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Abstract: In modern converter-dominated power systems, total inertia is very variable and depends
on the share of power generated by renewable-based converter-interfaced generation (CIG) at each
specific moment. As a result, the limits required by the grid codes on the rate of change of frequency
and its nadir or zenith during disturbances become challenging to achieve with conventional control
approaches. Therefore, the transition to a novel control strategy of CIG with a grid-forming power
converter is relevant. For this purpose, a control algorithm based on a virtual synchronous gener-
ator (VSG) is used, which simulates the properties and capabilities of a conventional synchronous
generation. However, due to continuously changing operating conditions in converter-dominated
power systems, the virtual inertia formed by VSG must be adaptive. At the same time, the efficiency
of adaptive algorithms strongly depends on the used VSG structure. In this connection, this paper
proposes an enhanced VSG structure for which the transfer function of the active power control loop
was formed. With the help of it, the advantages over the conventional VSG structure were proven,
which are necessary for the effective adaptive control of the VSG parameters. Then, the analysis of
the impact of the VSG parameters on the dynamic response using the transient characteristics in the
time domain was performed. Based on the results obtained, adaptive algorithms for independent
control of the virtual inertia and the parameters of the VSG damper winding were developed. The
performed mathematical modeling confirmed the reliable and effective operation of the developed
adaptive control algorithms and the enhanced VSG structure. The theoretical and experimental
results obtained in this paper indicate the need for simultaneous development and improvement of
both adaptive control algorithms and VSG structures used for this purpose.

Keywords: virtual synchronous generator; power converter; adaptive control; grid-forming; virtual
inertia; frequency response

MSC: 93D21; 93C40; 03C85

1. Introduction

With the development of distributed generation units based on renewable energy
sources, the number of power converters in modern power systems is significantly increas-
ing, leading to trends in the transformation of power systems into converter-dominated
power systems. One of the main problems of such power systems is the inconstancy of
inertia, the value of which depends on the share of power generated by renewable-based
converter-interfaced generation (CIG) at each specific moment [1]. It is well known that
inertia plays a major role in the formation of the grid frequency response during the first
seconds of the transients under small or large disturbances in power systems [2,3]. The
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value of inertia determines the rate of change of frequency (RoCoF) and the value of its
nadir or zenith, the maximum permissible values of which are strictly regulated in the
grid codes of various countries [4]. The importance of the latter is associated with the
provision of reliable operation of automation devices and stability of power systems, which
becomes very challenging under the development of converter-dominated power systems
and requires the use of novel smart and flexible technologies [5,6].

A unique feature of power converters is the dynamics of their operation, which is
determined by high-speed power semiconductor switches and the corresponding high-
speed control system, which together provide wide opportunities for using converters
to solve a wide range of tasks [7,8]. In this regard, the transition from the conventional
grid-following control of power converters to the novel control strategy with so-called
grid-forming power converters is particularly relevant [9,10]. Such a solution allows
the provision of the necessary inertial response with CIG, which is determinative at the
primary frequency regulation [11,12]. The most promising direction is the control based
on the virtual synchronous generator (VSG), which allows to mimic the behavior of a
conventional synchronous generator [13]. However, the efficiency of VSG performance
significantly depends on the set parameters [14]. At the same time, due to continuously
changing operating conditions in modern power systems, the selection of fixed parameters
or rigid VSG structures does not allow the achievement of the desired control objectives.
There is always a need to find a trade-off between reliability and efficiency of regulation,
e.g., during changes in grid strength [15]. Thus, given the continuously changing total
inertia in modern power systems, the virtual inertia formed by VSG must be adaptive
to changing grid conditions to provide permissible ranges in RoCoF and magnitude of
frequency deviation [16,17].

Various approaches to the development of adaptive virtual inertia algorithms are
proposed as VSG enhancements. This becomes possible due to the lack of dependence of
the VSG on the parameters of a real synchronous machine. One of the first solutions in
this area is the VSG-based control system with an alternative moment of inertia, where the
virtual inertia in the swing equation was modified using bang–bang control [18]. Such an
approach made it possible not only to improve the oscillations damping but also to increase
the power system stability. At the same time, in the case of frequency deviation, the virtual
inertia changes only to the maximum or minimum value. In order to reduce the number
of excessive control actions, it is proposed to use an additional value of virtual inertia
with bang–bang control, and recommendations on the tuning are given [19]. A modified
hybrid algorithm for adaptive control of virtual inertia using bang–bang control has also
been developed [20]. It is worth noting that algorithms based on such a principle are quite
simple to implement. However, they always use the maximum available energy due to
the discontinuously changing value of inertia, which can lead to unwanted oscillations of
parameters in the steady-state. In order to exclude this feature, the deadband controllers
are inevitably added to the control system. As a consequence, a delay emerges during the
algorithm operation, which directly depends on the deadband range [21].

The predominant direction for improving the adaptive control of the VSG inertia is
an additional real-time change of the damping coefficient [22]. The coordinated control
of the virtual inertia and the damping coefficient ensures the highest efficiency of oscil-
lation suppression [23] and improves the frequency regulation of the parallel CIGs [24].
Basically, all approaches for co-adaptive control of the two indicated parameters are based
on determining the optimal damping ratio [25,26]. Taking into account the shortcomings of
the bang–bang control, other approaches to adaptive virtual inertia are also proposed. In
Ref. [27], it is proposed to change VSG inertia according to a nonlinear function formulated
only based on the deviation of the angular frequency of the virtual rotor. To reduce the
impact of adaptive inertia on the VSG response during changes of the active power refer-
ence, the control algorithm using a nonlinear function and an adaptive priority setter is
proposed [28]. It is also proposed to use the active power deviation instead of frequency
control for adaptive inertia [29].
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Despite the improvement of adaptive control algorithms, their efficiency largely de-
pends on the used VSG structure. At present, most of the algorithms are designed for
the power converter control systems based on the conventional voltage-controlled VSG
structure (VC-VSG) [30,31]. The change of the inertia constant and the damping coefficient
for such a structure inevitably leads to three fundamental contradictions [32,33]. The first
of them is related to the impact of the oscillation damping efficiency on the speed of the
active power response. As a result, the increase in the damping coefficient increases the rise
and fall times of the CIG output power. The second is related to the impact of the damping
coefficient on the frequency droop, which leads to the steady-state value of the output
active power, which is different from the reference value, after the disturbance. The third
contradiction arises between the response speed to the change in active power and the
frequency deviation. For an appropriate active power response, it is necessary to decrease
the damping coefficient, and, on the contrary, to increase the latter for an effective response
to frequency deviations. Thus, taking into account the above challenges, the development
of adaptive control algorithms should be accompanied by the development of the most
appropriate VSG structures for them. This paper attempts to resolve the aforementioned
issues in the current state of the art in adaptive control of VSG. The main contributions of
this paper can be summarized as follows:

1. An alternative current-controlled VSG structure (CC-VSG), which avoids the issues
inherent in the conventional VC-VSG structure, is proposed. The transfer function of
the active power control loop is developed for the considered CC-VSG, with the help
of which it is proven that there are no contradictions given earlier.

2. Due to the properties of the proposed CC-VSG structure, an adaptive control algorithm
is developed that independently changes the three main parameters of the VSG, which
affect the inertial response and damping.

3. For the adaptive virtual inertia control of the CC-VSG, an algorithm based on nonlinear
sigmoid function is developed. Due to this, it became possible to flexibly control the
inertia value by exceeding the RoCoF setting throughout the transients. In addition,
the DC-side energy consumption during low frequency deviations is reduced without
negative impact on the transient performance. Such control possibilities are difficult
to implement in case of conventional algorithms based on the bang–bang control.

4. For the adaptive control of virtual damper winding of the CC-VSG, the damper
winding virtual current is used as a controlled signal. This solution allows to improve
the damping properties of the CC-VSG and, at the same time, excludes the impact on
the swing equation, the active power response, as well as the frequency droop.

This paper is organized as follows. Section 2 provides a comparative analysis of the
conventional and proposed enhanced VSG structures, as well as the results of theoretical
studies proving the advantages of the proposed structure. Section 3 considers the impact of
VSG parameters on the dynamic response. Based on the obtained transient characteristics
in the time domain, the adaptive control algorithms are developed. Section 4 describes
the approaches to the implementation of the developed adaptive control algorithms and
outlines their properties and capabilities. Section 5 presents the results of time-domain sim-
ulation for the equivalent power system with CIG, proving the properties and capabilities
of both the CC-VSG structure and the adaptive control algorithms proposed in this paper.
Finally, in Section 6, the conclusions are drawn.

2. Comparative Analysis of Conventional and Enhanced VSG Models

The general view of the studied electrical network with the VSG-based power con-
verter control system and its simplified representation are shown in Figure 1. The network
contains a grid-connected CIG with an LC-filter with parameters Lf and Cf. An ideal capaci-
tor of infinite capacity CDC is used as the primary energy source. To reduce the complexity
of the equations, only the inductive component Lg of the aggregated grid impedance be-
tween the power converter and the external grid is considered (Rg = 0). The external grid is
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represented as an ideal AC voltage source with Ug, which determines the grid frequency
ωg. The parameters of the test scheme are given in Appendix A.
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Figure 1. Test electrical network: (a) general diagram and control system structure;
(b) simplified representation.

In the control system, the parameters Pref and Qref are the active and reactive power
references, Pout and Qout are the output active and reactive power, icv is the converter output
current, uo and io are the voltage and current at the point of common coupling behind an
LC-filter, EVSG and θVSG are the magnitude and phase of the VSG output voltage, and δVSG
is the angle between the voltage phase of the VSG and the external grid. The regulation of
the output active and reactive power is provided by controlling the phase and magnitude of
the VSG output voltage, respectively. The inner control loop is a typical part of the control
system and consists of double proportional-integral controllers, which form the reference
signal uabc,m for pulse-width modulation (PWM) with the switching frequency fsw.

2.1. Conventional VC-VSG Model

Based on the main idea of the VSG-based control system, which lies in the imitation
of properties and capabilities of synchronous generation, three main control loops can
be identified: (i) inner control loop, (ii) model of a virtual synchronous generator, and
(iii) outer control loop [14]. It is known that the VSG inertial response is determined by
the swing equation of the virtual rotor used in the control structure. At the same time,
by introducing a damping coefficient D, an approximate consideration of the damping
properties of the synchronous generator is performed. In the conventional implementation
of the VC-VSG, the damping coefficient and the droop coefficient are quite often combined,
and the swing equation is transformed to the form (1):{

Pre f − Pout − D
(

ωVSG −ωre f

)
= 2HVSG

dωVSG
dt

dθVSG
dt = ωVSGωb

(1)

where ωVSG is the actual VSG angular frequency, pu; HVSG is the VSG inertia constant, s;
and ωb is the base rotor speed, rad/s.

Such an implementation allows to exclude the use of the phase-locked loop controller
(PLL) in the control system, because instead of the grid frequency ωg the reference frequency
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value ωref is used, and therefore to exclude the inherent problems of PLL stability, especially
in weak and ultra-weak grids [34]. However, despite the seeming effectiveness of the
specified implementation, it has fundamental contradictions outlined in the introduction.
Thus, the structural diagram of the active power control loop for the conventional VC-VSG
structure has the form shown in Figure 2.
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Since this paper proposes an approach to improve the VSG inertial response, it is
sufficient to consider only the active power control loop. This loop forms the output
active power and the frequency of the VSG, which directly affect the transients associated
with grid frequency deviations. By evaluating the nature of changes in these variables,
the shortcomings inherent in the conventional VC-VSG structure can be analyzed, and
the merits of the proposed enhanced structure of the CC-VSG can be proven. In this
regard, a closed-loop transfer function of the active power control loop is formed for each
structure under consideration. For the VC-VSG, the scheme of such a function is shown in
Figure 3, where ks is the value of synchronizing power at zero angle δVSG0 and is defined
as ks = EVSGUg/Lg [35]. The consideration of the transfer function is the first step in the
development of an adaptive algorithm because it allows for carrying out the analysis at the
unit control level itself, i.e., to analyze a single-input and single-output system. This makes
it possible to assess the impact of a particular parameter on a particular output value and
also to assess the transient features of a particular loop in the control system.
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2.2. Enhanced CC-VSG Model

To exclude the previously indicated shortcomings of the VC-VSG, which prevent the
application of effective adaptive approaches to control the virtual inertia and the damping
coefficient, this paper proposes an enhanced structure of the CC-VSG [36,37]. The structural
diagram of the considered CC-VSG is shown in Figure 4a. The peculiarity of this VSG-
based control system is the use of two control loops for the formation of the desired CIG
power references. The first loop determines the value of the main active and reactive
power references Pref and Qref, which can be set either from the generating unit control
or from the plant level control. The second loop takes into account the electromagnetic
and electromechanical equations of the VSG, resulting in the formation of values PVSG
and QVSG. The resulting values Pref

* and Qref
* are formed by summing the values from

the above two loops and are then used to determine the current references icvdqref for the
inner current control loop. The current control is configured with proportional-integral
controllers with Kpcc and Kicc gains similar to the conventional VC-VSG. The VSG control
within the considered CC-VSG structure is described according to (2)–(6) in the rotor
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synchronous frame with the q-axis 90◦ leading the d-axis. Figure 4b depicts the power
converter control time scale. As can be seen, the response time of the inner current control
loop is often around tenths of ms, and that of the inertia control is more than ten times
larger. Therefore, for the inertia control time scale dynamic analysis, the current control
loop dynamic can be considered to instantaneously track its reference values.

dψd
dt = ωb

(
uod + Rvid,VSG + ωVSGψq

)
dψq

dt = ωb
(
uoq + Rviq,VSG −ωVSGψd

) (2)

dψ1q

dt
= ωb

(
−R1qiq,VSG −

R1q

L1q
ψ1q

)
=

1
τ1q

(
−L1qiq,VSG −ψ1q

)
(3)

dψ f d

dt
= Ku

(
Qset,VSG −QVSG

Uo

)
(4)

{
id,VSG =

ψ f d−ψd
Lv

iq,VSG =
ψ1q−ψq

Lv

(5)

{
PVSG = uodid,VSG + uoqiq,VSG
QVSG = uoqid,VSG − uodiq,VSG

(6)

where ψd, ψq, and ψ1q are the virtual machine fluxes in d-q axes, R1q, L1q, and τ1q are
the virtual damper winding parameters, Qref,VSG is the virtual machine reactive power
reference, Ku is the reactive power control loop gain, uodq are the terminal voltages in d-q
axes, Uo is the rms voltage at the connection point of the LC-filter capacitance, and idq,VSG
are the virtual machine currents in d-q axes.
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From Figure 4a, it follows that the main difference of the swing equation in the CC-VSG
compared to the conventional VC-VSG structure is the absence of the damping coefficient D.
Within the CC-VSG structure, the damping contribution is determined by a virtual damper
winding, the quality of which depends on its parameters: time constant τ1q and inductance
L1q, which are the analogue of the D coefficient. However, the described CC-VSG structure
is PLL-free. The proposed VSG model is current-controlled, so the output parameters of
the VSG model are the currents, and the input parameters for the control system are the
voltages at the point of common coupling of the CIG. Accordingly, the equations describing
the external grid have the following form (7) and (8) (the filter inductance Lf is taken into
account in the grid inductance Lg):

duod
dt = ωb

C f
icvd − ωb

C f
iod + ωbuoq

duoq
dt = ωb

C f
icvq − ωb

C f
ioq −ωbuod

(7)


diod
dt = ωb

Lg
uod − ωb

Lg
Ug sin δVSG −

ωbRg
Lg

iod + ωbioq
dioq
dt = ωb

Lg
uoq − ωb

Lg
Ug cos δVSG −

ωbRg
Lg

ioq −ωbiod
(8)

To form the closed-loop transfer function of the active power control loop of the
CC-VSG, the linearization of Equations (1)–(8) around the steady-state operating point
and the Laplace transform are performed. At the same time, a number of assumptions
similar to the case of VC-VSG are to be used: (i) the resistances Rv and Rg are excluded,
(ii) the steady-state operation is considered, i.e., dψq/dt = dψd/dt = 0 and ωVSG = 1,
(iii) PVSG0 = QVSG0 = id0,VSG = iq0,VSG = 0, and (iv) the current control loop is excluded. The
output active power of the converter Pout, taking into account the structure of the CC-VSG
and the assumptions made, is as follows (9):

∆Pout = ∆PVSG + Pre f = ∆uodicvd0 + uod0∆icvd + ∆uoqicvq0 + uoq0∆icvq + Pre f
= Uo sin(δVSG0)∆icvd + Uo cos(δVSG0)∆icvq + Pre f = Uo∆icvq + Pre f

(9)

The output power of the virtual generator is in turn determined by the following (10):

∆PVSG = ∆uodid0,VSG + uod0∆id,VSG + ∆uoqiq0,VSG + uoq0∆iq,VSG
= Uo sin(δVSG0)∆id,VSG + Uo cos(δVSG0)∆iq,VSG = Uo∆iq,VSG

(10)

It follows from (9) and (10) that it is only necessary to linearize the iq,VSG current
Equation (10). As a result, Equation (11) is obtained:

∆iq,VSG =
∆ψ1q − ∆ψq

Lv
(11)

The virtual current along the q-axis depends on two fluxes. In order to find the
increment of the virtual damper winding flux ∆ψ1q, the corresponding transformation of
(3) is performed, and to find the increment of virtual stator flux along the q-axis ∆ψq, the
first equation of (2) is considered, taking into account the assumptions made. As a result,
the Equations (12) and (13) are obtained, respectively:

∆ψ1q =
−L1q

1 + sτ1q
∆iq,VSG (12)

∆ψq = −∆Uod (13)

where s is the Laplace operator.
In order to find ∆Uod, the first equation of (8) is linearized and the grid current io is

expressed through the current at the converter terminals icv. As a result, Equation (14),
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which depends on the increment of current ∆icv and the angle ∆δVSG, is obtained. The last
variable is found in the swing equation and is described by (15).

∆Uod = 1
1−LgC f

[
−Lg∆icvq + Ug cos(δVSG0)∆δVSG

]
= XC f Lg

[
−Lg∆icvq + Ug cos(δVSG0)∆δVSG

] (14)

∆δVSG = − ωb
2HVSGs2 ∆PVSG (15)

Combining (9)–(15), a closed-loop transfer function for the active power control loop
is formed, the scheme of which is shown in Figure 5. This transfer function is obtained on
the basis of the considered structure of the grid-connected VSG system (Figure 1) with the
proposed CC-VSG control (Figure 4a) and can be divided into three parts: inertia control,
virtual damper winding equations, and grid equations, which are obtained taking into
account the assumptions given earlier.
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2.3. Differences in Dynamic Performances of the VC-VSG and CC-VSG Structures

To compare the features of the VC-VSG and CC-VSG models, the test grid shown in
Figure 1 is used. From the obtained closed-loop transfer functions for the active power
control loop of the VC-VSG and CC-VSG in Figures 3 and 5, it follows that there are
two input variables Pref and ωg. Among the output variables, the main interests are
∆Pout and ∆ωVSG, which directly determine the dynamic response of the system. These
inputs/outputs are discussed below.

(1) ∆Pout/∆Pref. Based on Figure 3, the closed-loop transfer function from the input
active power reference of the VC-VSG to the output active power is as follows (16):

GP/P_VC−VSG(s) =
∆Pout

∆Pre f
=

ωbks

2HVSGs2 + Ds + ωbks
(16)

Equation (16) is a standard second-order system for which the main coefficients
determining the dynamic properties of the system, the undamped natural frequency ωn
and the damping ratio ζ, are obtained by the well-known Formula (17):

ωn_VC−VSG =

√
ksωb

2HVSG
, ζVC−VSG =

D
2
√

2HVSGksωb
(17)
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Based on Figure 5, a similar transfer function is made for the CC-VSG (18):

GP/P_CC−VSG(s) =
∆Pout
∆Pre f

=
2HVSG Lvτ1qs3+2HVSG(Lv+L1q)s2+U0ωbXC f Lg τ1qs+U0ωbXC f Lg

2HVSGτ1q

(
Lv+XC f Lg Lg

)
s3+2HVSG

(
Lv+L1q+XC f Lg Lg

)
s2+U0ωbXC f Lg τ1qs+U0ωbXC f Lg

(18)

The characteristic equation of the GP/P_CC-VSG(s) function is a third-degree polynomial,
which can be expressed as follows (19):

as3 + bs2 + cs + d = 0 (19)

where:

a = 2HVSGτ1q

(
Lv + XC f Lg Lg

)
, b = 2HVSG

(
Lv + L1q + XC f Lg Lg

)
, c = U0ωbXC f Lg τ1q, d = U0ωbXC f Lg .

Obviously, the third-order system can be represented as a series connection of a
first-order lag function with a time constant T1 and a second-order function having in
the aggregate one real and two complex conjugate roots, respectively. The location of
the roots of the characteristic equation and, correspondingly, the dynamic properties of
GP/P_CC-VSG(s) function depend on three coefficients: ζ, ωn, and the time constant T1.

For their determination, it is suitable to use parameters A and B of Vyshnegrad-
skii’s diagram, reflecting the stability of the third-order system [38,39]. For this purpose,
Equation (19) is reduced to the normalized form (20) by dividing all terms of the equation
by a free term and by introducing a new variable q = s/ 3

√
d/a.

q3 + Aq2 + Bq + 1 = 0 (20)

where

A = b
3√a2d

= 3

√√√√ 2HVSG

(
Lv+L1q+LgXC f Lg

)3

τ1q
2U0ωbXC f Lg

(
Lv+LgXC f Lg

)
B = c

3√ad2
= 3

√
U0ωbXC f Lg τ1q

2

2HVSG

(
Lv+LgXC f Lg

)
For Equation (20), the coefficients of interest are obtained by the following Formula (21):

T1 =
Q
ωn

, ωn =
3

√
Q

d
a

, ζ =
A3
√

Q2 − 1
2Q

(21)

where Q = 3
√

q is a positive real root of the cubic equation q3 − Bq2 + Aq + 1 = 0.
The calculations based on (18)–(21) confirm that the damping properties of the CC-

VSG depend on the parameters τ1q and L1q, which are analogue to the D coefficient in the
conventional VC-VSG model (17). In addition, it is important to note that the transfer func-
tion (18) contains a third-degree polynomial in the numerator similar to the denominator,
the zeros of which affect the quality of the transient performance. This polynomial will
always have a coefficient before the high-order variable that is smaller than the same value
in the denominator. This feature leads to the fact that the roots of the numerator, which will
determine the rise time during the transients, will be the most distant to the imaginary axis.

Figure 6a shows the Bode plots of the closed-loop transfer function ∆Pout/∆Pref for
the conventional VSG structure. As noted earlier, the GP/P_VC-VSG(s) function is a standard
second-order system, and as the damping ratio ζ increases, the value of overshoot decreases
(the Bode plots show that the resonance peak is being suppressed gradually by increasing
the damping ratio). However, as is more important in the framework of the adaptive
algorithms, the increase in damping is accompanied by a decrease in the bandwidth
and, consequently, by a decrease in the response speed of the control system (rise time is
inversely proportional to the bandwidth). As a result, in the case of adaptive change of
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the damping coefficient D, it will be necessary to find a trade-off between the ability to
suppress overshoot and the response speed of the control system.
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Figure 6. Bode plots of GP/P(s) with different damping ratios: (a) VC-VSG, (b) CC-VSG.

For the GP/P_CC-VSG(s) function, an increase in the damping coefficient ζ similarly
decreases the overshoot (Figure 6b). However, in contrast to the VC-VSG, an increase in ζ
increases the bandwidth, which provides a faster dynamic response of the active power.
This feature is related to the removal from the imaginary axis of one of the numerator
roots as ζ increases. When ζ increases from 0 to 1, this root corresponds to a first-order lag
function, and when ζ > 1, to a second-order function, whose roots already become real.
Thus, the increase in the damping properties of the CC-VSG due to τ1q and L1q increases
the system’s ability to suppress overshoot and increase the response speed when the active
power reference changes, i.e., the system’s dynamic response to changes in both active
power and frequency improves simultaneously. Due to this feature of the CC-VSG, which
solves the first of the three fundamental contradictions outlined in the introduction, an
adaptive algorithm for controlling the damping properties of the system can be applied.
Such an algorithm will make it possible to obtain a fast response of the active power without
overshooting and low damping of the emerging oscillations. As a result, there is no need
to introduce synthetic reduction of the damping coefficient in order to provide a trade-off
between response speed and overshoot. The pattern of variation of τ1q and L1q to form the
required damping ratio ζ is discussed in Section 3.

(2) ∆Pout/∆ωg. The closed-loop transfer function for the considered control loops is
given in (22) and (23):

GP/ω_VC−VSG(s) =
∆Pout

∆ωg
=
−ωbks(D + 2HVSGs)
2HVSGs2 + Ds + ωbks

(22)

GP/ω_CC−VSG(s) =
∆Pout

∆ωg
=
−2HVSGd

(
τ1qs2 + s

)
as3 + bs2 + cs + d

(23)

As can be seen from (22) and (23), the numerator of both transfer functions has changed.
The differences appear in the location of the zeros of the transfer functions and their values
in the steady-state. The Bode plots for the VC-VSG and CC-VSG are shown in Figure 7a,b,
respectively. The obtained diagrams indicate a decrease in the magnitude at the resonant
frequency with an increase in the damping ratio for both transfer functions. However, for
the GP/ω_VC-VSG(s) function, when ζ increases, a similar increase in the steady-state value
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of active power is observed (it is expressed in different values of the steady-state gain for
the VC-VSG). This behavior of the system is due to the impact of the D coefficient on the
frequency droop. In contrast, for the CC-VSG, the steady-state value of the output active
power is independent of ζ.
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Figure 7. Bode plots of GP/ω(s) with different damping ratios: (a) VC-VSG, (b) CC-VSG.

It was noted earlier that the output active power for both VSG structures depends
on the input variables Pref and ωg. Consequently, the mathematical response of the active
power can be represented using Equation (24):

Pout = GP/P(s)Pre f − GP/ω(s)∆ωg (24)

Using (24), the output active power in steady-state (s = 0) for both VSG models can be
calculated as follows:

Pout_VC−VSG = Pre f + D∆ωg (25)

Pout_CC−VSG = Pre f + 0∆ωg = Pre f (26)

Comparing (25) and (26), it is obvious that as the D coefficient increases, the frequency
droop increases, leading to an increase in the steady-state value of output active power
for the VC-VSG. For the CC-VSG, the value of output active power is not connected with
the damping properties of the system, and in case of the addition of droop coefficient will
depend only on its value. Thus, the enhanced structure of the CC-VSG allows for solving
the second of the three contradictions indicated in the introduction, which is related to the
impact of the damping coefficient within the VC-VSG structure on the frequency droop.

(3) ∆ωVSG/∆ωg. The closed-loop transfer functions from the grid frequency to the virtual
generator frequency for the VC-VSG and CC-VSG have the form (27) and (28), respectively:

Gω/ω_VC−VSG(s) =
∆ωVSG

∆ωg
=

ωbks

2HVSGs2 + Ds + ωbks
(27)

Gω/ω_CC−VSG(s) =
∆ωVSG

∆ωg
=

d
(
τ1qs + 1

)
as3 + bs2 + cs + d

(28)

The Bode plots for both functions (27) and (28) are shown in Figure 8. In this case,
the frequency response of both control systems is the same. As can be seen, the value
of overshoot decreases as the damping ratio increases. This also achieves a decrease in
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the RoCoF and magnitude of frequency deviation. The zeros of the numerator of the
Gω/ω_CC-VSG(s) function do not have a significant impact on the quality of the transient
performance. Thus, in this case, high values of the damping ratio are preferable for both
the VC-VSG and the CC-VSG.
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Figure 8. Bode plots of Gω/ω(s) with different damping ratios: (a) VC-VSG, (b) CC-VSG.

Summarizing the dynamic properties of the control systems under the changes in the
active power and grid frequency, it follows that, in contrast to the conventional structure
of VC-VSG, the proposed structure of CC-VSG allows simultaneously providing a fast
response of the output active power and a slow response under the changes in the grid
frequency. In the case of an adaptive change of the damping coefficient D for the VC-VSG,
the response speed of the active power and frequency changes in one direction, i.e., the
response of the frequency and active power will be either slow or fast at the same time. In
this case, it becomes necessary to determine the control priority: either in active power or
in frequency. Such behavior of the control system is undesirable because the quality of the
transient performance inevitably decreases, and the adaptive control does not provide a
significant positive impact. Thus, by using the proposed CC-VSG, the third contradiction is
solved, which consists of the need to find a trade-off between the active power control and
the frequency control.

Based on the presented theoretical analysis, it follows that in the case of using the
proposed structure of CC-VSG, the adaptive algorithms can be applied to flexibly change
the control system parameters: HVSG, L1q, and τ1q. By changing them, it becomes possible
to achieve the desired quality of the transient process, regardless of its stage of occurrence
and its causes. The latter is determined by the absence of contradictions in the impact of
these coefficients on the dynamic response of the control system.

3. Impacts of Virtual Inertia and Damping Coefficient on the Dynamic Response of the
CC-VSG under Disturbances

During the development of an adaptive algorithm for changing the parameters of
the CC-VSG, it is necessary to understand the impact of these parameters on the dynamic
response of the system. Therefore, for a visual comprehension of the resulting relationships,
it is suitable to use the transient functions in the time domain. In this regard, the closed-
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loop transfer function from the input active power ∆Pref to the virtual generator frequency
∆ωVSG (29) is written and the inverse Laplace transform (30) is used:

Gω/P_CC−VSG(s) =
∆ωVSG
∆Pre f

=
XC f Lg Lgs

(
τ1qs + 1

)
as3 + bs2 + cs + d

(29)

∆ωVSG(t) =
e−ζθsinh(εθ)(T2k1 −QT2k1ζ + Qk2 − ζk2)− ε

[
e−θ/Q − e−ζθ cosh(εθ)

]
(k2 − k1QT2)

T2
2 ε(Q2 − 2ζQ + 1)

(30)

where ε =
√

ζ2 − 1, θ = t·ωn, T2 = 1/ωn, k2 = XC f Lg Lgτ1q, k1 = XC f Lg Lg.
Under disturbances, the response of the CC-VSG is similar to the behavior of conven-

tional synchronous generation and is described by the well-known power-angle curve [24].
On this curve, it is common to identify four characteristic stages emerging under a distur-
bance: the first and third are associated with the acceleration of the virtual rotor, and the
second and fourth with its deceleration [18]. The transition from one stage to another is
easily determined by comparing the deviation of the VSG angular frequency ∆ωVSG, rate
of change dωVSG/dt, and their product with zero [26]. Each of these stages corresponds to
a different adaptive control objective.

Based on the swing equation used in the CC-VSG (Figure 4a), it follows that the
virtual inertia HVSG is inversely proportional to the rate of change of angular frequency
dωVSG/dt. Consequently, during the acceleration stage, a larger value of HVSG is required
to reduce both the magnitude of the frequency deviation and RoCoF. In contrast, during the
deceleration stage, the magnitude of angular frequency deviation is at its maximum and a
small value of HVSG is required to recover the angular frequency to its steady-state value as
quickly as possible. Figure 9 shows the transient characteristics for (30) at different values
of HVSG, which confirm the conclusions made and define the objective of the adaptive
change in the virtual inertia at each of the outlined stages.
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Figure 9. The angular frequency deviation under different virtual inertia values.

As indicated earlier, for the developed CC-VSG structure, the degree of damping
depends on two coefficients: the time constant τ1q and the inductance L1q of the virtual
damper winding. Their impact on the dynamic response is determined by the characteristic
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equation of the transfer function Gω/P_CC-VSG(s), which is a third-degree polynomial. This
equation can be considered on the A–B plane (Figure 10), through which τ1q (31) and L1q
(32) are expressed:

τ1q =
3

√√√√B32HVSG

(
Lv + LgXC f Lg

)
UoXC f Lg ωb

(31)

L1q = −Lv − LgXC f Lg + A
3

√√√√τ2
1q

(
Lv + LgXC f Lg

)
UoXC f Lg ωb

2HVSG
(32)
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Figure 10. Vyshnegradskii’s stability diagram in the A–B plane.

The main objective of the damping loop is to provide effective oscillations damping
and stability of the system in general. Based on this objective, the adaptive control is carried
out within the framework of the conventional VC-VSG structure [40]. However, due to
the proposed enhanced structure of the CC-VSG, it is possible to increase the degree of
freedom of the system, and by changing the two parameters associated with damping, to
affect another dynamic characteristic of the system, thereby significantly improving the
quality of the transient process. In this regard, during the acceleration stage, in addition
to increasing the damping, it is necessary to reduce the rise time, which contributes to
reducing the maximum deviation and the rate of the change of frequency. For this purpose,
a point in the ECF area must be selected within which the condition ζ ≥ 1 is always satisfied
(Figure 10). The limitation of the rise time is achieved by reducing the time constant T1 of
the first-order lag function, which corresponds to the moving of the real root ρ = −1/T1 of
the characteristic Equation (29) from the imaginary axis. The real root must be to the left
of the complex conjugate roots on the complex plane, which corresponds to the area I in
Figure 10. In accordance with the indicated conditions on the A–B plane, the movement
of the real root to the left corresponds to the movement to the right of the lines of equal
maximal absolute values of the root furthest from the imaginary axis, which are described
by Equation (33):

B = 1/ρ + Aρ− ρ2 (33)

At the deceleration stage, in order to maintain the damping ratio ζ ≥ 1, it is necessary
to provide a high decay rate of the transient process, which will correspond to a rapid
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recovery of the virtual rotor angular frequency to the steady-state value. For this purpose,
it is necessary to increase the absolute value of the real part of the complex conjugate roots,
which corresponds to the lines of equal response speed (η) in Figure 10 and is depicted by
Equation (34): {

B = Aη − η2 + 1/η
B = 1/(A− 2η) + 2η(1− 2η)

(34)

The hypotheses made about the parameters’ impact on the dynamic response of the
system are confirmed by the obtained transient characteristics in the time domain (30).
Figure 11a shows two points with different values of A and B. The transient characteristics
in Figure 11b prove that the selection of Point 2 on the CF line, corresponding to a larger
value of ρ, allows achieving a smaller deviation magnitude and rate of change of the VSG
frequency, which is the major objective of adaptive control at the acceleration stage.
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Figure 11. (a) Vyshnegradskii’s diagram with different values of ρ; (b) transient characteristics of
the angular frequency deviation, corresponding to the Points 1 and 2 and considered during the
acceleration stage.

Figure 12a shows Points 1 and 2, which are characteristic of the deceleration stage.
The transient response in the time domain in Figure 12b proves that the selection of Point 2
with a larger value of η contributes to a more rapid recovery of the angular frequency to the
steady-state value. Thus, by selecting the necessary values of A and B and corresponding
τ1q and L1q at each stage of the transient process, it is possible to obtain the desired
characteristics of the dynamic response of the developed CC-VSG structure.
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Figure 12. (a) Vyshnegradskii’s diagram with different values of η; (b) transient characteristics
of the angular frequency deviation, corresponding to Points 1 and 2 and considered during the
deceleration stage.
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4. Adaptive Adjustment Strategy for the CC-VSG
4.1. Proposed Adaptive Virtual Inertia Control

In accordance with the logic and objectives of the adaptive control of VSG parame-
ters given in Section 3, this section describes the proposed implementation of the adap-
tive algorithm for changing the virtual inertia, which is based on the nonlinear sigmoid
function (35):
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The coefficient bH determines the sign of the cubic function based on the VSG fre-
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at different stages of the transient process. 

(35)

where H0 is the inertia constant of the VSG in the normal steady-state, s; ∆fVSG = fVSG − f 0 is
the deviation of the VSG frequency fVSG from the reference value f 0, where fVSG = ωVSG/2π,
Hz; dfVSG/dt is the rate of change of VSG frequency, Hz/s, and kH1–H4 are the coefficients
of the adaptive function.

From (35), it follows that only information about the current values of the VSG fre-
quency fVSG and its RoCoF dfVSG/dt are used for the proposed adaptive control of the
VSG virtual inertia HVSG. The advantage of the proposed approach is the use of fVSG and
dfVSG/dt directly from the swing equation within the inertia control, taking into account
the corresponding transformations, without the need for a PLL controller to measure the
frequency and a derivative function to determine the RoCoF, which can lead to the CIG
instability.

The value of H0 is set on the basis of the maximum value of VSG inertia Hmax,
which is determined by the capacitance of the DC bus (36) and is calculated according to
Equation (37):

Hmax =
CDCU2

DC
2Sn

(36)

H0 = 0.5Hmax (37)

where CDC is the capacitance of the DC bus, F; UDC is the DC bus reference voltage, V; and
Sn is the converter rated power, VA.

At the same time, the minimum value of the VSG inertia Hmin should also be limited to
a value close to zero (e.g., Hmin = 0.1 s) to avoid dividing by zero in the VSG swing equation.

The coefficient kH1 determines the ranges in which the value of HVSG will change
under disturbances with the ability to account for the rate of change of frequency RoCoFset.
This coefficient is defined on the basis of the cubic function (38):
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In Equation (38), the coefficient aH determines the initial value of the coefficient kH1
when RoCoF is equal or close to zero. This forms the initial range {Hmax; Hmin} for the
change in the VSG inertia constant. The value of the coefficient aH is chosen in the following
range (39):
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The coefficient bH determines the sign of the cubic function based on the VSG frequency
deviation (40), which is necessary for the proper operation of the algorithm at different
stages of the transient process.

bH = sign( fVSG − f0) (40)

The coefficient cH allows for changing the form of the function for kH1 with respect to
the RoCoFset (Hz/s), which helps the algorithm for the VSG adaptive inertia to take into
account the limitations on the value of RoCoF throughout the transient process. The value
of this coefficient is derived according to Equation (41):
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The proposed algorithm also assumes the possibility of excluding the RoCoF control
by setting a large value of RoCoFset. In this case, the HVSG variation range is determined
only by the coefficient aH in (38).

The resulting plot of the coefficient kH1 is shown in Figure 13, where curve 1 corre-
sponds to the case with ∆fVSG ≥ 0 and curve 2 corresponds to ∆fVSG < 0. At the same time,
since the coefficient kH1 can be either greater or less than zero, the sigmoid function for
controlling the VSG virtual inertia can be of two types (curve 1 with kH1 ≥ 0 or curve 2
with kH1 < 0), as shown in Figure 14.
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In the above Equation (35) for the adaptive virtual inertia, the coefficients kH2, kH3,
and kH4 are used to enhance the dynamic response of the CIG during the transients. The
coefficient kH2 is necessary to increase the sensitivity of the adaptive inertia algorithm at the
stage of oscillation damping by changing the slope of the sigmoid function. This coefficient
is obtained by Equation (42):

kH2 = dH +

[
−mH +

2·mH
1 + exp(−nH ·|∆ fVSG|)

]
(42)

The coefficient dH defines the initial value of the coefficient kH2 and, accordingly,
the initial slope of the sigmoid (35). This slope generally defines the system response
to the value of ∆fVSG and dfVSG/dt. When the oscillation damping starts, the control
of virtual inertia by the sigmoid function may not be sensitive enough in comparison
with the conventional bang–bang control. In this regard, the increase in the slope of the
sigmoid depending on ∆fVSG, as seen from (42), allows for improvement in the damping
process when frequency deviations are still large enough but at the same time do not
lead to undesirable VSG inertia switching when small deviations occur. Consequently,
the coefficient mH defines the degree of increase in the coefficient kH2 for large frequency
deviations. The coefficient nH defines the slope of the characteristic for the coefficient kH2.
Thus, the value of sensitivity to frequency deviations ∆fVSG is set. The resulting plot of the
coefficient kH2 is shown in Figure 15.
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Figure 15. Variable kH2 coefficient.

The use of the virtual inertia relationship on a complex combination of parameters
∆fVSG and dfVSG/dt in (35), in contrast to the conventional approach, where only their
product is used [41], is due to the need to exclude the excessive change in the HVSG
inertia to H0, when the frequency deviation ∆fVSG crosses zero. The latter can lead to an
undesirable sharp increase in RoCoF at these moments, as shown in Figure 16.
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Such a problem can occur if there is a RoCoF limitation at the frequency recovery
stage, due to which the value of HVSG inertia becomes greater than H0. In the conventional
approach without a RoCoF limitation in the adaptive virtual inertia algorithm, a change in
the sign of ∆fVSG is always followed by a change in HVSG from a small value (HVSG < H0)
to a large value (HVSG > H0) [25]. In the proposed algorithm, in this case, it is necessary, at
the current high value of inertia, to remain at a value greater than H0, without excessive
reduction of inertia to H0, since if ∆fVSG = 0 and kH3 = kH4 = 0, then HVSG = H0 according
to (35). A similar performance of the adaptive inertia algorithm can be achieved by using,
together with ∆fVSG, an additional term in the form of dfVSG/dt, where the coefficient kH3
defines the necessary sign of the term (43), and the weight coefficient kH4 defines the level
of its impact (44).

kH3 = sign( fVSG − f0) (43)
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Figure 16. The impact of VSG inertia changes on RoCoF at different variants of sigmoid
function implementation.

Therefore, due to the coefficient kH3, the addition to ∆fVSG in the form of dfVSG/dt
has the same sign as the current value of ∆fVSG, which does not lead to a divergence in
the adaptive inertia algorithm of the VSG. The change in the coefficient kH4 according to
the values of dfVSG/dt and ∆fVSG is shown in Figure 17. When ∆fVSG is close to zero and
dfVSG/dt has a sufficiently large value, the coefficient kH4 > 0 and the addition of dfVSG/dt to
∆fVSG is performed, which allows to exclude that the exponent index at ∆fVSG = 0 is zero for
the considered sigmoid function (35). At large values of ∆fVSG, the value of dfVSG/dt tends
to zero; hence, the coefficient kH4 also tends to zero and does not affect the performance of
the algorithm.

Summarizing the above, the principle of operation of the proposed adaptive virtual
inertia algorithm is shown in Figures 18 and 19. When the VSG frequency deviation occurs
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(∆fVSG > 0) and its rate of change increases (dfVSG/dt > 0) up to the moment when the
RoCoF reference is exceeded, an appropriate increase in both the virtual inertia (HVSG > H0)
and the coefficient kH1 occurs (points a→a1 in Figure 18). The latter allows increasing the
HVSG range, which contributes to reducing both the magnitude of the frequency deviation
and RoCoF. Then HVSG is equal to Hmax, as kH1 is equal to maximum value, until dfVSG/dt
becomes less than the RoCoF reference (a1→a2). After the mentioned moment, kH1 starts
decreasing with dfVSG/dt, which reduces the HVSG range and, consequently, the current
value of the virtual inertia (a2→b). The next stage is frequency recovery, due to which the
VSG inertia decreases to a minimum value (HVSG < H0). However, since the value of RoCoF
increases when the inertia decreases, in order to limit it to the reference value RoCoFset,
the coefficient kH1 decreases and its sign changes (b→b1). Thus, HVSG starts to increase. As
a result, there may be some exceeding of RoCoFset due to reaching the maximum control
capability of the CIG. Similar to the previously mentioned, HVSG remains equal to Hmax, as
kH1 is equal to minimum value, until dfVSG/dt becomes less than RoCoFset (b1→c). After
the change of sign ∆fVSG < 0 there is an appropriate increase of the coefficient kH1 up to the
maximum value due to the requirement of HVSG > H0 at this stage of the transient process.
Then, kH1 begins to decrease, which sequentially decreases the HVSG (c→d). When the sign
of dfVSG/dt changes (dfVSG/dt > 0), the virtual inertia decreases (HVSG < H0). However, in
order to prevent exceeding the RoCoFset, the coefficient kH1 starts to change depending
on the controlled dfVSG/dt value, which can lead to an inverse increase in inertia HVSG
(d→e). The described process continues until the nominal VSG frequency is reached. Table 1
summarizes the operation of the proposed algorithm.

4.2. Proposed Adaptive Virtual Damper Winding Control

In order to maximize the performance of the CC-VSG in the case of grid frequency
deviations, in addition to the adaptive virtual inertia control, an adaptive change in the
parameters of the virtual damper winding (τ1q and L1q) is also proposed. The operating
principle of the proposed adaptive algorithm is based on changing the coefficients A and
B in (31) and (32) that are used to determine the necessary values of τ1q and L1q. As can
be seen from (31) and (32), the values of the control system variables (HVSG, Lv and ωb)
and the network parameters (Cf, Lg and Uo) are required to calculate the parameters of
the virtual damper winding. Regarding the first set of data, there are no difficulties—the
parameters of the control system are known. Meanwhile, the virtual inertia HVSG, given the
proposed adaptive control in Section 4.1, becomes a time-varying variable that can then be
used to calculate τ1q and L1q. The value of the output filter capacitance Cf is a pre-calculated
parameter and does not change during the converter operation. In order to determine the
current equivalent grid inductance Lg, it is possible to use its online estimation according to
various algorithms currently proposed [42]. In addition, the delays in measuring Uo should
be taken into account. The studies on the operation of the proposed adaptive CC-VSG
control and its optimization on the example of practical grid operating conditions, taking
into account the online impedance estimation and delays in the voltage measurement, will
be the scope of future work. Thus, in this paper it was taken into account that the parameter
Lg is known, and the voltage Uo is entered into the control algorithm without any delays.

The selection of certain coefficients A and B to achieve the required dynamic response
is made on the basis of the theoretical analysis given in Section 3. In normal steady-state, in
order to provide high stability margins and damping ratio (ζ ≈ 1), as well as the response
speed of the system (η ≈ 1), the optimal solution is to locate at the point with coefficients
A = 3 and B = 3 (Figure 10). When a VSG frequency deviation occurs, to ensure the
smallest RoCoF value at the first stage of the transient, the system response speed must be
reduced, but the damping ratio and stability margins must also be high. To achieve these
properties, it is necessary to move to the right along the line CF (Figure 10), e.g., to the point
with coefficients A = 25 and B = 9. After that, in order to reduce the magnitude of VSG
frequency deviation, under the condition of fast frequency recovery while maintaining a
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high damping ratio and the smallest overshoot, moving right along the line CG (Figure 12)
into the area of aperiodic processes with ζ > 1 (e.g., A = 4 and B = 4) is effective.
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Table 1. Operation stages of the proposed adaptive virtual inertia algorithm for the CC-VSG.

Stage ∆fVSG Sign dfVSG/dt
Sign

dfVSG/dt
< >RoCoFset

kH1 Behavior HVSG Behavior

a→a1 >0 >0 <RoCoF kH1↑ > 1
(curve 1) *

HVSG↑ > H0
(curve 1) **

a1→a2 >0 >0 >RoCoF kH1 = max
(curve 1)

HVSG = max
(curve 1)

a2→b >0 >0 <RoCoF kH1↓ > 1
(curve 1)

HVSG↓ > H0
(curve 1)

b→b1 >0 <0 <RoCoF kH1↓ < 0
(curve 1)

HVSG↑ > H0
(curve 2)

b1→c >0 <0 >RoCoF kH1 = min
(curve 1)

HVSG = max
(curve 2)

c <0 <0 >RoCoF kH1 = max
(curve 2)

HVSG = max
(curve 1)

c→d <0 <0 <RoCoF kH1↓ > 1
(curve 2)

HVSG↓ > H0
(curve 1)

d→e <0 >0 <RoCoF kH1↓ < 0
(curve 2)

HVSG↑ > H0
(curve 1)

* see Figure 13. ** see Figure 14.

The switching conditions between the selected pairs of coefficients A and B are de-
termined based on the change in the damper winding virtual current, which is obtained
according to (45), when (3) is given [43]:

i1q = − 1
ωbR1q

·
dψ1q

dt
= −

τ1q

L1q
·
dψ1q

dt
(45)
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The use of the damper winding virtual current allows to control the CIG response
throughout the transient, because this current is non-zero only during the transients.
However, in order to implement the correct change of τ1q and L1q at different transient
stages, it is also necessary to control the sign of the VSG frequency change ∆fVSG. The
latter is explained by the transient oscillograms shown in Figure 20. In the normal steady-
state conditions (range I in Figure 20), when ∆fVSG = i1q = 0, the coefficients A and B in
(31) and (32) are equal to their initial values (A = 3 and B = 3). In the case of a disturbance,
when the VSG frequency increases ∆fVSG > 0 (curve 1), at the initial stage of the transient
process (range II) there is first a sharp increase in the damper winding virtual current and
then it decreases to zero, with i1q < 0. On the contrary, when ∆fVSG < 0 after a disturbance
(curve 2), the opposite situation is observed—i1q > 0. Thus, by controlling only one of
the parameters, it is not possible to provide adequate switching conditions between the
pairs of coefficients A and B. The latter is determined by the fact that in both cases, either
at decreasing or increasing frequency, it is necessary to reduce the response speed of the
system and thereby reduce the RoCoF value by switching to the coefficients A = 25 and
B = 9. At the next stage of the transient process (range III), during the sign change of current
i1q, it becomes possible to switch to another pair of coefficients, A = 4 and B = 4, in order to
reduce the magnitude of frequency deviation and to further fast frequency recovery.
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Figure 20. Oscillograms of damper winding virtual current under disturbances.

Consequently, the algorithm for changing the values of coefficients A and B and,
accordingly, the parameters of the virtual damper winding τ1q and L1q is as follows (46):

[
A B

]
=


[

25 9
]

if i1q·∆ fVSG < 0[
3 3

]
if i1q·∆ fVSG = 0[

4 4
]

if i1q·∆ fVSG > 0
(46)

In summary, the operating principle of the proposed adaptive virtual damper winding
algorithm is shown in Figure 21 for the case of grid frequency drop. As can be seen from
the presented oscillograms, due to the implemented logic of the algorithm functioning, it
becomes possible to significantly reduce both the RoCoF and the frequency nadir. At the
same time, the frequency recovery rate together with the quality of damping remain at a
high level.
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Figure 21. Operating principle of the adaptive virtual damper winding algorithm for the CC-VSG.

5. Simulation Results and Discussion

In order to assess the efficiency of the proposed CC-VSG control algorithm, a detailed
time-domain mathematical modeling was performed in the equivalent scheme of the power
system (Figure 1) via electromagnetic transient simulation tools. The parameters of the
network, power converter and VSG-based control system are presented in Appendix A.
The test disturbances were as follows: (1) a step change of Pref from 0 to 0.2 pu, (2) a step
grid frequency drop from 60 Hz to 59.9 Hz, and (3) a 0.5 MW load connection at the point of
common coupling. Three cases were considered, as shown in Figure 22: CC-VSG without
adaptive control (black curve), CC-VSG with adaptive virtual inertia only (blue curve), and
CC-VSG with adaptive virtual inertia and damper winding (red curve).
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Figure 22. Simulation results under different disturbances: (a) change in Pref, (b) grid frequency drop,
and (c) load connection.

Based on the results obtained, it follows that by adding not only the adaptive inertia
but also the adaptive damper winding to the CC-VSG control algorithm, it becomes possible
to significantly improve the quality of damping without deteriorating the dynamic response
under changes in the active power reference (Figure 22a). The latter is manifested in the
maintaining and even improving of the rise time of the output power (Figure 23a). This
proves the exclusion of the opposite mutual impact of the response speed of the active
power control loop and oscillation damping capability.
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Figure 23. Histograms with transient characteristics under different disturbances: (a) change in Pref,
(b) grid frequency drop, and (c) load connection.

Considering the case with grid frequency change (Figure 22b), it can be seen that
accounting of the adaptive damper winding in the proposed control algorithm allows to
improve the frequency profile (Figure 23b). At the same time, there is no impact on the
steady-state value of the output active power after the disturbance and, consequently, on
the frequency droop. This conclusion confirms the leveling of the second contradiction
arising from adding a damping coefficient to the swing equation of the VSG.
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From the comparison of the results shown in Figure 22a,c, it follows that the proposed
control algorithm of the CC-VSG helps to achieve a fast CIG response both in case of
changes in the active power reference and in case of external disturbances, leading to
frequency deviations. Thus, the introduction of the adaptive damper winding has no
impact on the active power rise time, but it significantly improves the frequency profile.
The latter is manifested in the reduction of RoCoF and frequency nadir by more than
4.5 times in comparison to the case without the adaptive CC-VSG (Figure 23c).

For assessing the efficiency of the proposed algorithm for the virtual inertia adaptive
control based on the nonlinear sigmoid function, a similar 0.5 MW load connection at the
point of common coupling at different settings of RoCoF was considered (Figure 24).
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At the first step, the adaptive algorithm was compared with the conventional bang–
bang control. For this purpose, the RoCoFset value was set to be large, as explained
in Section 3 (RoCoFset = 20 Hz/s). The comparison of the green and yellow curves in
Figure 24a,b shows that the proposed CC-VSG algorithm is nearly equal to the conventional
bang–bang control, which is ensured by introducing an additional sensitivity index kH2
into (35). At the same time, based on the analysis of the change in the VSG inertia in
Figure 24c, the proposed algorithm allows less DC-side energy consumption during the
disturbance, which can be quantified by the area under the HVSG curve [44]. As a result,
the energy consumed using the proposed algorithm is ∆E = 4725, which is 21% less than
the conventional bang–bang control with ∆E = 5973.

At the second step, the performance of the adaptive virtual inertia algorithm was
assessed at different RoCoF settings. Considering the black, blue, and red curves in
Figure 24a,b, it can be seen that the proposed algorithm allows to limit the RoCoF in
accordance with the set references given the CIG capabilities, which are determined by
the allowable range of the VSG inertia. However, at the initial stage of frequency change,
the HVSG range of a single CIG is insufficient to limit the RoCoF under the considered
disturbance. In this case, it is necessary to increase the number of CIGs or the range of
VSG inertia.
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6. Conclusions

This paper proposes algorithms for adaptive control of virtual inertia and damper
winding parameters for the enhanced structure of the current-controlled VSG. The results
of analysis of the closed-loop transfer function for the active power control loop and
simulation in the time domain proved that the proposed enhanced CC-VSG structure is
devoid of three fundamental contradictions inherent in the conventional voltage-controlled
VSG structure. Firstly, there is no opposite mutual impact between the response speed
under the active power change and the oscillation damping capability. The addition of
an adaptive algorithm for controlling the damping properties of the CC-VSG resulted
in a significant reduction of the active power rise time under a disturbance of active
power reference. Secondly, the introduction of the adaptive damper winding significantly
improves the frequency profile—the RoCoF and frequency nadir or zenith are reduced.
At the same time, there is no impact on the frequency droop. Finally, with an increase in
the damping ratio, both the active power response and the output frequency response are
improved simultaneously. Due to these properties, it was possible to achieve independent
control of three parameters of the CC-VSG using the developed adaptive algorithms: virtual
inertia, time constant, and inductance of the virtual damper winding. The use of nonlinear
sigmoid function for adaptive control of virtual inertia allowed flexible control of the
inertia value, according to the set RoCoF throughout the transient process. In addition, the
proposed adaptive algorithm has reduced the DC-side energy consumption. Compared
with the conventional bang–bang control, the reduction was 21%. At the same time, due
to the additional sensitivity index, the proposed algorithm has a fast operation and high
efficiency that are not inferior to the bang–bang control.
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Appendix A

Table A1. Network and control system parameters.

Grid & Power Converter CC-VSG Adaptive Control
Parameter Value Parameter Value Parameter Value

Vb 480 V H0 2 s Hmax 4 s
Sb 2 MVA Rv 0 pu Hmin 1 s
fb 60 Hz Lv 0.105 pu aH 1

fsw 5 kHz R1q 0.01 pu RoCoFset0 0.5 Hz/s
Lf 0.1 pu L1q 0.71 pu dH 50
Cf 0.112 pu Ku 1 pu mH 250
Lg 0.3 pu Qref,VSG 0 pu nH 50
Rg 0 pu Kpcc 0.052 pu

Kicc 13.195 pu
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