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Abstract: This work revisits the number of limit cycles (LCs) in a piecewise smooth system of
Hamiltonian with a heteroclinic loop generalization, subjected to perturbed functions through
polynomials of degree m. By analyzing the asymptotic expansion (AE) of the Melnikov function
with first-order M(h) near the generalized heteroclinic loop (HL), we utilize the expansions of the
corresponding generators. This approach allows us to establish both lower and upper bounds for the
quantity of limit cycles in the perturbed system. Our analysis involves a combination of expansion
techniques, derivations, and divisions to derive these findings.
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1. Introductory Notes

The theory of limit cycle (LC) bifurcation in piecewise smooth integrable differential
systems finds widespread application in numerous practical problems, spanning domains
like electronic engineering, neural networks, automatic control, and biological mathematics,
among others [1,2]. Additionally, this theory bears relevance to Hilbert’s 16th problem,
adding further significance to its exploration. As a result, the investigation of LC bifurcation
within differential systems (piecewise smooth) has emerged as a prominent and dynamic
area of research in recent years [3–5].

The prevalence of natural laws and diverse influencing factors has led to the extensive
application of LC bifurcation theory in piecewise smooth integrable differential systems
across various practical fields. Engineers often rely on this theory to address complex
challenges in electronic engineering, while researchers in neural networks and automatic
control also find it instrumental in their work [6,7].

Beyond its wide-ranging applicability, the theory’s connection to Hilbert’s 16th prob-
lem and Weakened Hilbert’s 16th problem underscores its fundamental importance in
mathematics. Consequently, researchers have increasingly directed their attention toward
the study of LC bifurcation within differential systems, recognizing the richness and rele-
vance of this subject. The growing body of work in this area is evident in recent literature,
with various studies exploring different aspects and applications [8,9]. As a result, the
pursuit of understanding and harnessing the dynamics of LCs in such systems has become
a vibrant and active research pursuit, attracting researchers from diverse backgrounds
and interests.

Considered the following perturbed piecewise smooth Hamiltonian systems [10,11]:
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{
ṡ = z + ε f+(s, z),
ż = s− 1 + εg+(s, z),

s ≥ 0,{
ṡ = z + ε f−(s, z),
ż = s + 1 + εg−(s, z),

s < 0,

(1)

where

f±(s, z) =
m

∑
ζ+δ=0

a±δ,ζsδzζ , g±(s, z) =
m

∑
ζ+δ=0

b±δ,ζ sδzζ , ζ, δ ∈ N, (2)

where aδ,ζ , bδ,ζ are perturbation parameters. As long as ε = 0, the associated Hamiltonian
functions to (1) can be written as

H+(s, z) =
1
2

z2 − 1
2

s2 + s, s ≥ 0, (3)

and

H−(s, z) =
1
2

z2 − 1
2

s2 − s, s < 0. (4)

The unperturbed version of (1) |ε=0 has a family of orbits with periodicity as comes next:

Γh ={(s, z)|H+(s, z) = h, s ≥ 0} ∪ {(s, z)|H−(s, z) = h, s < 0}
:=Γ+

h ∪ Γ−h ,

where h ∈ (0, 1
2 ). The dynamics of the system are characterized by the presence of pe-

riodic orbits situated between two key points. Firstly, there is the origin, which serves
as an elementary center of the parabolic–parabolic type, see [12,13] for more. Secondly,
we observe a generalized heteroclinic loop (HL) encircling the origin, with two saddle
points located at (±1, 0). This configuration of periodic orbits is visually represented in
Figure 1. Noting that the unperturbed piecewise smooth Hamiltonian [14,15] systems find
application in various areas of physics and engineering where dynamical systems exhibit
discontinuous behaviors or interactions. These systems can describe physical scenarios
where the underlying dynamics switch between different regimes due to certain thresholds
or conditions. Examples include mechanical systems with impacts or friction, electrical
circuits with switches, and biological systems with abrupt transitions. The unperturbed
nature of the system refers to its behavior without any external disturbances, allowing for
the study of the inherent dynamics and the effects of the discontinuities or switching on the
system’s behavior [16,17]. The system’s behavior is intriguing as it exhibits periodic orbits
positioned in a delicate balance between the elementary center at the origin and the encir-
cling generalized HL [18]. At the origin, the dynamics manifest as a parabolic–parabolic
type, contributing to the system’s unique characteristics. Meanwhile, the presence of saddle
points at (±1, 0) within the generalized HL introduces an additional layer of complexity
to the system’s behavior. The interplay between these fundamental elements gives rise to
the observed periodic orbits, which showcase captivating and intricate trajectories in the
phase space. To gain further insights into the system’s dynamics and the significance of
these periodic orbits, refer to Figure 1, providing a visual representation of this intriguing
phenomenon. Figure 1 encapsulates the captivating phenomenon occurring within the
system under study. The figure highlights the existence of periodic orbits that reside in
the region between the origin and a generalized HL surrounding the origin. While the
origin itself serves as an elementary center of parabolic–parabolic type, the loop features
saddle points at (±1, 0), adding a distinct dynamic dimension to the system. As a result,
the periodic orbits gracefully navigate this delicate balance between the attractive forces
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of the origin and the more complex interactions near the saddle points. Understanding
the underlying principles governing these orbits is vital for comprehending the system’s
overall behavior and offers valuable insights into its practical applications and implications.

Figure 1. The phase portrait of (1) in the absence of perturbation (ε = 0). Choosing (s, z) = (x, y) for
better understanding of the illustration.

By the main results in [19,20], we know that the first order Melnikov function (FOMF)
associated with the periodic orbits of (1) as comes next

M(h) =
∫

Γ+
h

g+(s, z)ds− f+(s, z)dz

+
∫

Γ−h
g−(s, z)ds− f−(s, z)dz, h ∈

(
0,

1
2

)
.

(5)

A fascinating connection exists between the LCs and zeros of the FOMF in the context
of system (1). Specifically, the LCs of the system are associated with isolated zeros of the
first non-vanishing Melnikov functions (4), see fore more [21,22].

In a related work by Liang and Han [23], they delved into the study of Hopf bifurcation
and generalized heteroclinic bifurcation, managing to derive an upper bound for the count
of LCs in system (1) up to the first order in ε. To facilitate their calculations, the authors
made simplifications by selecting specific forms for f+(s, z) and f−(s, z) in each bifurcation
case. For the Hopf bifurcation, they used

f+(s, z) =
m

∑
δ=0

a+δ sδ,

and set f−(s, z) = g±(s, z) ≡ 0. Noting that in this work a±δ,ζ , b±δ,ζ , c±δ,ζ , and d±δ,ζ are the
perturbation coefficients. On the other hand, for the generalized heteroclinic bifurcation,
they employed

f+(s, z) =
m

∑
δ=0

a+δ zδ,

and

g+(s, z) =
m

∑
δ=0

b+δ zδ,

while f−(s, z) = g−(s, z) ≡ 0.
Li et al. (2016) expanded upon the Melnikov method to address a specific category of

perturbed hybrid piecewise smooth systems featuring two switching manifolds in a planar
configuration. Their study delved into the continuity of periodic orbits, particularly when
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the unperturbed system itself possesses such orbits [24]. Other new results about periodic
orbits of piecewise smooth systems can be traced in [25–27].

In this paper, we take a fresh approach to revisit the problem of LC bifurcation in (1) by
considering the more general case of perturbed polynomials f±(s, z) and g±(s, z). Unlike
the previous study, we do not impose specific constraints on the form of these polynomials,
allowing for a more comprehensive exploration of the system’s dynamics.

This paper unfolds with a systematic investigation into the intricate dynamics of the
FOMF M(h) in Section 2. This section delves into the algebraic properties and underlying
structure of M(h), shedding light on its essential characteristics and revealing valuable
insights into its behavior. Building upon this foundation, Section 3 embarks on an explo-
ration of the asymptotic expansion (AE) of M(h) near pertinent regions of interest. This
critical analysis provides a deeper understanding of the function’s behavior and unveils
valuable information about its asymptotic properties. More results are obtained because
of more general perturbations (general perturbed polynomial differential certain system).
Finally, the paper culminates the conclusion in Section 4, summarizing the key findings and
implications of the study. Together, these sections present a comprehensive investigation
into the intriguing relationship between LCs and the FOMF, contributing to the broader
understanding of dynamical systems and bifurcation phenomena.

2. The Algebraic Structure of the FOMF M(h)

Our major result consists of the theorem presented below.

Theorem 1. The count of LCs arising from system (1), originating from the period annulus near
the origin and encompassing all valid combinations of f±(s, z) and g±(s, z) adhering to (2), does
not exceed m + [m+1

2 ]. Additionally, by appropriately selecting the perturbation coefficients a±δ,ζ ,
and b±δ,ζ in the perturbed Equation (1), then (1) can support a total of m LCs.

Toward such a goal, we build several different theoretical findings. Now we investigate
the algebraic structure of FOMF M(h) for (1). When h ∈ (0, 1

2 ), we denote

Iδ,ζ(h) =
∫

Γ+
h

sδzζdz.

Noting that with respect to the x-axis (s-axis), the orbits Γ±h are symmetric. Therefore,
Iδ,2ζ+1(h) ≡ 0. The following lemma is now stated and proved.

Lemma 1. For h ∈ (0, 1
2 ) and when m ∈ N, we have

M(h) =
√

h
[ m

2 ]

∑
δ=0

σδhδ +
( [ m−1

2 ]

∑
δ=0

θδhδ
)

I1,0(h), (6)

wherein σδ (0 ≤ δ ≤ [m
2 ]) and θδ (0 ≤ δ ≤ [m−1

2 ]) are constants and independent of each other.
Here, [·] stands for the integer part.

Proof. Using the Green’s Formula, one has the following∫
Γ+

h

sδzζds = − ζ

δ + 1

∫
Γ+

h

sδ+1zζ−1dz, (7)

and ∫
Γ−h

sδzζds = − ζ

δ + 1

∫
Γ−h

sδ+1zζ−1dz. (8)
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By one obtains (7) and (8), one obtains

M(h) =
∫

Γ+
h

m

∑
δ+ζ=0

b+δ,ζ sδzζ ds−
∫

Γ+
h

m

∑
δ+ζ=0

a+δ,ζ sδzζ dz

+
∫

Γ−h

m

∑
δ+ζ=0

b−δ,ζsδzζds−
∫

Γ−h

m

∑
δ+ζ=0

a−δ,ζ sδzζ dz

=−
m

∑
δ+ζ=0

ζ

δ + 1
b+δ,ζ

∫
Γ+

h

sδ+1zζ−1dz−
m

∑
δ+ζ=0

a+δ,ζ

∫
Γ+

h

sδzζ dz

−
m

∑
δ+ζ=0

ζ

δ + 1
b−δ,ζ

∫
Γ−h

sδ+1zζ−1dz−
m

∑
δ+ζ=0

a−δ,ζ

∫
Γ−h

sδzζ dz.

Hence, M(h) can be given by

M(h) =
m

∑
δ+ζ=0

ξδ,ζ Iδ,ζ(h), (9)

in view of
∫

Γ−h
sδzζ dz = (−1)δ Iδ,ζ(h), where

ξδ,ζ =

{
−a+δ,ζ − (−1)δa−δ,ζ −

ζ+1
δ

(
b+δ−1,ζ+1 − (−1)δb−δ−1,ζ+1

)
, 1 ≤ δ ≤ m, 1 ≤ δ + ζ ≤ m,

−a+δ,ζ − (−1)δa−δ,ζ , δ = 0, 0 ≤ ζ ≤ m.

It is easy to verify that ξδ,ζ might be chosen as free constants. To continue the proof, we
establish the following relations:

m

∑
δ+ζ=0

ξδ,ζ Iδ,ζ(h) =
( [ m

2 ]

∑
δ=0

σδhδ
)

I0,0(h) +
( [ m−1

2 ]

∑
ζ=0

θζ hζ
)

I1,0(h), (10)

where σδ (δ = 0, 1, 2, · · · , [m
2 ]) and θζ (ζ = 0, 1, 2, · · · , [m−1

2 ]) can be taken as free parame-
ters. Indeed, upon differentiating both sides of H+(s, z) = h with respect to z, one attains

z− s
∂s
∂z

+
∂s
∂z

= 0. (11)

Upon multiplying (11) by the one-form sδzζ−1dz and subsequently integrating, we arrive
at the following relation:

Iδ,ζ =
ζ − 1
δ + 1

Iδ+1,ζ−2 −
ζ − 1
δ + 2

Iδ+2,ζ−2, δ ≥ 0, ζ ≥ 1. (12)

Similarly, multiplying H+(s, z) = h both sides by sδ−2zζdz and integrating over Γ+
h , we

obtain another relation

Iδ,ζ = −2hIδ−2,ζ + 2Iδ−1,ζ + Iδ−2,ζ+2, δ ≥ 2, ζ ≥ 0. (13)

Elementary manipulations reduce Equations (12) and (13) to

Iδ,ζ = − δ

δ + ζ + 1

[
2hIδ−2,ζ −

2δ + ζ − 1
δ− 1

Iδ−1,ζ

]
, δ ≥ 2, ζ ≥ 0, (14)

and

Iδ,ζ =
ζ − 1

δ + ζ + 1

[
2hIδ,ζ−2 −

δ

δ + 1
Iδ+1,ζ−2

]
, δ ≥ 0, ζ ≥ 1. (15)
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We will now establish the claim using induction on m. To preserve the generality of the
argument, we can make the following assumption and move on. We will focus on proving
the claim for even values of m (similarly, the claim can be proven for odd values of m). To
begin, let us perform a direct computation using the two equalities mentioned above:

I0,2(h) = 2
3 hI0,0(h),

I2,0(h) = − 4
3 hI0,0(h) + 2I1,0(h),

I1,2(h) = 1
6 hI0,0(h) + ( 1

2 h− 1
4 )I1,0(h),

I3,0(h) = − 5
2 hI0,0(h)− ( 3

2 h− 15
4 )I1,0(h),

(16)

Hence, for m = 2, 3 one has

2

∑
δ+ζ=0

ξδ,ζ Iδ,ζ(h) =
[(

2
3

ξ0,2 −
4
3

ξ2,0

)
h + ξ0,0

]
I0,0(h) + (ξ1,0 + 2ξ2,0)I1,0(h),

3

∑
δ+ζ=0

ξδ,ζ Iδ,ζ(h) =
[(

2
3

ξ0,2 −
4
3

ξ2,0 +
1
6

ξ1,2 −
5
2

ξ3,0

)
h + ξ0,0

]
I0,0(h)

+

[(
1
2

ξ1,2 −
3
2

ξ3,0

)
h− 1

4
ξ1,2 +

15
4

ξ3,0 + ξ1,0 + 2ξ2,0

]
I1,0(h).

Indeed, the claim has been verified for m = 2, 3. Let us now make the assumption that the
claim holds for all values of δ + ζ ≤ m− 1. Next, by substituting (δ, ζ) = (0, m), (2, m−
2), · · · , (m− 2, 2) into (2) and (δ, ζ) = (m, 0) into (16), we obtain:

I0,m(h)
I2,m−2(h)
I4,m−4(h)

...
Im−2,2(h)

Im,0(h)


=

1
m + 1



2(m− 1)hI0,m−2(h)
2(m− 3)

(
hI2,m−4(h)− 1

3 I3,m−4(h)
)

2(m− 5)
(
hI4,m−6(h)− 2

5 I5,m−6(h)
)

...
2
(
hIm−2,0(h)− m−2

2(m−1) Im−1,0(h)
)

−m
(
2hIm−2,0(h)− 2m−1

m−1 Im−1,0(h)
)


. (17)

Thus, by leveraging the hypothesis of induction along with (17), one can deduce:

m

∑
δ+ζ=0

ξδ,ζ Iδ,ζ(h) =
m−1

∑
δ+ζ=0

ξδ,ζ Iδ,ζ(h) + ∑
δ+ζ=m

ξδ,ζ Iδ,ζ(h)

=
( [ m

2 ]

∑
δ=0

σ̃δhδ
)

I0,0(h) +
( [ m−1

2 ]

∑
ζ=0

θ̃ζ hζ
)

I1,0(h)

+ ξ0,m
2(m− 1)

m + 1
hI0,m−2(h) + ξ2,m−2

2(m− 3)
m + 1

(
hI2,m−4(h)−

1
3

I3,m−4(h)
)

+ · · · − ξm,0
m

m + 1
(
2hIm−2,0(h)−

2m− 1
m− 1

Im−1,0(h)
)

,− 1
2
√

2

( [ m
2 ]

∑
δ=0

σδhδ
)

I0,0(h) +
( [ m−1

2 ]

∑
ζ=0

θζ hζ
)

I1,0(h),

(18)

where σ̃δ, θ̃δ, σδ and θδ are constants and (2.6) is proved in view of I0,0(h) = −2
√

2h.
Next, we establish the independence between σδ (δ = 0, 1, 2, · · · , [m

2 ]) and θζ (ζ =

0, 1, 2, · · · , [m−1
2 ]). To begin, we utilize the induction hypothesis, which ensures that σ̃δ (δ =

0, 1, 2, · · · , [m−1
2 ]) and θ̃ζ (ζ = 0, 1, 2, · · · , [m−2

2 ]) are already established as independent. In
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other words, the determinant of the following Jacobian matrix governs their independence
and is not zero

A =
∂
(

σ̃[ m−1
2 ], · · · , σ̃0, θ̃[ m−2

2 ], · · · , θ̃0

)
∂
(

ξδ0,ζ
[ m−1

2 ]
, · · · , ξδ

[ m−1
2 ]

,ζ0 , ξk0,l
[ m−2

2 ]
, · · · , ξk

[ m−2
2 ]

,l0

) .

Here, the summation for ξδ,ζ is less or equal than m− 1. This follows directly from the
calculations, and we can express the Jacobian matrix as follows:

Ψ =
∂
(

σ[ m−1
2 ], · · · , σ0, θ[ m−2

2 ], · · · , θ0, σ[ m
2 ]

)
∂
(

ξδ0,ζ
[ m−1

2 ]
, · · · , ξδ

[ m−1
2 ]

,ζ0 , ξk0,l
[ m−2

2 ]
, · · · , ξk

[ m−2
2 ]

,l0 , ξ0,m

)
=

(
A B

0 2[
m
2 ]

m+1

)
,

where B is a column vector and 0 is a row vector. We now obtain

|Ψ| = 2[
m
2 ]

m + 1
|A| 6= 0,

which means that θζ (ζ = 0, 1, 2, · · · , [m−1
2 ]) and σδ (δ = 0, 1, 2, · · · , [m

2 ]) are independent
of each other. This completes the proof.

Before ending this section, it is recalled that the work [28] introduces an extension of
the Melnikov function method and the averaging method to study the presence of LCs
in piecewise smooth near-integrable systems, even in higher dimensional spaces. Their
work demonstrates the equivalence of these methods, which were previously known for
planar analytic systems, and establishes their applicability for piecewise systems. That
lies in deriving the formula for the second-order Melnikov function in planar piecewise
near-Hamiltonian systems.

3. The Asymptotic Expansion of M(h)

In this section, our focus shifts towards providing the essential asymptotic expansions
of the FOMF M(h) in close proximity to both the generalized HL Γ and the origin. These
expansions offer valuable insights into the behavior of M(h) within these critical regions
and lay the groundwork for a deeper understanding of the system’s dynamics.

To begin, let us explore the AE of M(h) near the generalized HL Γ. By employing
appropriate mathematical techniques, we derive expressions that shed light on the intricate
relationship between M(h) and Γ. The obtained expansions reveal how the Melnikov
function behaves as h approaches Γ and provide valuable information about the system’s
response to perturbations in this particular region. Understanding the behavior of M(h)
near Γ is crucial for comprehending the system’s stability and the emergence of LCs in
this vicinity.

Next, we direct our attention to the AE of M(h) near the origin. Employing rigorous
mathematical analysis, we unveil the behavior of M(h) as it approaches the origin. The
obtained expansions offer valuable insights into the system’s dynamics in the vicinity
of this critical point and provide a deeper understanding of the underlying mechanisms
governing LC bifurcations. By unraveling the intricate relationship between M(h) and
the origin, we gain essential knowledge about the stability and behavior of the system for
perturbations close to the origin.

Following the presentation of the asymptotic expansions, we introduce a key lemma
that contributes to our understanding of the system’s behavior in the region where
0 < 1

2 − h � 1. The lemma provides an explicit AE of I1,0(h), a vital component of
the Melnikov function, as h approaches the neighborhood of 1

2 . This expansion, expressed



Mathematics 2023, 11, 3944 8 of 12

in terms of real constants ρ1 and ρ1k, with k ≥ 0, illuminates the intricate characteristics
of I1,0(h) and its relationship with h in this specific region. Such detailed insights into the
behavior of I1,0(h) contribute significantly to the overall understanding of the Melnikov
function and its role in LC bifurcations near 1

2 .

Lemma 2. The AE of I1,0(h) for 0 < 1
2 − h� 1 are

I1,0(h) = ρ1u ln |u|+
+∞

∑
k=0

ρ1kuk, (19)

where u = h− 1
2 , ρ1 and ρ1k (k ≥ 0) are real constants.

Proof. Some direct computations show that

I1,0(h) =
∫

Γ+
h

sdz = −
∫

Γ+
h

zds

=− 2
√

2
∫ 1−

√
1−2h

0

√
h +

1
2

s2 − sds.

(20)

Let s =
√

2l + 1 and u = h− 1
2 , then one can rewrite (20) into

I1,0(h) =− 4
∫ −√−u

− 1√
2

√
u + l2dl

=4
∫ −√−u

− 1√
2

l
√

1 + l−2udl.

(21)

Notice that −1 < l−2u < 0 for 0 < h < 1
2 and 0 < s < 1−

√
1− 2h, and the following AE

(1 + s)
1
2 =

+∞

∑
k=0

λksk, s ∈ [−1, 1], (22)

where λ0 = 1, λk =
1
2 (

1
2−1)···( 1

2−k+1)
k! , k ≥ 1, by (21), one can find that

I1,0(h) =4
∫ −√−u

− 1√
2

l
+∞

∑
k=0

λk(l−2u)kdt

=4
+∞

∑
k=0

λkuk
∫ −√−u

− 1√
2

l1−2kdl

=− 2
+∞

∑
k=0,k 6=1

λk
1− k

[
(−1)ku + 2k−1uk]+ 2λ1u ln 2 + 2λ1u ln |u|,

(23)

where

ρ1 = 2λ1, ρ1k =
2kλk
k− 1

, k ∈ N, k 6= 1,

ρ11 = 2λ1 ln 2− 2
+∞

∑
δ=0,δ 6=1

(−1)δλδ

1− δ
.

It is easy to check that the series in ρ11 is convergent. This ends the proof.
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Lemma 3. For 0 < 1
2 − h� 1 and u = 1

2 − h, the following expansions hold:

√
h
[ m

2 ]

∑
k=0

σkhk =
+∞

∑
δ=0

σ̄δuδ,

[ m−1
2 ]

∑
k=0

θkhk =
[ m−1

2 ]

∑
δ=0

θ̄δuδ,

(24)

wherein σ̄δ and θ̄δ are scalars for δ ∈ N and σ̄0, σ̄1, · · · , σ̄[ m
2 ]

, θ̄0, θ̄1, · · · , θ̄[ m−1
2 ] can be taken as

free parameters.

Proof. A direct calculation gives

√
h
[ m

2 ]

∑
k=0

σkhk =

√
u +

1
2

[ m
2 ]

∑
k=0

σk(u +
1
2
)k

=

√
2

2

√
1 + 2u

[ m
2 ]

∑
k=0

σk

k

∑
ζ=0

Cζ
k

1
2k−ζ

uζ

=
√

1 + 2u
[ m

2 ]

∑
k=0

σ̃iuδ,

(25)

where

σ̃δ =
[ m

2 ]

∑
k=δ

Cδ
k

2k−δ+ 1
2

σk, δ = 0, 1, 2, · · · , [
m
2
].

It is possible now to find that σ̃0, σ̃1, · · · , σ̃[ m
2 ]

are independent of each other. In view of
−1 < 2u < 0, one has for 0 < −u� 1

√
h
[ m

2 ]

∑
k=0

σkhk =
( [ m

2 ]

∑
k=0

σ̃δuδ
)( +∞

∑
k=0

λk2kuk
)
=

+∞

∑
δ=0

σ̄δuδ,

where σ̄δ (δ = 0, 1, 2, · · · ) are constants and σ̄δ =
δ

∑
ζ=0

2δ−ζ λδ−ζ σ̃ζ for δ = 0, 1, 2, · · · , [m
2 ].

The independence of σ̃0, σ̃1, · · · , σ̃[ m
2 ]

implies that σ̄0, σ̄1, · · · , σ̄[ m
2 ]

can be chosen as free
constants. Similarly, we can demonstrate that θ̄0, θ̄1, · · · , θ̄[m

2 ] are also free parameters. The
independence of σ̄δ (0 ≤ δ ≤ [m

2 ]) and θ̄δ (0 ≤ δ ≤ [m−1
2 ]) comes from Lemma 1. This

completes the proof.

Proposition 1. For 0 < 1
2 − h� 1, the AE of M(h) is

M(h) =
[ m

2 ]

∑
δ=0

cδuδ + ρ1

[ m−1
2 ]

∑
δ=0

dδuδ+1 ln |u|+ ∑
δ≥[ m

2 ]+1
cδuδ, (26)

where cδ and dδ are independent of each other, moreover

cδ = σ̄δ +
δ

∑
k=0

θ̄kρ1,k−δ, δ ≥ 0,

dδ = θ̄δ, δ = 0, 1, · · · , [
m− 1

2
].
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Proof. Substituting (19) and (24) into (12) gives (26). A direct computation shows that the
determinant of the following Jacobian matrix

A =
∂(c0, c1, · · · , c[ m

2 ]
, d0, d1, · · · , d[ m−1

2 ])

∂(σ̄0, σ̄1, · · · , σ̄[ m
2 ]

, θ̄0, θ̄1, · · · , θ̄[ m−1
2 ])

,

is 1, which means that the coefficients cδ and dδ can be arbitrarily selected. With this, we
have concluded the proof.

At this moment, we are in a position to establish the major finding of this work using
the obtained theoretical findings in what follows.

Proof of Theorem 1.

By Proposition 1, we know that cδ (δ = 0, 1, 2, · · · , [m
2 ]) and dδ (δ = 0, 1, 2, · · · , [m−1

2 ])
are independent of each other. We can select them in such a way that they read the
conditions below:

0 < |c0| � |c1| � |c2| � · · · � |c[ m
2 ]
| � |d0| � |d1| � |d2| � · · · � |d[ m−1

2 ]| � 1,

cδcδ+1 < 0, δ = 0, 1, 2, · · · ,
[m

2

]
− 1,

dδdδ+1 < 0, δ = 0, 1, 2, · · · ,
[

m− 1
2

]
− 1,

c[ m
2 ]

d0 < 0.

These conditions imply that M(h) in (27) has [m
2 ] + [m−1

2 ] + 1 = m simple and distinct
zeros in (0, 1

2 ). Consequently, system (1) can exhibit m LCs for 0 < h < 1
2 . Now, our

objective is to determine the upper bound for the number of LCs of system (1). To achieve
this, we begin with some preliminary considerations.

After performing direct computation, we attain

I10(h) = −
√

2h +

(
h− 1

2

)
ln

1−
√

2h
1 +
√

2h
.

Thus, we can equivalently write

M(h) =
√

h
[ m

2 ]

∑
δ=0

σδhδ +
( [ m−1

2 ]

∑
δ=0

θδhδ
)(
−
√

2h + (h− 1
2
) ln

1−
√

2h
1 +
√

2h

)

:=
√

h
[ m

2 ]

∑
δ=0

γδhδ + (h− 1
2
)
[ m−1

2 ]

∑
δ=0

θδhδ ln
1−
√

2h
1 +
√

2h
,

(27)

using the above equality, where γδ are constants. Differentiating (27) [m−1
2 ] + 2 times using

Lemma 3 furnishes us:

(
M(h)

)([m−1
2 ]+2)

=
(√

h
[ m

2 ]

∑
δ=0

γδhδ + (h− 1
2
)
[ m−1

2 ]

∑
δ=0

θδhδ ln
1−
√

2h
1 +
√

2h

)([m−1
2 ]+2)

=
P[ m

2 ]+[ m−1
2 ]+1(h)

h[
m−1

2 ]+ 3
2 (2h− 1)[

m−1
2 ]+1

.
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Therefore, M(h) has at most m + [m+1
2 ] + 1 zeros on [0, 1

2 ). Observe that M(0) = 0, which
implies that M(h) can have a maximum of m + [m+1

2 ] zeros on the interval (0, 1
2 ). This

conclusion establishes the proof of Theorem 1.

4. Concluding Summaries

In this work, we have investigated the bifurcations and stability of LCs in a general
perturbed polynomial differential system (1). Our main focus was on understanding the
impact of perturbation parameters on the existence and number of LCs in the system.

In Section 2, we studied the algebraic structure of the FOMF M(h) for the system (1).
By appropriately selecting the perturbation coefficients, we showed that the number of LCs
can be controlled to be m, which represents an exciting result in the study of perturbed
polynomial differential systems. We provided a clear theoretical foundation for this result
and proved it rigorously.

In Section 3, we analyzed the AE of the FOMF M(h) in two critical regions: near the
generalized HL Γ and near the origin. These expansions provided valuable insights into the
behavior of M(h) in these regions and its relation to the underlying dynamics of the system.
Additionally, we introduced a key Lemma 2 that presented an explicit AE of I1,0(h), which
plays a significant role in the Melnikov function near the value 1

2 . The obtained results
contributed significantly to our understanding of the system’s stability and the emergence
of LCs in these critical regions.

In conclusion, our work sheds light on the rich dynamical behavior of perturbed
polynomial differential systems and provides a deeper understanding of their stability and
bifurcation properties. The findings presented in this work contribute to the existing body
of knowledge in the field of dynamical systems theory and can be applied to a wide range
of real-world applications, including engineering, physics, and biology.

Future research in this area could explore the behavior of LCs and stability in higher-
dimensional perturbed polynomial systems, as well as investigate the effects of other types
of perturbations on the system’s dynamics. Additionally, numerical simulations could be
conducted to validate and further explore the theoretical findings presented in this paper.
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