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Abstract: Among the methods of multiple kernel clustering (MKC), some adopt a neighborhood
kernel as the optimal kernel, and some use local base kernels to generate an optimal kernel. However,
these two methods are not synthetically combined together to leverage their advantages, which
affects the quality of the optimal kernel. Furthermore, most existing MKC methods require a two-
step strategy to cluster, i.e., first learn an indicator matrix, then executive clustering. This does
not guarantee the optimality of the final results. To overcome the above drawbacks, a one-step
clustering with adaptively local kernels and a neighborhood kernel (OSC-ALK-ONK) is proposed in
this paper, where the two methods are combined together to produce an optimal kernel. In particular,
the neighborhood kernel improves the expression capability of the optimal kernel and enlarges
its search range, and local base kernels avoid the redundancy of base kernels and promote their
variety. Accordingly, the quality of the optimal kernel is enhanced. Further, a soft block diagonal
(BD) regularizer is utilized to encourage the indicator matrix to be BD. It is helpful to obtain explicit
clustering results directly and achieve one-step clustering, then overcome the disadvantage of the
two-step strategy. In addition, extensive experiments on eight data sets and comparisons with six
clustering methods show that OSC-ALK-ONK is effective.

Keywords: local kernels; neighborhood kernel; multiple kernel clustering; block diagonal representation

MSC: 68T10; 91C20; 62H30

1. Introduction

The data in real problems usually contain nonlinear structures. When clustering these
data, it is necessary to use a clustering method that can capture the nonlinear structure.
Multiple kernel clustering (MKC) has the advantage of not only processing nonlinear
data but also fusing the information of multiple given kernels to yield an optimal kernel.
Therefore, it attracts extensive attention from scholars. Recently, many MKC methods for
generating an optimal kernel have been proposed.

One strategy is to use a linear combination of given kernels to form an optimal kernel.
The weights of given kernels in [1,2] are learned by `1-regular term, while the weights of
given kernels in [3,4] are yielded from `2-regular term. More generally, `p-regular term [5,6]
is used to optimize the weights of given kernels and learn an optimal kernel, and it makes
the selection of regular term more flexible. In addition, many research studies adopt the
strategy of linear combination to learn the optimal kernel [7–11]. In particular, a mini-max
model is utilized in a simple MKC method (SimpleMKKM) to learn the kernel coefficient
and update the indicator matrix [12]. It is worth noting that this strategy is based on the
assumption that the optimal kernel stays in a linear combination of given kernels. This
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assumption may not hold according to the fact, because this strategy restricts the search
scope of the optimal kernel and degrades its quality.

In order to expand the search scope of the optimal kernel, a neighborhood kernel
is used in [13–15]. The optimal kernel in [13,14] is learned from a neighborhood of the
consensus kernel, where a low-rank constraint [14] is applied to the neighborhood kernel
to reveal the clustering structure between samples. In particular, the base neighbor kernels
with block diagonal structure [15] are produced by defining the neighbor kernel of base
kernels, and then an optimal kernel is obtained by combining linearly the neighbor kernels.
However, the neighborhood kernels in the literature above are generated from all the base
kernels. The disadvantage is that it leads to the redundancy of base kernels because of not
taking into account the correlation between given kernels.

Based on the consideration of the correlation between given kernels, selecting local
base kernels to generate an optimal kernel emerges. This can avoid the redundancy of given
kernels and promote diversity. On the basis of simpleMKKM [12], by considering the simi-
larity of k-nearest neighbors between samples, a local simpleMKKM is proposed [16]. By se-
lecting subsets from the predefined kernel pool to determine local kernels, an MKC method
by using representative kernels (MKKM-RK) to learn an optimal kernel is presented [17].
In [18], a matrix-induced regularization is applied in an MKC method (MKKM-MR) to
measure the correlation between each pair of kernels to generate an optimal kernel, where
the kernels with strong correlation are assigned smaller coefficients, and those with weak
correlation are assigned larger coefficients. By constructing the index set of samples to select
local base kernels, the optimal kernel is relaxed into a neighborhood of the combination of
local base kernels [19].

In recent years, various kernel evaluation methods for model selection have emerged
in endless succession; for example, kernel alignment [20], kernel polarization [21], kernel
class separability [22], etc. Among them, kernel alignment is one of the most commonly
used evaluation methods on account of its simplicity, efficiency, and theoretical support.
For example, centered kernel alignment is merged in an MKC method [23]. And, in [24],
a local kernel alignment strategy is proposed by requiring only one sample to align with
its k-nearest neighbors. Further, the global and local structure alignment, i.e., the internal
structure of the data, is preserved in [25].

The research mentioned above fully shows that MKC has been widely used. However,
most of them only adopt either a neighborhood kernel or local base kernels and do not
combine these two methods together. Thus, they cannot broaden the search area of the
optimal kernel and promote the variety of given kernels simultaneously and therefore
cannot ensure the quality of the optimal kernel. In addition, most of the above methods
require two steps; that is, first obtain the indicator matrix and then perform clustering.
The two-step strategy does not guarantee the reliability and optimality of the final results
because of error propagation and accumulation from each step.

In an ideal state, there is only one nonzero element in each row of the indicator
matrix and the column in which the nonzero element resides corresponds to the cluster to
which the sample belongs. That is, the indicator matrix in the ideal state directly displays
clustering results. In this state, multiplying the indicator matrix by its transpose yields a
block diagonal (BD) matrix [23]. However, in the actual clustering process, the indicator
matrix is usually not the ideal case. As a result, clustering results can only be obtained after
clustering is performed on the indicator matrix. This is why most MKC methods adopt the
two-step operation. The shortcomings of this operation have been mentioned above. In
this case, the product of the indicator matrix and its transpose is not BD. Nevertheless, we
can think in reverse: if the product is BD, the indicator matrix is guided towards the ideal
state, and clustering results are obtained directly.

Inspired by the above idea, we impose a BD constraint on the product of the indicator
matrix and its transpose to guide it be BD, which aims to obtain clustering results directly
from the indicator matrix, i.e., one-step clustering. Then, we propose a one-step clustering
with adaptively local kernels and a neighborhood kernel (OSC-ALK-ONK) in this paper.
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This method not only merges the advantages of local base kernels and the neighborhood
kernel but also achieves one-step clustering. The process of generating a neighborhood
kernel can be seen in Figure 1.

Here are the main contributions of this paper.

• By considering the correlation between base kernels, a simple strategy for selecting
local base kernels is used to produce a consensus kernel, which adjusts adaptively to
avoid the redundancy of given kernels and promote variety.

• By selecting a neighborhood kernel of the consensus kernel as the optimal kernel,
the expression capability of the optimal kernel is improved and its search scope is
expanded.

• A soft BD regularizer is used to encourage the product of the indicator matrix and
its transpose to be BD, which means that the clustering results are obtained from the
indicator matrix directly. Therefore, one-step clustering is realized, which ensures the
final clustering results are optimal.

• A four-step iterative algorithm including the Riemann conjugate gradient method
in [26], is used to overcome the difficulty of solving the model.

• Extensive experiment results conducted on eight benchmark datasets and compared
with six clustering methods indicate that OSC-ALK-ONK is effective.

The remaining sections of the paper are as follows. Section 2 presents the notations
used and the background of MKKC. In Section 3, the proposed OSC-ALK-ONK method
and the optimization process are introduced in detail. Section 4 presents the experimental
results and makes some discussions. The conclusions are stated in Section 5.

…
 

…
 

base kernels 

local base kernels 

consensus  
kernel 

neighborhood 
kernel 

select  
kernels 

fuse  
kernels 

Figure 1. The process of generating a neighborhood kernel.

2. Related Work
2.1. Notations

The details of notations used in this paper are listed in Table 1.
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Table 1. Details of notations.

‖A‖F Frobenius norm of A, i.e., ‖A‖F =
√

∑i,j A2
i,j

AT transpose of A
tr(A) trace of A
Diag(A) diagonal matrix with diagonal elements of A
A � 0 positive semi-definite A
Ik k-order identity matrix
1n all-one column vector
1M all-one matrix

2.2. Kernel k-Means Clustering (KKC)

Let X = {xi}n
i=1 be a set of samples and φ(·) : X → H be a kernel mapping from an

original space X to a reproducing Hilbert space H. Kernel k-means clustering (KKC) is
usually expressed as

min
Z∈{0,1}n×k

∑n
i=1 ∑k

c=1 Zic‖φ(xi)− µc‖2
2

s.t. ∑k
c=1 Zic = 1,

(1)

where Z ∈ {0, 1}n×k is an assignment matrix, k is the number of clusters,

µc =
1
nc

n

∑
i=1

Zicφ(xi), nc =
n

∑
i=1

Zic (2)

are the centroid and the number of the c-th (1 ≤ c ≤ k) cluster.
Denoting the design matrix as Φ = [φ(x1), φ(x2), . . . , φ(xn)] ∈ Rd×n and the centroid

matrix as U = [µ1, µ2, . . . , µk] ∈ Rd×k, problem (1) can be rewritten as

min
Z∈{0,1}n×k

Tr((Φ−UZT)T(Φ−UZT))

s.t. Z · 1k = 1n.
(3)

Taking L = diag([n−1
1 , n−1

2 , · · · , n−1
k ]), then ZTZ = L−1, U = ΦZL. And taking a

kernel matrix K with Kij = φ(xi)
Tφ(xj), problem (3) can be simplified as

min
Z∈{0,1}n×k

Tr(K−KZLZT)

s.t. Z · 1k = 1n.
(4)

According to the matrix decomposition, problem (4) is equivalent to

min
Z∈{0,1}n×k

Tr(K− L
1
2 ZTKZL

1
2 )

s.t. Z · 1k = 1n.
(5)

The difficulty of solving (5) is from the discreteness of Z. To overcome this difficulty,
the discrete Z is usually relaxed to arbitrary real values, and its approximate values are
treated as the solution of (5). Specifically, denoting H = ZL

1
2 , the following relaxed form

of (5) is derived:
min

H∈Rn×k
Tr(K(In −HHT))

s.t. HTH = Ik,
(6)

where H ∈ Rn×k, Ik is a k-order identity matrix. The optimal H for (6) is made up of the k
eigenvectors corresponding to the k largest eigenvalues of K.
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2.3. Multiple Kernel k-Means Clustering (MKKC)

In MKC, a consensus kernel is computed by

Kw =
m

∑
p=1

w2
pKp, (7)

where Kp is the p-th base kernel, wp is the p-th component of the weight vector w =
[w1, w2, · · · , wm]T , m is the number of base kernels.

Replacing K in (6) with Kw, the model of MKKC is:

min
H∈Rn×k ,w∈Rm

+

Tr(Kw(In −HHT))

s.t. HTH = Ik, wT1m = 1.
(8)

Problem (8) can be solved by updating H and w alternately. (i) Updating H with fixed
w, i.e., solving the similar one to problem (6). (ii) Updating w with fixed H, i.e., solving a
quadratic programming problem:

min
w∈Rm

+

∑m
p=1 w2

p Tr(Kp(In −HHT))

s.t. wT1m = 1.
(9)

3. Proposed Method
3.1. Localized Kernel Selection

For a series of base kernels K1, K2, . . . , Km, considering the relationship between base
kernel pairs, we define

ypq =

{
0, i f |‖G−Kp‖2

F − ‖G−Kq‖2
F| < δ,

1, else.
(10)

For the matrix G and a given positive parameter δ, in one hand, |‖G−Kp‖2
F − ‖G−

Kq‖2
F| < δ means Kp, Kq are both in the neighborhood of G, i.e., they have large similarity.

In this case, we set that ypq = 0, which aims to discard the base kernels with high similarity.
On the other hand, if |‖G−Kp‖2

F − ‖G−Kq‖2
F| < δ does not hold, we set that ypq = 1,

which means that we select the base kernels with low similarity to yield an optimal kernel.
In summary, (10) can effectively avoid the redundancy of base kernels while maintaining
their variety.

Evidently, ypq in (10) reflects the similarity between Kp and Kq, then ∑m
q=1 ypq rep-

resents the similarity between Kp and all the Kq(q = 1, 2, . . . , m), Tr(YT1M) is the total
similarity between each Kp and Kq(q = 1, 2, . . . , m).

Let wp = 1
Tr(YT1M) ∑m

q=1 ypq, then

wp = 1
Tr(YT1M) ∑m

q=1 ypq = 1
Tr(YT1M)

(Y · 1m)p ∈ [0, 1], (11)

and
∑m

p=1 wp = 1
Tr(YT1M) ∑m

p=1 (Y · 1m)p = 1
Tr(YT1M)

Tr(YT1M) = 1. (12)

Thereby such a wp can balance the contribution of different given kernels to generate
an optimal kernel.

3.2. Block Diagonal Regularizer

The clustering indicator matrix H in (6) and (8) is not a square matrix. In the ideal
case, its element can be computed as:

Hij =

{
1√nj

, i f xi ∈ Cj,

0, i f xi /∈ Cj,
(13)
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where xi denotes the i-th sample, Cj denotes the j-th cluster, nj represents the number of
samples in Cj. From (13), only one element in each row of H is nonzero, and this means
the corresponding sample belongs to one and only one cluster. Further, if the samples are
arranged from C1 to Ck by the cluster they belong to, then HHT is a BD matrix as follows:

HHT =


1n1 1T

n1
1n2 1T

n2
. . .

1nk 1T
nk

 (14)

(14) prompts us to have the following idea: If HHT itself has the property of (14), then it
will in turn induce H to have the elements as (13), which means explicit clustering results
are obtained directly from H.

Inspired by this idea, we hope that HHT possesses the BD property.
Since HHT is a square matrix, we view HHT as an adjacency matrix, then accord-

ing to Laplacian matrix in graph theory, its degree matrix D is a diagonal matrix with
dii = ∑k

c=1 (HHT)ic, i.e.,
D = Diag(HHT · 1n),

thus
LHHT = Diag(HHT · 1n)−HHT . (15)

There is an important conclusion between a matrix and a Laplacian matrix.

Theorem 1 ([27]). For any A ∈ Rn×n � 0, the number of connected components (blocks) in A
equals the multiplicity k of the eigenvalue 0 of the corresponding Laplacian matrix LA.

Then, A has k connected components if and only if

λi(LA)

{
> 0, i = 1, . . . , n− k,
= 0, i = n− k + 1, . . . , n,

(16)

where λi(LA)(i = 1, . . . , n) are the eigenvalues of LA in decreasing order.
Hence, the k-BD representation of HHT can be given as follows.

Definition 1 ([27]). For HHT ∈ Rn×n, the k-BD representation is defined as the sum of the k
smallest eigenvalues of LHHT , i.e.,

‖HHT‖ k = ∑n
i=n−k+1 λi(LHHT ). (17)

From Theorem 1, (16) and (17), ‖HHT‖ k = 0 means that HHT is k-BD. Then, mini-
mizing ‖HHT‖ k is to encourage it to be BD. Thereby, it is a natural idea that ‖HHT‖ k is
viewed as a BD regularizer. Its advantages, such as controlling the number of blocks, are
softer than the BD method in [28] and be better than the alternatives of Rank (LHHT ) or the
convex relaxation ‖LHHT‖∗, are stated in detail in [27].

3.3. Objective Function

Hereto, combining localized kernel selection, the block diagonal regularizer, and
choosing a neighborhood kernel as the optimal kernel, we formulate the final model
as follows:

min
G,H,Kw

Tr(G(In −HHT)) + α
2‖G−Kw‖2

F +
β
2 ‖HHT‖ k

s.t. HTH = Ik, H ∈ Rn×k, G � 0, Kw = ∑m
p=1 wpKp,

(18)

where wp is computed according to (10) and (11).
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The loss function of the objective function is used to executive multiple kernel cluster-
ing, the consensus term is used to choose a neighbor kernel, and the block diagonal term is
used to encourage HHT to be block diagonal, the aim of which is to obtain an expected H
as Equation (13) and to implement one-step clustering.

3.4. Optimization

The regularizer ‖HHT‖ k in problem (18) is non-convex, which leads the difficulty of
solving it. For this, a theorem is introduced to reformulate ‖HHT‖ k .

Theorem 2 ([29], p. 515). Let L ∈ Rn×n and L � 0. Then

∑n
i=n−k+1 λi(L) = min

W
〈L, W〉 s.t. 0 � W � I, Tr(W) = k. (19)

By (17) and (19), then

‖HHT‖ k = min
W
〈LHHT , W〉, s.t. 0 � W � I, Tr(W) = k.

From 〈L, W〉 = Tr(LTW), problem (18) is equivalent to

min
G,H,Kw ,W

Tr(G(In −HHT)) + α
2‖G−Kw‖2

F

+ β
2 Tr((Diag(HHT · 1n)−HHT)TW)

s.t. HTH = Ik, H ∈ Rn×k, G � 0, Kw = ∑m
p=1 wpKp,

0 � W � I, Tr(W) = k.

(20)

Although problem (20) is not jointly convex on W, G, Kw and H, it is convex for
each variable with the rest variables fixed. Thus, we optimize each variable alternately to
solve (20).

3.4.1. Update W While Fixing G, Kw and H

While G, Kw and H are fixed, problem (20) is

min
W

Tr((Diag(HHT · 1n)−HHT)TW)

s.t. 0 � W � I, Tr(W) = k.
(21)

For (21), Wk+1 = UUT , where U ∈ Rn×k is composed of the k eigenvectors associated
with the k smallest eigenvalues of Diag(HHT · 1n)−HHT [27].

3.4.2. Update G While Fixing W, Kw and H

While W, Kw and H are fixed, problem (20) is the following form:

min
G

Tr(G(In −HHT)) + α
2‖G−Kw‖2

F

s.t. G � 0.
(22)

Problem (22) can be expressed as

min
G

1
2‖G− B‖2

F

s.t. G � 0,
(23)

where B = Kw − 1
α (In −HHT).
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The optimal solution of problem (23) is G = UBΣ+
B VT

B, where B = UBΣBVT
B is SVD

of B, Σ+
B is a diagonal matrix where the diagonal elements are the positive elements of ΣB

and zeros [13].

3.4.3. Update Kw While Fixing W, G and H

With fixed W, G and H, problem (20) reduces to

min
Kw

α
2‖G−Kw‖2

F

s.t. Kw = ∑m
p=1 wpKp. (24)

By introducing a parameter γ, problem (24) can be turned into

min
Kw

α

2
‖G−Kw‖2

F +
γ

2
‖Kw −∑m

p=1 wpKp‖2
F. (25)

The closed-form solution of Kw in (25) is computed by taking its derivative with
respect to Kw to zero:

Kw = 1
α+γ (αG + γ ∑m

p=1 wpKp). (26)

where wp is updated according to newly generated Y that is learned from new G.

3.4.4. Update H While Fixing G, Kw and W

Here, problem (20) is

min
H
−Tr(G ·HHT) + βTr((Diag(HHT · 1n)−HHT)W)

s.t. HTH = Ik, H ∈ Rn×k.
(27)

The term βTr((Diag(HHT · 1n)−HHT)W) leads to the difficulty of solving (27) di-
rectly. By means of matrix operations and the properties of the trace, Tr(Diag(HHT · 1n) ·
W) = Tr((1MDiag(W)) ·HHT), then (27) can be changed into

min
H

Tr(β(1MDiag(W)−G) ·HHT)

s.t. HTH = Ik, H ∈ Rn×k.
(28)

Because 1MDiag(W) in (28) is not symmetric, the same solution as a kernel k-means
clustering is not suitable for (28). Notably, (28) is similar to the problem on the Stiefel
manifold in [26]; thus, the Riemann conjugate gradient method in [26] can be used to
solve it.

These are the main steps of our proposed algorithm.

4. Experiments
4.1. Data Sets

Eight real data sets are used in our experiments, and their sizes and classes are
summarized in Table 2.

Table 2. Summaries of data sets.

Data Sets # (Samples) # (Features) # (Classes)

AR 840 768 120
BA 1404 320 36
CCUDS10 1944 101 10
GLIOMA 50 4434 4
ISOLET 1560 617 2
LYMPHOMA 96 4026 9
ORL 400 1024 40
YALE 165 1024 15
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4.2. Comparison Methods

To demonstrate the clustering performance, we compare OSC-ALK-ONK with six
clustering methods. Among them, KKM is a single kernel clustering, MKKM and RMKKM
are two classic MKC methods, and MKKM-MR, SimpleMKKM, and MKKM-RK are three
MKC methods recently proposed.

• KKM integrates integral operator kernel functions in principal component analysis to
deal with nonlinear data [30].

• MKKM combines the fuzzy k-means clustering with multiple kernel learning, where the
weights of base kernels are automatically updated to produce the optimal kernel [31].

• RMKKM is an extension based on MKKM, and its robustness is ensured by an `2,1-
norm in kernel space [7].

• MKKM-MR uses a matrix-induced regularization to measure the correlation between
all the kernel pairs and implements MKC [18].

• SimpleMKKM adopts a min-max model to minimize kernel alignment on the kernel coef-
ficient and maximize kernel alignment on the clustering matrix, and is a simple MKC [12].

• MKKM-RK is an MKC method by selecting representative kernels from the base kernel
pool to generate the optimal kernel [17].

4.3. Multiple Kernels’ Construction

In this paper, we construct a kernel pool by selecting twelve base kernels (i.e.,
m = 12), which consists of seven radial basis function kernels with ker(xi, xj) = exp(−‖xi−
xj‖2

2/(2τσ2)), where the value of τ is selected from {0.01, 0.05, 0.1, 1, 10, 50, 100} and σ
is the maximum distance between samples; four polynomial kernels with ker(xi, xj) =

(a + xT
i xj)

b, where a and b are chosen from {0, 1} and {2, 4}, respectively; and a cosine
kernel with ker(xi, xj) = (xT

i xj)/(‖xi‖ · ‖xj‖). And all the kernels {Kp}m
p=1 are normalized

to the range of [0, 1].

4.4. Experimental Results and Analysis

To obtain better and more stable clustering performance, we utilize the ten-fold cross-
validation method with the five-fold cross-validation embedded in OSC-ALK-ONK. To
this end, at first, we randomly partition all the samples into ten subsets without repetition,
where nine subsets are viewed as training sets and the rest are regarded as testing sets.
Further, the nine training sets are partitioned into five subsets without repetition, where
four subsets are utilized as training sets and the rest one is the validation set. In order to
lose generality, the values of two parameters α, β change from ∈ [10−2, 10−1, · · · , 101, 102].
Five-fold cross validation aims to select the optimal combination of parameters α, β. The
obtained optimal combinations are used in the test set to produce the final clustering results.
And the number of cluster k in each data set is set as the true value of the cluster.

For each method used for comparison, we set the parameters according to the corre-
sponding literature.

The final experimental results of each method on each data set, namely the average
ACC, NMI, and Purity of 15 experiments, are reported in Table 3. The best ACC, NMI, and
Purity on each data set are highlighted in boldface. The last three rows in Table 3 are the
mean ACC, NMI, and Purity of each method on all the data sets. Evidently, the proposed
OSC-ALK-ONK performs best. The detailed analyses are as follows.

(1) OSC-ALK-ONK outperms KKM by 54.41%, 62.44%, 53.26% according to ACC, NMI
and Purity. This verifies that multiple kernel clustering is prior to single kernel clustering.
(2) OSC-ALK-ONK exceeds MKKM and RMKKM by 58.62%, 67.01%, 60.53% and 31.29%,
34.36%, 32.89% in terms of ACC, NMI, and Purity. The reason should be that the combina-
tion of the local kernel method and the neighborhood kernel method is used to avoid the
redundancy of the base kernel and expand the search range of the optimal kernel. And the
clustering results of OSC-ALK-ONK are better than SimpleMKKM, which should also give
credit to the combination of the two methods. (3) Although MKKM-MR and MKKM-RK
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exceed KKM, MKKM, and RMKKM, they are inferior to OSC-ALK-ONK. The reason should
be the localized kernel strategy in OSC-ALK-ONK ensures the sparsity of base kernels and
successfully avoids the redundance of base kernels. In a word, OSC-ALK-ONK improves the
quality of the optimal kernel and promotes the clustering performance by combining local
kernels and a neighborhood kernel. In addition, the BD representation ensures the reliability
of clustering results and further promotes the clustering performance of OSC-ALK-ONK.

Overall, the experiment results show that OSC-ALK-ONK is an effective clustering method.

Table 3. Clustering results of different methods.

Dataset Metric KKM MKKM RMKKM MKKM Simple MKKM Proposed
-MR -MKKM -RK

AR
ACC 0.3000 0.3167 0.3168 0.4863 0.5150 0.5047 0.6686
NMI 0.6360 0.6350 0.6608 0.7615 0.7644 0.7608 0.8890
Purity 0.3190 0.3437 0.3358 0.5398 0.5304 0.5305 0.7826

BA
ACC 0.2863 0.3868 0.4088 0.4177 0.4496 0.3708 0.4211
NMI 0.4365 0.5301 0.5639 0.5882 0.5919 0.5194 0.6716
Purity 0.3226 0.4010 0.4329 0.4619 0.4780 0.3962 0.4773

CCUDS10
ACC 0.1280 0.1214 0.1285 0.1345 0.1287 0.1287 0.2031
NMI 0.0093 0.0081 0.0091 0.0083 0.0102 0.0073 0.1054
Purity 0.1318 0.1234 0.1331 0.1357 0.1327 0.1310 0.2182

GLIOMA
ACC 0.5032 0.4880 0.5760 0.4955 0.5120 0.5640 0.7900
NMI 0.3256 0.2943 0.4818 0.3083 0.2957 0.4077 0.7178
Purity 0.5357 0.5400 0.6460 0.5341 0.5320 0.5787 0.8420

ISOLET
ACC 0.5659 0.5269 0.5643 0.5282 0.5801 0.5558 0.6489
NMI 0.0224 0.0021 0.0121 0.0023 0.0192 0.0090 0.0862
Purity 0.5659 0.5269 0.5643 0.5282 0.5801 0.5558 0.6500

LYMPHOMA
ACC 0.4982 0.5085 0.6135 0.5437 0.5932 0.5639 0.6929
NMI 0.5105 0.5070 0.6172 0.6495 0.6099 0.5963 0.7070
Purity 0.7163 0.7036 0.8031 0.7826 0.8266 0.8125 0.8350

ORL
ACC 0.4308 0.3475 0.5521 0.6357 0.6391 0.5860 0.7127
NMI 0.6383 0.5378 0.7406 0.8163 0.8073 0.7581 0.8898
Purity 0.4797 0.3525 0.6001 0.6908 0.6860 0.6188 0.8107

YALE
ACC 0.4182 0.3515 0.5218 0.5341 0.5512 0.5939 0.6962
NMI 0.4330 0.4152 0.5558 0.5614 0.5826 0.5986 0.8262
Purity 0.4424 0.3636 0.5364 0.5495 0.5555 0.5988 0.7691

Avg
ACC 0.3913 0.3809 0.4602 0.4720 0.4961 0.4835 0.6042
NMI 0.3765 0.3662 0.4552 0.4620 0.4602 0.4572 0.6116
Purity 0.4392 0.4193 0.5065 0.5278 0.5402 0.5278 0.6731

In order to further substantiate the effectiveness of OSC-ALK-ONK, we present the
visualization of clustering results for all methods on ISOLET (for convenience, only a fifth
of samples in ISOLET are chosen). As can be seen from Figure 2, OSC-ALK-ONK achieves
a good clustering effect.

4.5. Ablation Study

In OSC-ALK-ONK, the weights of base kernels are adjusted adaptively, which aims
to choose base kernels with small correlation and discard those with large correlation.
These weights are automatically updated during the optimization process of the model.
To verify the effectiveness of the localized kernel selection strategy, we adopt the uniform
weight strategy as a contrast, i.e., wp = 1

m , p = 1, 2, . . . , m, to perform ablation study. For
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convenience’s sake, this model is denoted as OSC-ONK-UW. That is, all the base kernels
are selected in OSC-ONK-UW.
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Figure 2. The visualization of clustering results for OSC-ALK-ONK and comparison methods
on ISOLET.

In addition, the BD regularization term is used in our OSC-ALK-ONK. To validate its
effect, we also conduct an ablation study on the model not including this term, i.e., we only
consider the following model (ALK-ONK-NoBD):
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min
G,H,Kw

Tr(G(In −HHT)) + α
2‖G−Kw‖2

F

s.t. HTH = Ik, H ∈ Rn×k, G ≥ 0, Kw = ∑m
i=1 wiKi,

(29)

where wp is computed according to (10) and (11).
The results of ablation studies on eight data sets, namely OSC-ONK-UW, ALK-ONK-

NoBD, and OSC-ALK-ONK, are shown in Figure 3, which indicates that OSC-ALK-ONK
outperforms OSC-ONK-UW and ALK-ONK-NoBD. Accordingly, OSC-ALK-ONK im-
proves the clustering performance through the strategy of localized kernel selection and
BD regularizer.
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Figure 3. Comparison of clustering results among OSC-ONK-UW, ALK-ONK-NoBD and OSC-ALK-
ONK on eight datasets.
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4.6. Parameters’ Sensitivity

The model of OSC-ALK-ONK involves the parameters α, β, and a penalty parameter
γ. We set γ to be 0.1 in experiments. To verify the sensitivity of OSC-ALK-ONK to α
and β, they are tuned in the ranges [10−2, 10−1, · · · , 101, 102] via leveraging a grid search
technique. Figure 4 shows the clustering performance of OSC-ALK-ONK corresponding to
varying α and β, which indicates that OSC-ALK-ONK is data-driven.
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Figure 4. ACC of OSC-ALK-ONK with different parameter’s settings.

4.7. Convergence

In this section, we first prove the convergence of the objective function of (20). For
convenience, we express the objective function of problem (20) as

J (W, G, Kw, H) = { min
G,H,Kw ,W

Tr(G(In −HHT)) + α
2‖G−Kw‖2

F

+ β
2 Tr((Diag(HHT · 1n)−HHT)TW)

s.t. HTH = Ik, H ∈ Rn×k, G � 0, Kw = ∑r
q=1 wqKq,

0 � W � I, Tr(W) = k}.

(30)
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When updating W with fixed G, Kw, H, problem (21) is a convex programming prob-
lem [27], so it can converge to the global optimal solution. We denote the optimal solution
as Wt+1, then

J (W(t+1), Gt, Kt
w, Ht) ≤ J (Wt, Gt, Kt

w, Ht). (31)

When updating G with fixed W, Kw, H, problem (22) is convex and the global optimal
solution can be obtained, which we denote as Gt+1, then

J (Wt+1, Gt+1, Kt
w, Ht) ≤ J (Wt+1, Gt, Kt

w, Ht). (32)

When updating Kw with fixed W, G, H, problem (25) is convex, then the global
optimal solution can be obtained. It is denoted as Kt+1

w , then

J (Wt+1, Gt+1, Kt+1
w , Ht) ≤ J (Wt+1, Gt+1, Kt

w, Ht). (33)

When updating H with fixed W, G, Kw, since 1MDiag(W) is not symmetric, it is
difficult to prove that problem (28) for H is convex. Nevertheless, the global convergence
of the conjugate gradient method after finite step iteration has been proved in [26], i.e., the
conjugate gradient method ensures that problem (28) can converge to the global optimal
solution when updating H. The optimal solution is denoted as Ht+1, then

J (Wt+1, Gt+1, Kt+1
w , H(t+1)) ≤ J (W(t+1), Gt+1, Kt+1

w , Ht). (34)

Combining (31)–(34), it is concluded that

J (Wt+1, Gt+1, Kt+1
w , Ht+1) ≤ J (Wt, Gt, Kt

w, Ht). (35)

Therefore, J (Wt, Gt, Kt
w, Ht) monotonically decreases at each iteration, until it con-

verges to the global optimal solution.
The above proof shows that Algorithm 1 can monotonically reduce the value of the

objective function at each iteration, i.e., the objective function is monotonically decreasing.
The convergence graphs of OSC-ALK-ONK on all the data sets are shown in Figure 5, where
the stopping criteria of the algorithm are |obj(t+1)−obj(t)|

|obj(t)| ≤ 10−3, and obj(t) denotes the
objective function value at the t-th iteration. Evidently, the changing trend of the objective
function value with respect to the iteration number in Figure 5 shows the monotone descent.
Further, they converge within 10 iterations on all the data sets, which demonstrates the
rapid convergence of OSC-ALK-ONK.

Algorithm 1: Pseudo code of solving problem (18).
Input: m base kernels {Kp}m

p=1 and parameters α, β, γ.

Initialize: (K)1 = 1
m ∑m

p=1 Kp, (H)1 = rand(n, k), {(wp)1}m
p=1 = 1

m .
While not converged do.

(1) Update Wk+1 by solving (21).
(2) Update Gk+1 by solving (22).
(3) Update Kk+1

w via (26).
(4) Update Hk+1 via (27), compute w via (10) and (11).

end while
Obtain the optimal G∗, H∗, K∗w, W∗.
Output: ACC, NMI and Purity.
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Figure 5. Objective function value of OSC-ALK-ONK at each iteration.

5. Conclusions

In this paper, we proposed a novel MKC method called OSC-ALK-ONK. It selects
adaptively local given kernels to generate a consensus kernel and uses a neighborhood
kernel of this consensus kernel as an optimal one. The combination of these two methods
promotes the quality of the optimal kernel by enlarging its search area while avoiding the
redundancy of base kernels. Furthermore, a BD regularizer is utilized on the indicator
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matrix to execute one-step clustering and avoid two-step operations. In addition, sufficient
experiment results indicate the effectiveness of OSC-ALK-ONK.

In real applications, a lot of data are multi-view data, which may be incomplete for
some objective reasons. Due to the effectiveness of the local kernel selection strategy in this
paper, it can be considered to combine this strategy with the neighborhood kernel in the
future to obtain a high-quality optimal kernel in multi-view data. In addition, on account
of the advantages of the BD regular term in this paper, it is also used in multi-view data,
even incomplete multi-view data. All these are worth studying in the future.
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