645 198 140114 1666 072 077 4267 2x10°6

10 020226801022 4y 99 w02 2135 0.86 0.87 5104 2x10°6

2 69,126 1757 022 139523 1668  0.67 0.76 1812 1x10°°

4 113,236,5,106 2513 158 231147 1449 059 069 2687  1x10°°

LCGSA5 6  111,243,9, 115,176,241 3017 168 170308 1581 0.67 075 3568  1x10°
8  132,10,106,238,7,102, 181,244 3603 338 95476 1833 075 0.81 4305 2x10°6

0 0y SLATB2LI AR yers 4o 106907 1784 075 082 5381 2x10°6

2 109,181 1795 055 224734 1461 0.60 074 1812 2x10°¢

4 240,9,242,11 2108 089 1601589  6.08 0.08 046 2584 1x10°¢
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Table 5. Cont.

Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSIM  Dest Run
Value Time
LCGSA6 6 73,128, 184, 244, 4, 106 3490 177 79133 1914 076 084 3567 2x10°
8 109,220,3,105,226,7, 73, 125 422 38 100277 1774 071 078 4390  3x10°
0 006 SLB0.29,206 ye0 310 139342 1669 072 079 5087  2x10°
2 2395 1425 036 1770911 564 0.04 044 1811  2x 106
4 119,243,10,116 2519 139 215188 1480 0.6l 068 2686  1x10°°
LCGSA7 6 105,178,246, 41,233, 12 31.06 188 161811 1604 072 080 3573  1x10°°
8 102,176,245, 5,109,229, 4, 108 4154 430 181454 1554  0.65 076 4388  2x10°°
0 DPySPOILIEAB TNy g1 161835 1604 071 077 5231  1x10°6
2 104,181 1792 079 234166 1443  0.60 075 1813  2x10°°
4 68,123,180,247 2257 087 105549 1789  0.72 083 2685 1x10°
LCGSA8 6 66,127, 236,8, 67, 123 3455 19 115707 1749 071 077 3620 2x10°°
8  63,120,178,244,7, 65,121,177 835 362 97136 1825 076 083 4557 2x10°
0 0TI BUIL y90s 384 184515 1547 067 075 5107  1x10°
2 106,179 1766 145 226279 1458  0.60 075 1811  2x10°
4 116,247,818 2557 080 223159 1464 061 068 2584  1x10°
LCGSA9 6  67,125,249,9,226,11 3140 135 121294 1729 073 078 3391  2x10°°
8  66,124,238,9,239, 4, 118, 250 3682 219 120504 1732 071 076 4556  1x10-°
1 YO BLISALTASLAI0 99y 417 ases mas 08 087 5221  1x10°6
2 64124 1741 081 144097 1654 067 076 1812 5.6869
4 110,241,515 2518 188 229455 1452 059 069 2677 64817
LCGSAL0 6 108,178,242, 8,247, 6 316 161 198943 1514 0.6 075 3257  8.835
8 66,123,235, 4, 121, 236, 26, 233 3610 282 119199 1736 074 078 4428  19.9924
10 116222,60,2255 119,235,670, 4777 428 131522 1694 070 077 5348 241814

119

The segmented output and histogram curves of LCGSA at k = 10 are shown in Figure 12.
It can be seen that histogram values are scattered across the whole frequency spectrum
of the image. It means that LCGSA has optimal values for the thresholds, which help in
the efficient segmentation of the image. The improvement in the segmented output can
be seen as the number of thresholds increases. It shows that LCGSA is obtaining optimal
pixels as the complexity of the segmentation increases. Moreover, convergence curves, as
shown in Figure 13, depict that LCGSA has higher local optimization power while GWO,
SMA, SSA, BBO, and MFO have a slower convergence rate. It is clear that GWO, SMA, and
SSA are facing optimization problems while countering the uneven search spaces and local
minima terrains. The box plots, as shown in Figure 14, convey that LCGSA has consistency
and proximity in the objective function values. It is because LCGSA has the maximum
value for Kapur’s objective function, while SMA, GWO, ABC, SSA, and MFO have smaller
values, indicating sub-optimal performance. Moreover, SMA and SSA contain whiskers
and outliers in the output, implying that values are away from the central mean, and it also
indicates that these techniques have serious exploration problems.
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Figure 12. LCGSA segmented images, colormap images, and histogram curves for the Boat bench-
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Figure 14. Box plots for the Boat image.

5.2. COVID-19 Case Study: Experimental Analysis of COVID-19 CT Scan Images

COVID-19 is a respiratory viral disease that severely affects the normal functioning
of the human lungs. Researchers have applied various heuristic approaches in order to
segment the CT images of COVID-19 patients [43,73,102]. Normally, axial non-enhanced
chest CT images, also called lung windows, are used for segmentation purposes. Therefore,
we have considered three CT images of COVID-19-affected patients from the Kaggle
database, namely CT1, CT2, and CT3. The LCGSA versions were applied to chest CT
images in order to properly identify the consolidation and ground glass opacity areas of the
lung window images. Moreover, we have also used colormap images at different threshold
levels to clearly show the segmentation areas in the output image.

5.2.1. Simulation Results of the CT1 Image

The experimental results of the CT1 image are recorded in Tables 6 and 7. The
algorithms that have provided optimal values for the thresholds include LCGSA versions,
BBO, DE, ABC, and SCA. It can also be seen that LCGSA, BBO, and DE have suitable values
for PSNR, SSIM, and FSIM. Meanwhile, GWO, SMA, PSO, and SSA have large values
for the standard deviation and MSE, indicating the presence of outliers in the segmented
output. However, ABC, BBO, DE, and SSA take substantial computational time to find
the optimal pixels in the problem space. Furthermore, it is obvious that LCGSA versions
take less CPU time to segment the image. As far as mean values are concerned, LCGSA4,
LCGSAS8, and LCGSA9 provide large mean values, indicating these versions have the best
values for Kapur’s objective function. When we closely look at the mean and best objective
function values of the LCGSA versions, it is clear that the mean values at k = 10 (LCGSA4
(47.70), LCGSAS (49.19), and LCGSA9 (51.07)) are close to the best objective function values
at the same threshold level (LCGSA4 (53.14), LCGSAS8 (53.71), and LCGSA9 (53.77)). It
shows that LCGSA versions have fewer outliers present in the segmented output because
objective function outcomes have fewer value differences across consecutive generations.
On the other hand, MFO, SSA, and CPSOGSA have large differences in the mean and
Kapur’s objective function values, indicating an improper balance between the exploration
and exploitation stages during the optimization process.
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Table 6. Simulation results for the CT1 image using classical, hybrid, and recent HAs.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM ‘Zjite %“m“e
2 132,184 1580 004 328954  12.95 0.40 0.62 1719 4.9900

4 109, 143,92, 129 212 021 419036 11.90 031 0.58 225 92151
GSA 6 184,142,212, 154,173,178 2396 018 298015 1338 0.50 0.71 2449 12999
8 198,220,182, 176, 231, 177, 195, 215 2628 054 446881 1162 0.37 0.68 3087 161160
10 gg: 20 219 215, 184, 216, 229, 204, 3045 024 551136 1071 031 0.64 375 19.3697

2 11,19 526 113 2077920 495 0.05 0.27 1076 4.2840

4 18,2336, 41 1359 058 1577239 615 0.12 0.32 1857  7.4031
PSO 6 556466 1597 757 2391721 434 0.02 0.27 2182 117522
8 13,18,22,26, 26, 41, 63, 56 2051 071 1154966  7.50 0.28 0.50 3024 13.0390
10 1,15,22, 31,38, 54, 45, 53, 76, 85 3741 113 843500 887 0.40 0.57 3812 166038

2 1,18 1143 046 2102984 490 0.05 0.27 1235 3.7307

4 7,27,29,36 1361 038 1682614 587 0.10 0.30 2012 67921

PSOGSA 6 11,24, 28,42, 42, 49 1628 074 1400012  6.66 0.17 0.40 2340 103811
8 7,12,20,30,34, 44, 62, 68 2796 040 1075468 781 0.32 0.52 2979 121737
10 8,10, 14, 22, 31,35, 82, 84, 94, 118 3134 079 490278  11.22 0.45 0.60 3781 152642

1,23 783 056 1979762 5.6 0.07 0.28 1286 3.7407

4 4,33,45,51 1632 075 1381623 6.2 0.18 0.41 1502 6.8445
CPSOGSA 6 2,62, 106,113, 114, 125 1915 068 448905  11.60 0.43 0.62 2452 10.2939
8 1,3,6,16,37,38, 39,52 2171 150 1363123 678 0.19 0.43 3207 12,0088
10 12,15, 21,23, 49, 64, 75, 80, 85, 107 2751 029 579161 1050 0.49 0.62 3768 153088

2 195,183 1213 028 552304 1070 0.27 0.55 1411 37492
4 52,162,222, 191 1663 138 102362  18.02 0.72 0.82 2448 12.3297
BBO 6  88,174,128,208, 151,22 1818 076 93440 1842 0.75 0.83 2678 164833
8 139,32, 60, 160, 240, 178, 179, 186 2617 068 71806  19.56 0.75 0.83 3240 169126
10 PSP L2052, 0346 160 s598 2045 0.78 0.86 4557 237955

2 130,51 1195 281 405492  12.05 0.44 0.61 1704 3.8522
4 767,98, 152 2456 075 265562  13.88 0.48 0.66 2475 117624
DE 6 65, 67,129,146, 50,47 2522 240 260382 1397 0.53 0.66 2916 166393
8 132, 148,47,97, 52, 83, 102, 26 3607 184 233850 1444 0.57 0.69 3828 17.8548
1 S 177 02060 RO ) 29 msa1s 1750 0.67 0.79 4566  23.8481

2 28,93 1379 166 778388 921 0.35 0.54 1711 55373
4 65,90,179,239 2354 182 168107 1587 0.63 0.78 2479 105775
SCA 6 130,227,56,78,236, 14 2049 253 229981 1451 0.67 0.77 3147 156037
8 36,230,170, 15, 58, 93, 128, 251 3396 287 70065 1967 0.82 0.88 3857 183722
10 195,65, 165,64, 155,33, 125,252,57, 181 4294 304 52322 2094 0.77 0.84 4536 226256

2 11 1513 593 2559416  4.04 0 0.25 1503 49294
4 1,1,255,254 1847 580 2474030 419 0.01 0.32 2016 102434
SSA 134, 255, 255, 255, 1, 255 2452 408 559732 1065 0.26 0.56 3085 162715
8 1,1,21,47,1,2,1,16 3496 965 1458792 649 0.17 0.42 3398 157475
10 1,255,255,1,201,192, 108,255, 170,255  28.04 688  2310.86  14.49 0.52 0.73 3944 222014

2 240,1 2190 133 2223005 466 0.05 0.38 1503 3.8241

4 255,246,249, 1 1525 187 2348880 442 0.03 0.36 255 65664
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Table 6. Cont.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM \Zﬁite %“m“e
MFO 6 24,1,1,9,1,3 211 378 757409 933 0.34 0.54 3237  9.8088
8  157,1,254, 255, 255, 248, 252, 255 2908 498  4567.88 1153 0.30 0.57 2776 11.5291
10 [0 186.273, 216,142,223, 12 100,6. oy 229 w747 1574 0.64 0.80 3540  14.3570
2 204,162 1815 173 372013 1242 0.42 0.67 1606  10.4149
4 177,198,201, 148 1774 197 322235  13.04 0.44 0.65 1994  17.7692
ABC 6 234,154,250, 213,219, 232 259 225 354891 1262 043 0.68 2669  25.6627
8 98,152,134,137, 148,170, 108, 118 2699 264 285023 1358 0.36 0.60 3139  32.8164
10 igj ;‘ég’ 163, 202,217, 230, 214, 196, 3167 274 303318 1331 0.52 0.73 3418 40.1686
2 5,10 1.58 356 2559416  4.04 0 0.25 1055 33954
4 24,36,1,55 1439 129 1291972  7.01 023 0.47 1485 61411
GWO 6 2,0,2,4,52 5.63 492 2502718 414 0.01 0.26 1902 85206
8 10,0,66,10,0,10,10,21 2235 243 11,33000  7.58 0.29 0.52 1851 10.8290
10 0,2,34,0,1,0,1,1,1 446 413 2419171 429 0.01 027 944 135712
2 230,232 5.16 235 2031937  5.05 0.07 0.40 7.31 3.7368
4 38,37,36,35 5.07 244 1641124 597 0.12 0.34 7.43 64121
SMA 160, 159, 159, 160, 158, 160 456 268 488845  11.23 0.24 0.50 7.48 9.0762
8 86, 85,85,84, 86, 86, 85, 86 492 249 956825  8.32 0.23 0.53 742 11.9038
10 52,51,53,52, 52,51, 51, 48, 48, 52 483 253 1360257 679 0.22 0.46 744 144625
Table 7. Simulation results for the CT1 image using ten LCGSA versions.
Algorithm k  Optimal Thresholds Mean STD ~ MSE  PSNR  SSIM  FSIM o un
2 101,177 1816 052 292236 1347 0.42 0.65 1831  1x10°°
4 98,172,254,20 2524 108 201295  15.09 0.55 0.70 2702 1x10°°
LCGSA1 6  147,250,34, 245,10, 133 3234 234 270612  13.80 049 0.64 3554 2% 107
8  36,87,135,177,251, 13,98, 181 4322 345 99044 1817 0.69 0.77 45220 2x10°°
10 }ég' 43,242,25, 238,17, 124, 247,6, 4398 305 257790  14.01 0.56 0.70 5226 2% 107
2 97,174 1815 045 295250  13.42 042 0.65 1830  1x10°°
4 98,175,252,21 2504 162 193505 1526 0.57 0.71 2684  2x10°°
LCGSA2 6  218,10,82, 118, 162, 209 3226 308 125929  17.12 0.70 0.83 3654 1x10°°
8 230,21,85, 124, 168, 206, 253, 75 3933 254 70231 19.65 0.80 0.88 4377 1x10°°
10 ﬁg o105 198 32220, 205 o1 285 usszs 1737 0.69 0.79 5086 2 x 1076
2 203,68 1355 052 404961  12.05 048 0.68 1818  1x10°°
4 177,71,118,167 265 153 189140 1536 0.52 0.69 2451 2% 107
LCGSA3 6  169,110,191,78,133, 181 2913 106  1663.62 1592 0.55 0.72 3009 2x10°°
8 117,187,94, 175,156, 93, 184, 87 2990  1.63 203396  15.04 048 0.68 3590 2% 107
10 };5 ;3%124, 167, 66,96, 124, 145, 4220 331 158166 1613 0.54 0.69 4635  2x10°°
2 135,254 1293 031 561534  10.63 0.26 0.55 1831  1x10°°
4 251,15,251,15 21.60 140 2067392 497 0.07 0.35 2599 2% 107
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Table 7. Cont.

Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSIM  Dest Run

Value Time
LCGSA4 6 99,174,253, 38, 245, 15 3127 262 136971 1676 0.65 0.75 3537  1x10°6
8 218,10, 115,249, 32, 250, 12, 152 3886 255 146412 1647 0.65 0.77 416  1x10°6
10 ilé 42,246,62,172, 251,44, 251,32, 4700 399 101192 18.07 0.74 0.84 5314 3x10°6
2 102,173 1787 116 305233 1328 0.40 0.63 1830  1x 10
4 130,251,25,138 2541 154 374035 1240 0.41 0.59 2596 2 x10-6
LCGSA5 6 130,252, 24,249, 27, 145 3159 327 315418 1314 0.44 0.61 3650 2 x 106
8 132,252, 14,251, 14, 251,17, 125 3923 306 444921 1164 0.38 0.59 413 1x106
10 26,167,249,59,172,248 21,112, 4095 479 017 1873 071 0.80 5194  2x10°6

181,253
2 251,16 1469 072 2042678  5.02 0.08 0.35 1831 1x10°6
4 130,252, 42, 168 2518 109 164451 1597 0.56 0.69 2598  2x10°6
LCGSA6 6 129,252,8, 130, 248, 43 3191 236 365064 1250 0.49 0.66 3552  2x10°6
8 83,124, 178,248, 27, 145, 251, 60 4042 314 86723 1874 0.74 0.81 4418  1x10°6
10 if’ 36,249,42,250,26, 248,31, 247, 4n84 354 1397045  6.67 0.20 0.41 5376 2 x 106
2 98,169 1813 051 305213 1328 0.39 0.63 1830 1 x 10
4 96,176,253,19 2514 106 194738 1523 0.57 071 2686  2x10°6
LCGSA7 6 111,249, 71,171,250, 22 3212 147 139087  16.69 0.66 0.77 3650 2 x10-6
8 37,100,170, 252, 68,175, 251, 52 4025 352 103660 1797 0.73 0.80 413 1x10-6
10 %123; gg 224,32,173,250,24,152, 455 356 125097  17.08 0.64 0.74 5139 2x10°6
2 96,175 1817 053  2889.82 1352 0.42 0.65 1830  1x10°6
4 102,172,254, 36 2536 069 155583 1621 0.60 0.71 2601  1x10°6
LCGSA8 6 100,174, 253,26, 156, 251 2973 290 161577 1604 0.57 0.70 3654  2x10°6
8 106,250,795, 148, 194,251, 12 4066 286 156653 1618 0.64 0.78 417 1x10°6
10 115250,115,3,100,173,252,19, 4999 45 187962 1539 0.56 0.70 5371 1x10°6
100,173

2 159,247 1294 024 458726 1151 0.30 0.58 1831 1x10°
4 153,252,21,253 2023 071 354314 1263 0.38 0.57 2599 3 x10°6
LCGSA9 6  135,253,19, 150, 253, 24 247 236 316274 1313 0.41 0.58 3651  2x106
8 250,5,149, 250, 5, 249, 15, 135 3980 262 366513 1248 0.38 0.59 4398  1x10-6
10 };5 251,33,240,7,147, 250,29, 252, 5107 312 247803 1418 0.52 0.67 5377 2x10-6

2 97,174 1816 052 296255 1341 0.42 0.65 1831 3.3164

4 148,253,19,250 2015 077 377926 1235 0.38 0.58 2706 122545

LCGSAI0 6 92,144,194,253, 71,178 3394 308 133537 1687 0.65 0.79 3654 150325
8 35,100, 166,251, 19, 120, 249, 36 4080 345 155566 1621 0.60 0.71 4387 179458

10 O%32,251,43,250,5,104,175,252, 4594 314 114861 1752 0.70 0.79 5152 253295

54

The multi-level thresholding output of the CTI image is depicted in the form of
segmented images, colormap images, and histograms, as shown in Figure 15. In the
grayscale segmented output image, the hazy white part in both lungs is clearly visible,
and it becomes clearer as the number of thresholds increases. It shows that LCGSA was
successful in finding feasible pixels in the complex search space environment. Moreover,
it also implies that LCGSA has reduced the impact of infeasible pixels or noise on the
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segmented output. The obscured consolidated parts can also be seen in the colormap
images, which show the presence of COVID-19 disease in the lungs. The reason behind
the optimal performance of LCGSA is its intelligent hybrid framework, in which Chaos
theory handles local exploitation issues while variable step size and infinite variance of
Levy flight help in the global exploration of the search space. In simpler terms, LCGSA has
a robust optimization combination that helps it counter difficult optimization terrains like
uneven pixel search space with proper ease and without getting stuck in the local minima
regions. Similarly, the local exploitation capability of the peer algorithms is benchmarked
through convergence curves, as shown in Figure 16. It can be observed that LCGSA and
SCA have fast convergence rates, while SSA, BBO, CPSOGSA, GWO, SMA, and PSO take
more runtime to converge towards the optimal regions of the pixel search space, indicating
local minima issues. Furthermore, the box plot analysis is depicted in Figure 17, and
it portrays the best performance of LCGSA because it has efficient values for Kapur’s
objective function. It is also clear that the boxplots of GWO, SMA, CPSOGSA, and SSA are
at the bottom, implying local minima and exploration problems.
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Figure 15. LCGSA segmented images, colormap images, and histogram curves for the CT1 image at
k=2,4,6,8,and 10.
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Figure 16. Convergence curves for the CT1 image.
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Figure 17. Box plots for the CT1 image.

5.2.2. Simulation Results of the CT2 Image

The CT2 is another CT scan image of the COVID-19 patient that we have considered
for benchmarking the segmentation ability of the heuristic algorithms. The experimental
analysis is shown in Tables 8 and 9. As far as best threshold values are concerned, the
LCGSA1, LCGSA2, LCGSA10, DE, and SCA have efficient pixel values. At the same time,
PSO, PSOGSA, and CPSOGSA depicted large standard deviation values, implying pixels
are distant from the central optima region. Meanwhile, SMA, GWO, PSO, and PSOGSA
also show substantial outcomes for MSE, indicating the presence of outliers and noise in
the segmented output. It can also be noted that LCGSA6 and LCGSA7 perform better than
other LCGSA versions because they have better values for PSNR, SSIM, and FSIM. Further,
the mean and Kapur’s objective function values of LCGSA versions are close to each other,
indicating symmetry in the segmented output and less deviation from the mean objective
value. On the other hand, SMA, GWO, PSO, PSOGSA, and CPSOGSA are again showing
suboptimal results for the multilevel thresholding problem. In fact, when we closely look
at the simulation results of these techniques, we find that they have large values for the
STD and MSE but small values for the mean, Kapur’s objective function, PSNR, SSIM,
and FSIM.
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Table 8. Simulation results for the CT2 image using classical, hybrid, and recent HAs.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM ‘Zjite %“m“e
2 86,149 16.28 002 374409 1239 0.38 0.65 1617  5.1661

4 175,204,179, 217 15.84 015 368238 1246 0.39 0.70 2208  8.8693
GSA 6 154,188,213, 172, 165, 147 19.32 010 315414  13.14 043 0.74 2598 135300
8 84,100,135, 114,70, 83, 124, 75 26.48 030 379394 1233 0.44 0.62 2977 16.8303
10 }35 218,210, 192,202,157, 167,18, 2, 32.99 039 322826  13.04 045 0.74 3356 209540

2 65 175 085 2115623  4.87 0.03 032 1123 43092

4 7,11,15,27 414 088 1648794 595 0.12 0.38 16.42 7.2575
PSO 6 16,20,19,42, 76,85 18.29 108 740593 943 047 0.58 2184 122000
8  4,15,23,32,36,40,41, 66 25.87 100 9591.09 831 0.38 052 2996  13.4070
10 2,59,110, 81,91, 103,92, 90, 139, 97 33.58 142 286379 1356 0.55 0.65 3419 19.3869

2 11,14 0.48 067 1919291 529 0.07 0.37 9.10 3.9591

4 1,1,1,1 16.21 177 2271272 456 0 0.29 1564 82575
PSOGSA 6  16,30,42,51,58, 61 16.36 046 1037751  7.96 0.31 0.46 2117 10.7500
8  5,49,54,59,76,79, 80,81 21.63 099 775878 923 0.46 0.56 2787 128575
10 1,5,23,37,79,99,124, 129, 130, 138 28.99 039 277694  13.69 0.61 0.67 3076  16.8457

1,31 311 055  15650.86  6.18 0.14 0.37 8.97 3.8218

4 9,16,18,30 741 108 1565026  6.18 0.14 0.38 1685  6.7333
CPSOGSA 6  13,17,48, 60, 62, 70 21.79 076 913161 8.52 0.40 052 1924 10.9500
8  41,65,78,80,79,112, 113, 161 20.67 065 128312  17.04 071 0.73 2970 14.0335
10 26,37,44,52,71,103,112, 124,129,145  27.55 036 203693  15.04 0.69 0.72 3564 167927

37,231 11.39 065 1255705  7.14 0.22 0.42 1556  3.5081

4 115,76,104, 238 18.00 105 518272  10.98 0.41 0.65 2326 65583

BBO 6 159,168,43,3,55,3 21.00 092 138661 1671 0.56 0.64 2768 92174
8  125,61,100,189, 157,195, 12, 164 30.06 0.55 63433 20.10 0.68 0.78 3409 119324
10 188,90,107, 1, 148,226, 44,212, 68,15  31.52 1.91 21884 2472 0.88 0.93 3657 143068

217, 180 10.80 225 399296 1211 033 0.67 1710 3.8954

4 183,111,137, 226 19.25 158 274917 1373 0.45 0.76 2294 65492

DE 6 124,152,111,232,110, 36 25.89 190 191014 1532 0.62 0.72 3049  9.0928
8 40,39,17,252,72,128, 227,137 29.93 245 213466  14.83 0.69 076 3537 120739
10 25,150,213, 175, 34,207, 6,223,120, 143 37.34 2.49 862.87  18.77 0.69 0.80 4181 143418

231,1 13.01 145 2023026  5.07 0.03 0.40 1685 61295
4 138,246,35,109 21.64 197 283825  13.60 057 0.67 2324 105776
SCA 222,220, 76, 255, 59, 82 26.82 223 570084 1057 0.44 0.58 2912 14.5800
8 4,159,46,239, 1,117, 17, 166 31.80 262 118476 1739 0.65 073 3462 18.6980
10 29,215,5,58, 117, 43, 244, 89, 36, 115 40.93 338 217117 1476 0.67 0.73 4233 222553

21,39 11.54 230 1407623  6.64 0.17 0.38 1390 50792
4 72,108,72,255 11.39 238 602267 1033 0.39 0.62 1652 10.0753
SSA 1,1, 255, 254, 216, 255 24.83 652 1537818  6.26 0.08 0.40 2425  14.2000
8 255,255,237, 255,215,237,1, 1 24.04 698 1477372 043 0.08 0.40 2823 19.5057
10 118,255,166,29,5,102,255,1,148,92 2847 303 161036  16.06 0.60 0.71 3711 222910

2 2534 12.65 211 21,9523 4.86 0.03 0.39 1236 39982

4 255,254,254, 208 16.01 297 1064662  7.85 0.11 043 19.21 7.1731
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Table 8. Cont.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM \Zﬁite %“m“e
MFO 6  3,6,108, 84, 255,255 1654 302 644531  10.03 0.33 0.63 2733 8.6488
8 61,213,255, 1,255, 253, 35, 250 3243 326 819913 899 0.27 0.43 3652 115943
10 1,47,76,255, 1,255, 3, 79, 107, 255 3473 238 602865 1032 0.39 0.62 1025 138223
2 91,121 1246 174 573422 1054 0.32 0.61 1663 11.2427
4 164,127,160, 168 1754 194 363644 1252 031 0.60 2065 188235
ABC 6 102,151,182, 132, 176, 133 1790 229 277848  13.69 0.37 0.66 2545 257040
8 176,159, 175, 205, 180, 230, 190, 154 2610 256 318242 13.10 0.44 0.75 3060 326283
10 ;?é: }}é' 189,196, 222,198, 235, 188, 3074 263 258802 1400 0.48 0.78 3667  39.9652
2 55 274 222 2166706 477 0.02 031 1018 3.4361
4 0251 343 246 21,8806 473 0.02 031 1335 54724
GWO 6 1,0,1,23,0 039 260 2244830 461 0.01 0.29 1736 83194
8 0,001,1,1,01,01 111 469 2207913 451 0 0 148 10772
10 1,3,0,1,01,0,11,6 487 426 2141064 482 0.03 0.32 2046  12.869
2 1,1 451 239 2271272 456 0 0.29 663 38109
4 38,37,36,38 451 237 1426563 658 0.16 0.37 692 64377
SMA 6 122,120, 121,122, 120, 121 448 242 616390 1023 0.27 0.59 697 87720
8 211,210,209, 210,210, 211, 211, 212 449 250 1245717 7.7 0.09 0.41 628 112538
10 ig oy 712,210,209, 208,209,213, 466 236 1368372 676 0.08 0.40 689 138051
Table 9. Simulation results for the CT2 image using ten LCGSA versions.
Algorithm k  Optimal Thresholds Mean STD ~ MSE  PSNR  SSIM  FsiM oo Run
2 101,18 1719 088 292269 1347 0.38 0.67 1764 2 x 1076
4 94,135,184,251 2161 095 257639  14.02 0.43 0.73 2464  2x10°6
LCGSAL 6  249,28,100, 188,90, 181 3030 175 109807  17.72 0.64 0.76 3509  1x10°6
8 101,181,252,23,103,177,248,73 4039 238 109298  17.74 0.65 077 4164  1x10°6
0 L0 Te2LISANIT AN e 273 14733 1717 0.61 077 5272 1x10°6
2 100,178 1657 118 299227 1337 0.37 0.66 1764 1x10°°
4 101,182,252, 80 2351 136 230068 1451 0.46 0.73 2456  1x10°6
LCGSA2 6  99,191,31,93, 133, 184 3257 238  937.04 1841 0.65 0.74 3392  2x10°6
8  240,19,97, 185,82, 197, 82, 183 3609 253 119543 1735 0.64 0.81 4166  1x10°6
10 32: L2515, 2L 105 184 249, 508 p04 124194 1738 0.62 0.77 5144 2x 106
2 102,188 1179 027 292701 1346 0.38 0.69 1716 1x10°6
4 107,184,90, 155 2193 124 248579 1417 0.42 0.70 2503 2x10°6
LCGSA3 6 165,92, 174,240, 107, 173 2824 153 269381  13.82 0.43 0.72 2049  1x10°6
8  130,183,94,135,169,199,93,150 3502 297 229596 1452 0.47 0.76 3737 2x10°6
10 ?2'5,1;7'2201’ 147,87,162,63, 113, 575, o1 88733  18.64 0.69 0.82 4350  1x10°6
2 102,183 1712 096 290895  13.49 0.37 0.67 1763 1x10°°
4 80,111,150, 185 2507 135 217683 1475 0.46 0.72 2576  2x10°6
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Table 9. Cont.

Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSIM  Dest Run
Value Time
LCGSA4 6 247,48,239, 86,179, 253 3018 129 87282 1872 0.70 0.78 3387 2x10°6
8 100,182,249, 57, 231,90, 196, 80 3622 161 69573 1970 071 0.83 4163 1x10°6
10 34’1325' 81,202,84 182,246,157, 4599 243 90430 1856 0.72 0.85 5142 2x10°6
2 102,183 1750 033 293340 1345 0.37 0.67 1763 1x 10
4 98,190,28,102 2348 091 139816 1667 0.59 071 2579  1x10-6
LCGSA5 6 101,187, 28,98, 193, 32 2987 196 115969 1748 0.61 0.72 3411 1x10-6
8 90,137, 182,249, 13, 106, 187, 66 3909 242 89884 1859 0.66 0.79 4155  1x106
10 ;2;' ;24' 76,201,88,185,250, 101, 414 297 186528 1542 0.53 0.78 5042 1x10°6
2 101,180 1747 039 293798 1345 0.37 0.67 1763 2x10°
4 101,182,252, 79 2326 214 208337 1454 0.47 0.73 2581 1x10-6
LCGSA6 6 99,191,809, 180, 252, 34 3018 179 89059 1863 0.67 0.77 338  1x106
8 243,25,105, 191,77, 202, 26, 103 3592 220 94819 1836 0.69 0.82 4169  1x10°6
10 ?? 192,42,165,252,80,199,82, 200, 4» 04 218 35959 2257 0.80 0.86 4822 1x10°6
2 100,181 1718 136 291799 1348 0.37 0.67 1763 2 x 10
4 235,27,100,182 2340 200 134454 1684 0.62 0.76 2457  1x10°6
LCGSA7 6  98,180,249,96, 179, 253 2887 132 281537  13.63 0.41 071 3523 2x10-6
8 100,188, 43,231, 82, 199, 79, 195 3114 104 59315 2039 0.75 0.84 4144 1x10°6
10 f;; ;’;’ 103,189,22,104, 182,250, 434 343 80533  19.07 071 0.81 4854  1x10°6
2 98182 1741 067 288201 1353 0.38 0.67 17.64 0
4 88,133, 183,252 2183 081 245276 1423 0.44 0.74 2467  1x10°6
LCGSA8 6  98,184,253,25, 103, 184 3388 259 145889 1649 0.59 0.73 3521 1x10-6
8  247,53,235,23, 98, 138, 33, 251 3133 200 68679 1976 071 0.79 4168  1x10°6
10 ?glegg' 183,251, 83,200,28,100, 4550 206 77510 1923 071 0.82 4864  1x10°6
2 104,180 1746 080 300619 1335 0.37 0.66 1764 2 %10
4 104 181,253,34 2392 159 122124 1726 0.61 0.72 25.83 0
LCGSA9 6 101,178,253, 19, 104, 180 3441 177 181656 1553 0.54 071 3519  1x10°6
8 98,180,254, 32, 251, 25, 248, 20 3742 266 122004 1726 0.63 0.74 £19 1x10°6
10 fgbm' 182,250,82,197, 35,242, 14, 4006 250 57806 2051 0.75 0.85 4874  1x10°6
2 104,182 1732 098 297432 1339 0.37 0.67 17.62 3.4469
4 101,189,20, 100 2354 075 78197 1562 0.54 0.70 2465 61717
LCGSAI0 6  97,191,14, 102, 183, 253 2869 177 178505 1561 0.53 0.73 34.09 8.6448
8 81,119,158, 189, 253, 79, 200, 82 3773 252 184724 1546 0.54 0.80 078 114366
10 ff)f' ?;ilsl' 248,86,183, 248,19, 4o 307 148939 1640 0.59 0.75 5143 13.9053

The colormap images shown in Figure 18 clearly show the existence of ground glass
opacity and fibrous bands in the lower part of the lungs. It can also be seen that optimal
pixel values cover most of the frequency spectrum of the CT2 image at respective threshold
values. It indicates the exploration capacity of LCGSA and its competence in handling
local minima regions. Likewise, Figure 19 indicates the efficient performance of LCGSA
versions in locating feasible pixels in the complex search space. When we closely look
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at the convergence curves, it is clear that the SMA and GWO curves are at the bottom,
implying premature convergence problems. On the other hand, the LCGSA convergence
curve is at the top, portraying optimal fitness values at consecutive iterations. It is also
evident that SCA, DE, and PSO show appreciable convergence performance. Furthermore,
box plots in Figure 20 also authenticate the outstanding performance of LCGSA because
it has a higher concentration of optimal fitness values around the mean. Moreover, the
LCGSA has fewer outliers, and its mean fitness values are better than other competitive
algorithms. The boxplots also convey that SMA and GWO have very small values for the
fitness function, implying serious optimization issues and less segmentation power. In
contrast, SCA and DE again showed optimal performance because their fitness values are
very close to LCGSA, indicating competitive segmentation capability and symmetry in the
segmented output.
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Figure 18. LCGSA segmented images, colormap images, and histogram curves for the CT2 image at
k=2,4,6,8,and 10.
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Figure 19. Convergence curves for the CT2 image.
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Figure 20. Box plots for the CT2 image.

5.2.3. Simulation Results of the CT3 Image

The experimental analysis of the CT3 image is presented in Tables 10 and 11. It is
clear that LCGSA, DE, and SCA are the best-performing algorithms, as they have efficient
values for the pixels. It is worthwhile to note that ABC, PSO, PSOGSA, and CPSOGSA
gave competitive values for the image quality metrics. On the other hand, SSA, MFO, SMA,
and GWO again provide suboptimal values for the thresholds. The reason behind the poor
performance of the above techniques is that they lack diversity in the optimal threshold
values. It shows that they got stuck in the local minima in the pixel search space, which
resulted in premature convergence. Moreover, when we further investigate their evaluation
metrics values, it is clear that they have large values for STD and MSE and small values
for the mean and Kapur’s fitness function. In contrast, the LCGSA versions provided
very high values for the mean and fitness functions indicating optimal performance and
segmentation proficiency. Meanwhile, the LCGSA versions take very little runtime to reach
the global optimum. It indicates that LCGSA was successful in resolving the computational
overhead problem of the traditional Kapur’s method while handling high threshold levels.
At the same time, when we look at the run times of peer algorithms, GSA, PSOGSA, SSA,
ABC, and SCA take more time to find the feasible pixels in the search space. Moreover,
DE and BBO take less runtime than the above-mentioned heuristic techniques, indicating
appropriate optimization capability.
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Table 10. Simulation results for the CT3 image using classical, hybrid, and recent HAs.

Algorithm k  Optimal Thresholds Mean  STD MSE PSNR  SSIM  FSIM ‘Zjite %“m“e
2 108,158 12.93 006 328921 1295 0.39 0.67 1625  4.7489

4 157,105,165, 192 17.83 004 200509  15.10 0.61 0.80 2132 84279
GSA 6 176,214,191, 196, 149, 210 26.72 027  2930.64 1346 0.60 0.76 2653 123829
8 188,186,109, 144, 174, 129, 147, 210 24.17 007 182878 1550 0.69 0.82 3012 21.3364
10 }gi' 155,108,136, 166, 119, 115,135, 54, 3 5 016 151891 1631 0.56 0.72 3512 20.8684

2 14,14 8.83 127 2478500  4.18 0.05 033 1138 43324

4 13,23,33,45 16.70 079  17,04208 581 0.14 0.36 16.81 7.0285
PSO 6 6,15,22,43, 45,43 21.19 091 1681509  5.87 0.14 0.36 2392 10.3684
8 2,12,44,52,69, 61, 65,91 25.74 122 835182 891 0.38 058 3049 154691

10 18,32, 66,71,76,126,93,122,109,107  33.28 158 416146  11.93 0.50 0.67 3936 19.0431

2 24,31 541 048 2043131 5.2 0.10 0.34 9.72 3.8282

4 4,11,21,52 11.22 056 1530559  6.28 0.18 0.41 1512 65588

PSOGSA 6  12,19,28,37,50,51 19.00 020 1549601  6.22 0.16 0.38 2141 9.4441
8 1,33,45,45,57,92,99,98 27.92 135 741002 943 0.42 0.61 3151 12.6988
10 35,40, 50, 61, 60, 62, 69, 89, 97, 112 38.44 058  5591.09  10.65 047 0.65 3349  17.3804

38,39 0.40 076 1844660 547 0.12 035 1137 39276

4 1,111 13.94 276 2901448 350 0.11 0.32 17.59 7.9724

CPSOGSA 6  7,12,30,31,43, 71 14.65 114 1180922  7.40 0.29 051 2316 95559
8 2,17,39,90,95,114, 112, 125 28.18 048 448762 1161 0.48 0.64 3007 120526
10 4,21,35,37, 45, 60,89, 92,95, 119 3244 071 495320  11.18 0.49 0.67 3855  16.8229

2 176,78 10.82 046 229297 1452 0.56 0.76 1752 6.6585
4 28,160,145, 207 17.26 060 174450  15.71 071 0.78 2353 11.2497
BBO 6 198,145,143, 56, 148, 121 16.77 1.28 951.94 18.34 0.80 0.86 2725 166101
8 31,65, 64,23,161,56,50,206 2157 107 954.03 18.33 0.79 0.82 3583  11.9254
10 5398' 178,165,192, 228,171, 23, 187,80, 33 95 0.85 828.36 18.94 0.82 0.89 3890  15.0964

2 68,195 12.70 194 380893 1232 053 0.69 1716 65369
4 209,100, 34, 101 21.60 175  3501.89  12.68 0.64 0.76 2471 11.6915
DE 6 18,197,1,71,251,210 29.95 148 353930  12.64 057 0.70 3170 165290
8  137,254,33,227,95,103, 74, 27 3423 220 227576 1455 0.72 0.83 3940 119878
10 236,134,1,111,200, 63, 73, 166,17,18  37.61 2.64 44164  21.68 0.90 0.94 4921  14.7850

2 104,158 13.96 155  3259.62  12.99 0.40 0.68 17.01 5.3804

4 231,17,161,9 22.64 201 319479  13.08 0.56 0.72 2420  9.2408
SCA 174, 6,40, 222, 1,47 30.23 243 199021  15.14 0.64 0.72 3157 135035
8 59,141,212, 88, 161, 60, 186, 15 33.85 2.73 43175 2177 0.90 0.92 3628 17.8848
10 217,248, 41,119,243, 1, 65, 71, 9, 162 41.50 3.22 725.20 19.52 0.86 0.92 4258 221417

2 59,25 11.26 494 1410619  6.63 0.22 0.46 1029  4.8262

4 1,1,255,254 18.19 598 2835557  3.60 0.01 0.41 1854  9.5060
SSA 1,255, 1,255, 254, 255 20.78 648 2835557  3.60 0.01 0.41 2433 14.0087
8  255,1,255, 254, 255, 254, 1, 190 24.36 777 854377 881 0.28 056 3021 183682
10 254,255,158, 61,255, 55, 1,255,254, 17 28.27 655 218165  14.74 0.56 073 3472 225992

2 1,255 11.99 283 2835557  3.60 0.01 041 1486 51625

4 1,1,1,1 12.68 705 2901448  3.50 0 0.32 1486 88423
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Table 10. Cont.
Algorithm k  Optimal Thresholds Mean STD  MSE PSNR  SSIM  FSIM Dot Run
Value Time
MFO 6 39,1,255,1,1,250 2416 241 1739258 572 0.17 0.42 2923 127302
8 2551, 255,255, 255, 1, 255, 255 2659 478 2835557  3.60 0.01 0.41 328 142916
10 1,4,92,255,1,255,3,98, 15, 255 3692 250 829391 894 0.36 0.67 4075 137680
2 108,172 1298 187 274294 1374 0.48 0.73 1597 14.0200
4 111,84,95 105 1782 207 675595  9.83 0.34 0.60 1978 245639
ABC 6 133,101, 115, 142, 134, 67 716 220 322766  13.04 0.47 0.66 2361 343251
8 153,163,197, 115, 174, 146, 194, 149 227 258 209596 1491 0.59 0.77 3128 42.6460
10 189,110,189,190,220,198, 235, 188, 3150 273 196256 1520 0.69 0.84 3711 401277
240, 145
2 0,2 548 106 2869938 355 0 0.32 1071 26922
4 0,1,1,10 497 252 2595343 398 0.04 0.33 1471 56553
GWO 6 0,0,1,1,0,1 1081 843 2715385 379 0.02 0.33 1647 79962
8 0,1,0,1,0,0,1,1 8.81 885 2901448  3.50 0 0.32 2053 104313
10 62,0,32,25,0,11,21,6,2,7 2402 352 1330267 689 0.24 0.47 2530 125223
2 0,1 467 256 2933159 345 0 0 711 36175
4 20,19,21,20 468 251 2309237 449 0.07 0.33 739 62743
SMA 6 1,1,1,231 467 254 2869938 355 0 0.32 742 88429
8 98,97,96,95,96,98,97, 98 451 258 869770  8.73 0.29 0.60 724 11299
10 }3} igg 190,187, 188, 190, 189, 190, 454 264 901899 857 0.27 0.54 738 139376
Table 11. Simulation results for the CT3 image using ten LCGSA versions.
Algorithm k  Optimal Thresholds Mean STD MSE  PSNR  SSIM  FSiM DSt Run
Value Time
2 253,25 1465 046 2128630  4.84 0.11 041 1804  2x10°
4 247,31,108,170 2475 143 158679 1612 0.68 0.81 2587  2x10°6
LCGSAT 6  223,23,157,254,29, 164 3189 244 214577 1481 0.65 0.75 3593  3x10°6
8 246,21, 104, 168, 253, 42, 253, 28 3889 187 132739 1690 0.70 0.82 441 1x10°6
10 140,253,40,234,47,249,25,102, 4415 036 9422 1861 0.78 0.86 5158 1x10-6
171,252
2 252,38 1437 089  17,65596  5.66 0.16 0.42 1804 2 x 10
4 88,127,170, 210 258 120 151268 1633 0.74 0.87 2652 2x10-6
LCGSA2 6 217,26,99, 167, 253, 46 3103 226 87306 1872 0.83 0.89 3327 2x10°6
8 96,135,179, 254, 76, 226, 48, 162 4012 287 47563 2135 0.88 0.93 203 1x10°6
10 ?,2 }:15(1) 182,254, 38,104,172, 253, 5535 394 84541 1886 0.73 0.85 5229  1x10°6
2 105,170 1777 045 278156  13.68 0.48 0.73 1804 2 x 10
4 196,93, 146, 182 2171 191 166713 1591 0.65 0.82 2495  2x10°6
LCGSA3 6 118,169, 223, 86, 130, 167 3161 228 162123 1603 0.71 0.86 3349  2x10°6
8 124,177,97,165,86,128,165,205 3141 263 130131 1698 0.74 0.86 3856  1x106
10 ;‘ﬁ ;;3 165,205,151, 98, 135171, 3997 300 116941  17.45 0.76 0.86 4638  1x10°6
2 253,14 1462 048 2400349 432 0.07 0.41 1802 2 x 10
4 109,173,254 24 2460 142 180589 1556 0.64 0.80 2592 2x10-6
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Table 11. Cont.
Algorithm k  Optimal Thresholds Mean STD  MSE  PSNR  SSIM  FsiM  best Run
Value Time
LCGSA4 6 102,173,253, 36, 151, 249 298 233 117656 1742 0.68 0.81 3601  2x10°6
8 204, 40,243, 20, 159, 252, 29, 248 3344 238 200000 1512 0.65 0.74 4405  1x10°6
10 gg,llﬁ, 251,33,108,216,42,160, 4054 480 67450  19.84 0.85 0.90 5101 1x10°6
2 103,171 1768 101 271846 1378 0.49 0.74 1804  2x10°
4 250,28,253,38 2178 099 1739245 572 0.17 0.42 2587  1x10-6
LCGSA5 6 139,250, 14, 146, 253, 34 3224 152 315419 1314 0.50 0.68 3511 1x10-6
8 91,130, 176, 247, 130, 42, 233, 43 3569 214 81219 19.03 0.83 0.89 437 2x10°6
10 ‘111535,2421‘511, 15,142,251, 29,135,250, 4346 370 205753 14.99 0.58 0.72 5118 2x10°6
2 251,27 1460 049  20,180.09 508 0.13 0.41 1805  3x10°6
4 84,121,171, 212 2587 146 145688 1649 0.75 0.88 251  2x10°6
LCGSA6 6 248,28,250,138, 35, 168 2726 082 188518 1537 0.59 0.73 3601 2x10°6
8 153,250, 45,241, 24, 247, 41, 143 3908 291 219484 1471 0.58 071 4390 1x10°6
10 ;;*2'1120' 31,240,35,102,167, 251, 4059 410 128130  17.05 0.69 0.81 5129 1x10°6
2 102,171 1778 086 265945  13.88 0.50 0.74 1803 2 x 10
4 107,169,251,36 2431 231 151459 1632 0.67 0.81 2650  2x10°6
LCGSA7 6 103,171,252, 43, 163, 252 3015 171 128086  17.05 0.67 0.80 3602 2x10-6
8 203,31,248, 38,238, 31, 130, 251 3299 243 309925 1321 0.62 0.76 568  2x106
10  B84126/172,249,38, 98,148,190, 4753 586 41380 2196 0.85 0.92 5116 1x10-6
249, 49
2 166,253 1295 022 468145 1142 0.37 0.65 1804  2x10°6
4 253,31,159,254 2002 087 297629  13.39 0.50 0.67 2591  1x10°6
LCGSAS 6 97,154,199, 252, 40, 144 3415 245 77131 1925 0.84 0.90 3509 2x10°6
8 238,36, 154,251, 28, 167, 253, 33 3900 320 195767 1521 0.60 0.72 438  1x10°6
10 igf ‘4“1)' 101,170,250, 21,102,174, 4955 335 93719 1841 0.81 0.88 5122 1x10°6
2 104172 1789 068 266288  13.87 0.50 0.74 1804 2 x10°
4 103,168,253,36 2499 123 155025  16.22 0.66 0.81 254  2x10°6
LCGSA9 6  152,250,37, 168, 253,29 3241 218 203541 1504 0.55 0.69 3600 2x10-6
8 163,251, 14, 252, 24, 245, 19, 259 3943 281 293144 1346 0.52 0.68 38  1x106
10 ;gg §§3' 20,105,167,251,36,158, 493 391 140340  16.65 0.67 0.80 5175 2x10-6
2 252,19 1462 058 2270429 456 0.09 0.41 18.03 7.4703
4 94,138,185, 254 2195 073 191797 1530 0.64 0.84 2593 10.02
LCGSAI0 6 123,250,27, 108, 167, 252 2066 194 168326 1586 0.63 0.78 3601 154281
8 138,250, 24, 96, 170, 251, 40, 162 4189 369 117135 1744 0.66 0.81 1386 11.49
10 189,248,35245,45,239,38 101, 4355 300 98004 1821 0.75 0.84 5318 144697

171, 251

The air bronchogram is clearly visible in the segmented output images provided by
LCGSA, as shown in Figure 21. Evidently, the colormap images also depict the heavy
consolidation density in both lungs. The distortion of the lung architecture is obvious
in the case of the left lung because it is excessively affected by the Coronavirus infection.
Moreover, in the colormap image, the yellowish color shows air-filled bronchi with fluid or
pus, while the light blue color represents fibrosis, which is opacification of the alveoli, and
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the dark blue color indicates healthy parts of the lungs. In Figure 22, the convergence rate
of LCGSA is faster than other competitive approaches. At the same time, the convergence
curves of SMA, GWO, and SSA are at the bottom, indicating premature convergence issues
in handling difficult search spaces. However, the convergence curves of DE, SCA, and
MEFO are close to the LCGSA curve. It indicates these techniques have also obtained the
best values for Kapur’s objective function in consecutive generations. Similarly, Figure 23
conveys that LCGSA has the highest segmentation capability. It is because LCGSA has a
maximum value for the fithess function, and its simulation values are concentrated around
the mean. The box plot analysis also shows that GWO, SMA, MFO, SSA, and ABC have
lower values for Kapur’s objective function, while DE, SCA, and BBO have average values
for the fitness function.
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Figure 21. LCGSA segmented images, colormap images, and histogram curves for the CT3 image at
k=2,4,6,8,and 10.
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Figure 22. Convergence curves for the CT3 image.
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Figure 23. Box plots for the CT3 image.

5.3. Statistical Analysis of the Results

The minimum value of standard deviation and mean square error does not imply
that an algorithm is more efficient than others [103]. In fact, statistical tests should be
performed on the simulation results to find the optimal competitive algorithm. Therefore,
a pairwise non-parametric signed Wilcoxon rank-sum test [104] was performed at a 5%
significance level to statistically validate the simulation results between LCGSA and other
peer algorithms. The reason behind selecting a Wilcoxon rank-sum test is that it uses the
median as a statistical measure. Moreover, in the Wilcoxon rank-sum test, the distribution
of the dataset is not considered.

The null hypothesis (Hy) states that the LCGSA does not provide the best pixel values
for the image, whereas the alternate hypothesis (H;) includes that the LCGSA provides
efficient pixel values for the image quality metrics. The p-values of all the competitive
algorithms are computed through MATLAB simulation analysis. If an algorithm provides
a p-value less than 0.05, then the null hypothesis is rejected and Hj is accepted. Moreover,
if the p-value is equal to one, it simply means the performance of the peer algorithm is
consistent with the best-performing algorithm. Table 12 shows the statistical analysis of
the five grayscale images in which LCGSA values are statistically compared with the other
twelve competitive algorithms. It can be clearly seen that LCGSA has better values for the
image quality measures than its competitors because p-values are less than 0.05, indicating
the null hypothesis is rejected. Moreover, it implies that LCGSA was successful in providing
optimal values to the pixels at all the threshold levels (k = 2, 4, 6, 8, and 10) in the complex
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search space. In short, the results of the Wilcoxon statistical test specify that LCGSA is an
efficient optimizer compared to other peer algorithms.

Table 12. Wilcoxon rank-sum test analysis.

Grayscale LCGSA  rcosa  'CSSA rcasavs. €S54 rcasa Lcesa  Lcgsa  MCGSA L LCGSA - LCGSA - LCGSA
Image GSA vs. PSO PSO(.;SA CPSOGSA BBb vs. DE vs. SCA  vs. SSA MFb AB'C GWb SM;\
2 00195 00020 00020 0.0020 00195 00039 00020 00020 00020 00137 00020  0.020
4 00039 00020  0.0020 0.0020 00020 00020 00019 00020 00020 00020 00020  0.0020
Airplane 6 00020 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.0020
8 00390 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.0020
10 00020 00020  0.0020 0.0020 00039 00039 00273 00020 00020 00020 00020  0.020
2 00098 00039  0.0020 0.0020 00059 00371 00022 00039 00020 00020 00020  0.020
4 00020 00020  0.0020 0.0020 00020 00020 00273 00020 00020 00020 00019  0.0020
Boat 6 00020 00020  0.0020 0.0020 00020 00039 00137 00020 00020 00020 00020  0.0019
8 00020 00020  0.0020 0.0020 00020 00020 00039 00020 00020 00020 00023  0.0020
10 00039 00020  0.0039 0.0020 00020 00020 00019 00020 00020 00020 00020  0.0137
2 00020 00020 00020 0.0020 00020 00059 00020 00020 00039 00273 00039  0.0020
4 00020 00020  0.0020 0.0020 00039 00273 00020 00020 00020 00020 00127  0.0020
CT1 6 00020 00020  0.0020 0.0020 00020 00020 00020 00039 00020 00020 00020  0.0020
§ 00039 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.020
10 00020 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.020
2 00371 00020  0.0020 0.0020 00039 00137 00020 00020 00039 00273 00020  0.0020
4 00039 00020  0.0020 0.0020 00020 00020 00039 00020 00020 00039 00020  0.0020
cT2 6 00020 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00019  0.0020
§ 00020 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.0019
10 00020 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.020
2 00371 00020  0.0020 0.0020 00020 00020 00020 00020 00039 00020 00020  0.0020
4 00020 00020  0.0020 0.0020 00020 00059 00020 00020 00020 00020 00020  0.0020
CT3 6 00020 00020 00195 0.0020 00020 00039 00020 00020 00020 00020 00020  0.020
§ 00020 00020  0.0020 0.0020 00020 00020 00020 00020 00020 00020 00020  0.020
10 00020 00020  0.0020 0.0020 00020 00039 00020 00020 00020 00020 00020  0.020

6. Ablation Study

The ablation study was carried out to further benchmark the performance of LCGSA
in solving segmentation problems. In this study, we have considered grayscale and
ground truth images from the famous COVID-19 CT scan lesion segmentation dataset
from Kaggle (https:/ /www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-
segmentation-dataset, accessed on 5 June 2023). All the images have 512 x 512 pixel di-
mensions, and the search space consists of 0-255 pixels. In Figure 24, the grayscale images,
ground truth images, and their corresponding histograms are presented. The LCGSA
was applied to all three images, and the simulation results were compared with twelve
state-of-the-art algorithms. The simulation setup and system specifications are the same as
those mentioned in Section 3.


https://www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-segmentation-dataset
https://www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-segmentation-dataset
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Figure 24. Grayscale images, ground truth images, and their histograms.

6.1. Performance Metrics

In this study, we have considered five commonly used performance metrics in semantic
segmentation for evaluation purposes. Our goal is to score the similarity between the
predicted (prediction) and annotated segmentation (ground truth). The five evaluation
metrics are Pixel Accuracy (Rand Index), Precision, Recall, Dice Coefficient (Dice Score
or F1-Score), and Jaccard Index (Intersection over Union (IoU)). All presented metrics are
based on the computation of a confusion matrix for a binary segmentation mask, which
contains the number of true positive (TP), false positive (FP), true negative (IN), and false
negative (FN) predictions. The value ranges of all presented metrics span from zero (worst)
to one (best).

Pixel Accuracy: The accuracy score, also known as the Rand index, is the number of
correct predictions, consisting of correct positive and negative predictions, divided by the
total number of predictions, as shown in Equation (32).

TP+ TN
TP+ TN+ FN+FP

Accuracy = (32)
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Precision: The precision score is the number of true positive results divided by the
number of all positive results, as shown in Equation (33).

TP
Precision —
recision TP+ EP (33)
Recall: It is also known as Sensitivity or true positive rate, is the number of true
positive results divided by the number of all samples that should have been identified as
positive. It is mathematically calculated as shown in Equation (34).

TP

Recall = TP+ EN (34)
Dice Coefficient: It is also called the F1-measure or F-score. It is one of the most widely
used scores for performance measurement in computer vision and in MIS (Medical Image
Segmentation). The dice coefficient is calculated from the precision and recall of a prediction. It
scores the overlap between predicted segmentation and ground truth. It also penalizes false
positives, which is a common factor in highly class-imbalanced datasets like MIS. It is a harmonic
mean of precision and recall. In other words, it is calculated by 2 times intersection divided by

the total number of pixels in both images, as shown in Equation (35).

2TP
2TP+FP+FN

DiceCoefficient = (35)

Intersection over Union (IoU): It is also referred to as the Jaccard Index. It is essentially
a method to quantify the percent overlap between the target mask and our segmented
output. Quite simply, the IoU metric measures the number of pixels common between
the target and prediction masks divided by the total number of pixels present across both
masks, as shown in Equation (36).

TP

U= — =
U= Tp FPT EN

(36)
This metric ranges from 0 to 1 (0-100%), with 0 signifying no overlap and 1 signifying
perfectly overlapping segmentation.

6.2. Quantitative and Qualitative Analysis of the Results

The experimental results of CT-g1, CT-g2, and CT-g3 images are shown in Tables 13-15,
respectively. It can be clearly seen that the LCGSA has better values for pixel accuracy,
dice coefficient, and Jaccard index. In Table 13, the LCGSA versions have dice scores of
<0.97, 0.96, 0.97, 0.90, 0.98, 0.90, 0.98, 0.98, 0.97, 0.98>, which shows that LCGSA-based
segmentation has more similarity with the ground truth image. As far as IoU values
are concerned, LCGSA has obtained <0.95, 0.93, 0.95, 0.83, 0.96, 0.82, 0.97, 0.97, 0.94,
0.96> values that are close to 1, indicating optimal overlap between the segmented image
and the ground truth mask. It can also be seen that BBO, DE, and SCA also provide better
values for the dice coefficient, Jaccard index, and pixel accuracy.

Similarly, in Table 14, the results of the CT-g2 image show the optimal performance
of LCGSA versions in the segmentation of the grayscale image considering the annotated
infection mask. When we compare the results of standard GSA and LCGSA values, it can
be observed that LCGSA has obtained better results for accuracy (GSA(0.96), LCGSA(0.98)),
dice score (GSA(0.96), LCGSA(0.98)), and Jaccard index (GSA(0.93), LCGSA(0.97)). The
optimal values of the dice score and Jacquard index indicated that LCGSA has the capability
of finding feasible regions in the complex pixel search space. Moreover, the LCGSA runtime
values clearly indicate a proper balance between the exploration and exploitation stages.
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Table 13. Simulation results of the CT-g1 image.

Algorithm  Accuracy Precision  Recall Dice Score Jaccard Index Run Time
GSA 0.90 0.83 1 0.90 0.83 16.1872
PSO 0.67 0.58 1 0.73 0.58 14.0780

PSOGSA 0.93 0.88 1 0.93 0.88 11.9169

CPSOGSA 0.66 0.58 1 0.73 0.58 12.7344
BBO 0.98 0.95 1 0.97 0.95 16.5239
DE 0.97 0.94 1 0.95 0.94 17.0990
SCA 0.97 0.94 1 0.97 0.94 16.6560
SSA 0.96 1 0.92 0.96 0.92 17.0693
MFO 0.95 1 0.89 0.94 0.89 16.6198
ABC 0.92 1 0.83 0.91 0.83 47.0522
GWO 0.87 0.78 1 0.88 0.78 16.0203
SMA 0.95 0.90 1 0.95 0.90 17.7029

LCGSA1 0.97 1 0.95 0.97 0.95 1x107°
LCGSA2 0.96 0.93 1 0.96 0.93 1x10°°
LCGSA3 0.97 0.95 1 0.97 0.95 1x107°
LCGSA4 0.92 1 0.83 0.90 0.83 1x10°°
LCGSA5 0.98 0.96 1 0.98 0.96 1x107°
LCGSA6 0.92 1 0.82 0.90 0.82 2 x 107
LCGSA7 0.98 0.97 1 0.98 0.97 1x10°°
LCGSAS 0.98 0.97 1 0.98 0.97 2x107°
LCGSA9 0.97 1 0.94 0.97 0.94 1x 107
LCGSA10 0.98 1 0.96 0.98 0.96 16.5407

Table 14. Simulation results of the CT-g2 image.

Algorithm  Accuracy Precision  Recall Dice Score  Jaccard Index Run Time
GSA 0.96 0.92 1 0.96 0.93 12.4194
PSO 0.93 0.87 1 0.93 0.87 11.3754

PSOGSA 0.90 0.82 1 0.90 0.82 10.2045

CPSOGSA 0.87 0.78 1 0.87 0.78 10.6497
BBO 0.90 1 0.79 0.88 0.79 13.3727
DE 0.96 0.97 1 0.95 0.99 13.6886
SCA 0.96 0.96 1 0.97 0.98 15.0199
SSA 0.57 1 0.05 0.09 0.05 13.7934
MFO 0.83 1 0.62 0.76 0.62 14.0207
ABC 0.99 1 0.98 0.99 0.98 39.2531
GWO 0.55 NaN 0 0 0 13.4122
SMA 0.46 0.45 1 0.62 0.45 18.7029

LCGSA1l 0.96 0.93 1 0.96 0.93 1x107°
LCGSA2 0.98 0.97 1 0.98 0.97 2x 107
LCGSA3 0.88 0.79 1 0.88 0.79 1x10°°
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Table 14. Cont.

Algorithm  Accuracy Precision  Recall Dice Score Jaccard Index Run Time
LCGSA4 0.88 1 0.74 0.85 0.74 1x107°
LCGSA5 0.89 0.81 1 0.89 0.81 1x107°
LCGSA6 0.95 091 1 0.95 0.91 1x107°
LCGSA7 0.96 0.93 1 0.96 0.93 1x107°
LCGSAS 0.96 0.93 1 0.96 0.93 2x107°
LCGSA9 0.93 0.86 1 0.92 0.86 2 x 107
LCGSA10 0.91 0.84 1 0.91 0.84 13.0380

Table 15. Simulation results of the CT-g3 image.

Algorithm  Accuracy Precision  Recall Dice Score  Jaccard Index Run Time
GSA 0.64 1 0.03 0.05 0.03 13.2421
PSO 0.99 0.98 1 0.99 0.98 12.0374

PSOGSA 0.99 1 0.99 0.99 0.99 10.8915

CPSOGSA 0.98 1 0.97 0.98 0.97 10.8204
BBO 0.97 1 0.97 0.99 0.98 14.1552
DE 0.79 1 0.43 0.60 0.43 13.9826
SCA 0.98 0.96 1 0.98 0.96 13.9312
SSA 0.65 1 0.06 0.11 0.06 14.6093
MFO 0.64 1 0.03 0.06 0.03 15.3080
ABC 0.63 1 0.01 0.02 0.01 40.9452
GWO 0.76 0.60 1 0.75 0.60 13.6832
SMA 0.64 1 0.03 0.06 0.03 14.4526

LCGSA1l 0.98 0.97 1 0.98 0.97 2x107°
LCGSA2 0.66 1 0.09 0.17 0.09 2x10°6
LCGSA3 0.98 1 0.95 0.97 0.95 1x107°
LCGSA4 0.99 0.97 1 0.98 0.97 2 x107°
LCGSA5 0.99 0.99 1 0.99 0.99 2x107°
LCGSA®6 0.66 1 0.08 0.15 0.08 1x107°
LCGSA7 0.99 0.99 1 0.99 0.99 1x10°°
LCGSAS 0.66 1 0.08 0.15 0.08 2x107°
LCGSA9 0.98 0.95 1 0.97 0.95 2x107°
LCGSA10 0.66 1 0.08 0.15 0.08 12.9773

Table 15 presents the results of LCGSA and other peer algorithms for the CT-g3 image.
It can be observed that PSO, PSOGSA, CPSOGSA, BBO, and SCA provide optimal values
for the image quality metrics. On the other hand, GSA, DE, MFO, ABC, GWO, and SMA
have sub-optimal values for pixel accuracy, dice coefficient, and Jaccard index, indicating a
higher false positive rate and issues in handling complex search spaces. Moreover, most
of the LCGSA versions have shown feasible results for segmentation. However, it is also
obvious that LCGSA2, LCGSA6, LCGSAS, and LCGSA10 have infeasible results, indicating
optimization issues while handling complex segmentation problem spaces.
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Figure 25 shows the colormap segmentation output of LCGSA at threshold level ten. It
can be seen that segmented output has a total resemblance to the ground truth. It indicates that
LCGSA was successful in extracting the optimal pixels from the original image. Moreover, it
also shows that LCGSA has obtained optimal values for the Jaccard index and dice coefficient
because the segmented image has maximal overlap with the ground truth image. Furthermore,
Figure 26 shows the box plot analysis of the simulation results of CT-g1, CT-g2, and CT-g3
images. It is obvious that LCGSA has obtained large values for Kapur’s objective function,
while other peer algorithms have obtained smaller values. It can also be seen that DE, SCA,
and BBO provide feasible values for the objective function.

Original Image Ground Truth LCGSA Segmented Image

CT-gl

CT-g3

Figure 25. CT-gl, CT-g2, and CT-g3 images, their ground truths, and LCGSA colormap segmented output.
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Figure 26. Box plots of the (a) CT-g1 image, (b) CT-g2 image, and (c) CT-g3 image.

6.3. Statistical Analysis of the Results

The non-parametric statistical test, namely the signed Wilcoxon rank-sum test, was
employed to verify the simulation results statistically at the 5% significance level. We
have carried out the pairwise Wilcoxon rank-sum test between LCGSA and other peer
algorithms separately. It can be seen in Table 16 that the p-values of all the peer algorithms
are less than 0.05. In simpler terms, it implies that the null hypothesis is rejected while the
alternate hypothesis is accepted. The null hypothesis is that LCGSA has issues obtaining
better results for the image quality measures, and the alternate hypothesis is that LCGSA
has the potential to obtain optimal pixels in the complex pixel search space. The p-values
are clearly indicating that LCGSA values are statistically superior to other competitive
algorithms in consecutive generations.

Table 16. Wilcoxon rank-sum test statistical results.

Grayscale
Image

LCGSA
vs. GSA

LCGSA
vs. PSO

LCGSA
vs.
PSOGSA

LCGSA
vs. CP-
SOGSA

LCGSA
vs. BBO

LCGSA
vs. DE

LCGSA
vs. SCA

LCGSA LCGSA LCGSA
vs. SSA vs. MFO vs. ABC

LCGSA

vs.
GWO

LCGSA
vs. SMA

CT-gl

0.0020

0.0020

0.0020

0.0020

0.0020

0.0059

0.0020

0.0020 0.0124 0.0019

0.0098

0.0012

CT-g2

0.0020

0.0020

0.0195

0.0020

0.0020

0.0039

0.0020

0.0020 0.0129 0.0019

0.0039

0.0019

CT-g3

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020 0.0019 0.0020

0.0020

0.0020
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7. Overall Analysis of Simulation Results

The experimental analysis of benchmark images and CT scan images clearly showed
that LCGSA is a superior and robust image segmentation technique. It is because LCGSA
provided optimal values for image pixels at various threshold levels. It was quite interest-
ing to see that all LCGSA versions took very little computational overhead to segment the
benchmark images and locate the feasible pixels in the complex search space environment.
At the same time, it can be noted that LCGSA10 struggled as far as runtime is concerned.
Meanwhile, the CPU time results of LCGSA versions were better than those of other heuris-
tic algorithms. Further, it is also evident that LCGSA versions have better values for PSNR,
SSIM, and FSIM, indicating segmentation competence. We have found that in all the bench-
mark image results, the threshold values of LCGSA3 were infeasible and comparatively
sub-optimal as compared to other LCGSA versions. Additionally, LCGSA6, LCGSA5, and
LCGSAY were the best optimizers in locating the optimal pixels and providing efficient
values for Kapur’s objective function.

Similarly, when we closely look at the simulation outcomes of competitive heuristic
algorithms for benchmark images, we can observe that DE, SCA, and BBO provided suitable
values for the pixels. Meanwhile, DE performed better because its results were statistically
superior to those of other heuristic approaches, indicating optimization proficiency and the
potential for handling complex solution spaces. Moreover, DE and SCA took less runtime to
segment the benchmark images. Also, we have noticed that SMA, GWO, SSA, MFO, PSO, and
PSOGSA results show the presence of infeasible fitness values portraying noise, attenuation,
and outliers. It also conveys convergence issues and difficulty in overcoming stagnation in
local minima. Moreover, it was also surprising to see ABC, GSA, BBO, DE, and SSA taking
more CPU time to reach the global optimum. Furthermore, the performance of GWO, SMA,
PSO, PSOGSA, CPSOGSA, and ABC was ordinary because they provided appropriate values
for PSNR, SSIM, and FSIM, but their results for other measures were unsatisfactory.

In the ablation study, the experiments were conducted on three COVID-19 chest CT
scan images by considering infection masks. We have found that LCGSA versions are
providing optimal results for dice coefficient, Jaccard index, and pixel accuracy metrics. It
shows LCGSA has the potential to detect the abnormal portions in the CT images with high
accuracy. Moreover, LCGSA again took less computational time to find the best pixels in
the search space. It also indicates a proper balance between exploration and exploitation in
LCGSA during the optimization process. Furthermore, the Wilcoxon rank-sum test verified
the statistical superiority of the LCGSA simulation results over other peer algorithms.
On the other hand, we have observed that SMA, GWO, CPSOGSA, and SSA provide
suboptimal results for the image quality metrics. Meanwhile, DE and SCA provided better
results for the dice coefficient, Kapur’s objective function, Jaccard index, and pixel accuracy.

Now, keeping in view the simulation results of both LCGSA and heuristic algorithms,
we can unanimously declare LCGSA a robust optimizer for multilevel thresholding be-
cause its outcomes were superior and more effective than those of other peer algorithms.
Moreover, the LCGSA versions took very little computational time to find the best pixels.
They had statistically excellent results, and quite interestingly, the performance got better
with the increase in the threshold levels. Lastly, the LCGSA versions were successful in
segmenting the CT scan images of COVID-19 patients and were also proficient in finding
the areas where the lungs were affected by the virus. Furthermore, the ablation study
further authenticated the optimal performance of LCGSA in segmentation as it efficiently
segmented the chest CT scan images while considering the gold standard (ground truth) of
the original images.

Similarly, our study has also faced some challenges. Firstly, we have used a simple
experimental setup consisting of 8 GB RAM and an i7 processor. However, we can obtain
better simulation results if we use a system with advanced configurations like 128 GB
RAM and GPUs for the simulation analysis. Secondly, in the experimental analysis, we
found that certain LCGSA versions, such as LCGSA3 and LCGSA10, are facing premature
convergence issues and taking more computational time to find the optimal pixels in the
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images. It shows that there is certainly a room for further improvement in these versions
in specific areas like improving local exploitation capability to avoid convergence issues.
Moreover, we have observed that other peer algorithms are also obtaining better results for
image quality metrics such as PSNR, SSIM, and FSIM as the threshold values are increased.
It shows that LCGSA needs more exploration capability in order to beat its competitor
algorithms by a wide margin in the comparative analysis. Therefore, we will be using other
learning strategies like opposition-based learning and the Gbest strategy to further enhance
the segmentation and optimization capabilities of LCGSA.

8. Conclusions and Future Scope

An efficient hybrid strategy, namely the Levy flight and Chaos theory-based Grav-
itational Search Algorithm (LCGSA), was applied for the multilevel thresholding of the
grayscale images. Kapur’s entropy scheme was combined with LCGSA in order to find
the best pixels in the search space. Two benchmark images, namely Airport and Boat,
and three chest CT scan images, such as CT1, CT2, and CT3, of COVID-19 patients were
employed for the empirical analysis. Various performance metrics like Dice Coefficient,
Pixel Accuracy, SSIM, FSIM, PSNR, CPU Time, Jaccard Index, and so on were utilized
for the performance evaluation. The simulation results of LCGSA were compared with
12 state-of-the-art peer algorithms. Moreover, an ablation study consisting of various chest
CT scan images and infection masks, was carried out to further evaluate the segmentation
performance of LCGSA. The simulation results clearly revealed that LCGSA provides better
values for the image pixels at various threshold intensity levels. Further, LCGSA requires
less computational overhead to converge toward a feasible neighborhood. Moreover, the
LCGSA has optimal values for pixel accuracy, PSNR, SSIM, and FSIM, indicating symmetry,
quality, and consistency in the segmented output images. Furthermore, the LCGSA ver-
sions were proficient in locating the consolidated and abnormal patchy areas in the CT scan
images, which can aid doctors in adequately diagnosing COVID-19-symptomatic patients.
Meanwhile, it conveys the applicability of LCGSA to solving real-world image processing
problems. In addition, we noticed that DE, SCA, and BBO also provided suitable values for
the image thresholds.

Lastly, if we think about the future prospectus of LCGSA in image processing, we can
see lots of possibilities, such as it will be interesting to apply LCGSA to segment the color
RGB benchmark images in place of grayscale images. Similarly, the LCGSA can be utilized
for the segmentation of crack images in the civil engineering field. Moreover, X-rays and
other medical images, such as brain tumor images, heart images, lupus nephritis images,
and so on, can be considered for evaluating the efficiency of LCGSA in medical imaging.
In fact, it will be fascinating to employ Otsu’s variance scheme and the Rényi entropy
method as fitness functions for LCGSA-based image segmentation. Furthermore, opposi-
tion learning-based LCGSA can be proposed and applied for the multilevel thresholding
task. In addition, a version of the LCGSA for solving multi-objective problems is included
in our future work. Moreover, a binary version of LCGSA for solving the feature selection
problems will be given in the future. Finally, we can also explore the potential of LCGSA
in deep learning. In fact, LCGSA can be used to optimize the hyper-parameters, such as
learning rate, number of epochs, selection of an activation function, batch size, number of
hidden layers, and so on of the deep neural architectures, such as CNN, U-Net, and LSTM.
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Nomenclature
IS Image Segmentation
MT Multilevel Thresholding
HA Heuristic Algorithm
PSNR Peak Signal-to-Noise Ratio
STD Standard Deviation
SSIM Structural Similarity Index Measure
FSIM Feature Similarity Index Measure
MSE Mean Square Error
BV Best Value
PSO Particle Swarm Optimization
CPSOGSA  Constriction Coefficient-based PSO and GSA
GSA Gravitational Search Algorithm
SSA Salp Swarm Optimizer
BBO Biogeography-Based Optimizer
DE Differential Evolution
SCA Sine-Cosine Algorithm
MFO Moth Flame Optimizer
ABC Artificial Bee Colony Algorithm
GWO Gray Wolf Optimizer
SMA Slime Mould Algorithm
MIS Medical Image Segmentation
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