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Abstract: The generation and analysis of vast amounts of data have become increasingly prevalent
in diverse applications. In this study, we propose a novel approach to address the challenge of
rule explosion in association rule mining by utilizing the coverage-based representations of clusters
determined by K-modes. We utilize the FP-Growth algorithm to generate class association rules
(CARs). To further enhance the interpretability and compactness of the rule set, we employ the
K-modes clustering algorithm with a distance metric that binarizes the rules. The optimal number
of clusters is determined using the silhouette score. Representative rules are then selected based
on their coverage within each cluster. To evaluate the effectiveness of our approach, we conducted
experimental evaluations on both UCI and Kaggle datasets. The results demonstrate a significant
reduction in the rule space (71 rules on average, which is the best result among all state-of-the-art rule-
learning algorithms), aligning with our goal of producing compact classifiers. Our approach offers
a promising solution for managing rule complexity in association rule mining, thereby facilitating
improved rule interpretation and analysis, while maintaining a significantly similar classification
accuracy (ACMKC: 80.0% on average) to other rule learners on most of the datasets.

Keywords: class association rules; clustering; representative rule; model coverage; classification

MSC: 90C90

1. Introduction

In the modern era of data-driven applications, there has been a significant increase in
the gathering and retention of large amounts of data. Extracting association rules from these
extensive datasets and reducing their complex combinations has become a crucial method
for uncovering valuable insights [1]. However, a major hurdle lies in the sheer number
of rules discovered in real-world datasets, which requires the crucial task of pruning and
clustering rules to create classifiers that are concise, precise, and easy to understand.

Association rule (AR) mining [2] seeks to create all relevant rules in a database, ad-
hering to user-defined thresholds for minimum support and confidence. On the other
hand, classification rule mining focuses on extracting a subset of rules to develop precise
and effective models for predicting labels of ambiguous objects. Combining these two
crucial data-mining methods in Associative Classification (AC) allows for the creation of a
cohesive framework [3,4]. Association rules utilize many of the AC techniques presented
by researchers to create efficient and accurate classifiers [5–12]. Although their effectiveness
depends on user-defined factors like minimum support and confidence, research investiga-
tions have shown that AC methods can be more accurate than conventional categorization
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systems. Unsupervised learning techniques like clustering [13–15] also play a significant
part. Partitional clustering or hierarchical clustering are two categories of clustering tech-
niques. In partitional clustering [16,17], objects are divided into distinct clusters to ensure
that objects inside a cluster are more similar than those in other clusters. On the other hand,
nested partitions make up a hierarchy in hierarchical clustering [18]. While the top–down
method starts with a single cluster that contains all items and then splits them into smaller
clusters, the bottom–up method joins smaller clusters to create bigger ones.

Our research focuses on generating strong class association rules (CARs) using the
“FP-Growth” algorithm for frequent itemsets, satisfying minimum support and confidence
requirements. Additionally, we propose an approach to associative classification utilizing
K-modes clustering with a novel distance metric built on direct measurements like rule
items to reduce the rule space. Our method represents rules as binary vectors of itemsets,
enabling efficient similarity calculation and making it compatible with clustering techniques
like K-modes. We explore the benefits and methodology of K-modes clustering, which
reveals hidden patterns in itemsets and provides computational efficiency for large datasets
compared to other clustering approaches. Moreover, we introduce a two-step process
using the silhouette score to determine the optimal number of clusters, ensuring a balance
between cohesion and separation. After clustering the CARs, we select a representative
CAR for each cluster using two approaches based on dataset coverage and rules similarity,
aiming to enhance coverage and classification accuracy.

In order to assess the effectiveness of our proposed techniques, we carried out ex-
periments on 13 meticulously chosen datasets sourced from the UCI Machine Learning
Database Repository [19] and Kaggle. A comparative evaluation was conducted, comparing
our methods against seven well-known associative and classical classification algorithms.
These algorithms include Decision Table and Naïve Bayes (DTNB) [20], Decision Table
(DT) [21], Classification Based on Predictive Association rules (CPAR) [22], Classification
based on Multiple Association Rules (CMAR) [18], C4.5 [23], Classification-Based Associa-
tion (CBA) [3], and Simple Associative Classifier (SA) [24].

Experimental results showed that ACMKC achieved the best result when comparing
the average number of classification rules while maintaining the similar classification
accuracy with other models. The ACMKC model showed great advantage to produce
statistically smaller classifiers on bigger datasets, which was the primary goal of the study.

The following sections of the paper are structured as follows: Section 2 includes
past works related to our research. Section 3 presents a comprehensive explanation of
our proposed methodology. Section 4 focuses on the experimental evaluation. Section 5
outlines the conclusion and future plans. The paper concludes with the Acknowledgement
and References sections.

2. Related Work

Our proposed approach introduces innovation in the selection of “strong” class as-
sociation rules, the clustering process, and the determination of a “representative” class
association rule for each cluster. Other relevant studies also address the concept of clus-
tering CARs, but they employ various approaches. This section discusses these related
approaches to clustering CARs, highlighting both the similarities and differences compared
to our proposed approach.

To the best of our knowledge, and due to the lack of information relating to the combi-
nation of class association rules and clustering, our approach serves as a coalescence of these
two to create a method of determining representative class association rules for clusters.
While there are methods that employ associative classification and clustering to accomplish
a similar feat, ours differs in that it uses CARS instead of associative classification.

The techniques used in [25] involve Association Rule Classification and Clustering
units. In the Association Rule Classification unit, the Apriori Algorithm is applied to
identify regularities between flow parameters; it is used for the finer classification and pre-
diction of IPs and ports for future application servicing. This approach focuses on deriving
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association rules to enhance classification accuracy. On the other hand, in the Clustering
unit, both K-Mean and Model-based clustering algorithms are compared to determine the
optimum performance. Unsupervised clustering techniques group datasets with similar
characteristics together, aiding the classification process. K-Mean partitions data into k
groups to minimize the Euclidean distance of cluster centers. Model-Based Clustering
assumes a data model and utilizes the Mclust package with Expectation–Maximization
(EM) for parameter estimation and hierarchical clustering. These techniques differ from
K-modes and class association rules by exploring distinct approaches to data representation,
rule generation, and clustering strategies for classification tasks.

A new method researchers propose utilizes K-means (partitional) clustering to cluster
association rules [26]. The primary objective of this research is to cluster discovered
association rules to facilitate user selection of the most suitable rules. Four steps make up
the algorithm: (1) The “Apriori” algorithm is used to extract ARs from frequent patterns;
(2) Lift, Cosinus, Conviction, and Information Gain are computed for all rules generated in
step 1; (3) Using the K-means algorithm, a set of association rules is divided into disjoint
clusters; they attempt to cluster the rules that share the fewest similarities. Euclidean and
degree of similarity distances are used; (4) Finally, the group of rules is ranked from best to
worst based on the centroid of each cluster.

The CPAR algorithm is introduced by Yin and Han as a fusion of associative classifica-
tion and traditional rule-based classification methods. CPAR employs a greedy algorithm
and draws inspiration from the First-Order Inductive Learner (FOIL) [27] technique to
directly generate rules from the training dataset, deviating from the generation of a vast
number of candidate rules derived from frequent itemsets in other associative classification
approaches. CPAR evaluates each rule using expected accuracy to address overfitting and
employs a distinct classification process. Firstly, it selects all rules whose bodies match the
testing example; then, it extracts the best k rules for each class among the selected rules.
Finally, CPAR compares the average expected accuracy of the best k rules per class from
step 2 and predicts the class label associated with the highest expected accuracy.

CMAR, an associative classification method, employs multiple association rules for
classification. It extends the efficient FP-Growth algorithm [28] to mine large datasets and
introduces a novel data structure called a CR-tree. The CR-tree aims to store and retrieve
a large number of rules compactly and efficiently by utilizing a prefix tree structure that
explores rule sharing, resulting in significant compactness. Additionally, the CR-tree acts
as an index structure for rules, enabling efficient rule retrieval. In the rule selection phase,
CMAR identifies highly confident and related rules by considering dataset coverage and
analyzing their correlation. For each rule R, all examples covered by R are identified, and
if R correctly classifies an example, it is selected for inclusion in the final classifier. The
cover count of examples covered by R is incremented by 1, with a cover count threshold C
initially applied. If the cover count of an example exceeds C, that example is removed. This
iterative process continues until both the training dataset and rule set are empty.

Liu, Hsu, and Ma developed the heuristic technique known as CBA [3] in 1998. Its
structure is similar to associative classification algorithms and includes steps for rule
development and selection. CBA uses an iterative process for rule creation comparable
to the Apriori algorithm [2]. CBA detects frequent rule-items and creates strong class
association rules from these frequent itemsets by repeatedly examining the data. A pruning
technique based on a pessimistic error rate is used in the rule-generation phase. Rules are
extracted depending on dataset coverage during the rule-selection step. A rule qualifies
as a prospective classifier candidate if it accurately classifies at least one example. Finally,
based on the assessment of total error, rules are added to the final classifier.

In reference [29], a classifier named J&B was developed through a thorough explo-
ration of the complete example space, resulting in a straightforward and accurate clas-
sifier. Our selection of strong class association rules was based on their contribution to
enhancing the coverage of the learning set. J&B incorporates a stopping criterion in the
rule-selection process, which relies on the coverage of the training dataset. In the represen-
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tative CAR-selection process of this study, we employed the J&B approach without using a
stopping condition. There is no need to use a stopping criterion in this method because
the size of the classifier, which is decided by the number of clusters, is determined using a
separate strategy.

Conditional market-basket difference (CMBP) and conditional market-basket log-
likelihood (CMBL) approaches are two further strategies suggested in [30]. This method
groups association rules using a new normalized distance metric. Agglomerative clustering
is used to group the rules based on distance. In addition, the rules are clustered using
self-organizing maps and multi-dimensionally scaled in a vector space. This approach is
relatively similar to ours, but instead of using “indirect” measurements based on CAR
support and coverage, we suggest a new normalized distance metric based on “direct” and
“combined” distances between class association rules.

Another related strategy is mining clusters with ARs [31]. The FP-Growth algorithm
generates the rules in this case. However, a unique distance metric (based on K-modes) is
afterward applied to identify similarities between rules. Provided is the list of products
purchased by each client, and rules are clustered using a top–down hierarchical clustering
algorithm to identify clusters in a population of customers. After clustering the rules, we
introduce a specific distance metric to assess the effectiveness of the clustering process.

3. Methodology

Our approach (Compact, Accurate and Descriptive Associative Classifier) is divided
into 3 main actions outlined in the preceding section. The following subsections go into
further depth about each of these steps.

3.1. Class Association Rule Generation

In this subsection, we address the method of finding the strong CARs from frequent
itemsets. The process of creating ARs typically consists of two primary stages: first, all
frequent itemsets from the training dataset are found using the least support; then, we use
these frequent itemsets along with minimum confidence to create strong association rules.
The identical process used for AR creation is also followed in the discovery of CARs. The
main distinction is that in the rule-generation phase, the rule’s result in CAR generation
comprises just the class label, whereas the rule’s result in AR generation might contain
any frequent itemset. In the first step, the “FP-Growth” algorithm is employed to discover
frequent itemsets. The “FP-Growth” algorithm uses a “growth” technique to decrease the
number of itemset candidates at each level, therefore speeding up the search process. To
create the 2-frequent itemset and beyond, it starts by determining the 1-frequent itemset.
Since they cannot add to frequent itemsets, any infrequent itemsets found during the
procedure are discarded. By completing this trimming step before calculating the support
at each level, the temporal complexity of the algorithm is decreased. After obtaining
every frequent itemset from the training datasets, creating strong class association rules
(CARs) that meet the minimal support and minimum confidence requirements is a simple
process. The frequent itemsets found in the first stage serve as the basis for these rules. The
confidence of a rule can be calculated using the following formula:

con f idence(A→ B) =
support_count(A ∪ B)

support_count(A)
(1)

In Equation (1), the support count of an itemset is used, where A represents the
premise (itemset on the left-hand side of the rule), B represents the consequence (class
label on the right-hand side of the rule), support_count(A ∪ B) represents the number
of transactions that contain both itemsets A and B, and support_count(A) represents the
number of transactions that contain itemset A. On the basis of the prior equation, the
following procedures can be used to build strong class association rules that satisfy the
minimum confidence threshold:
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• Generate all nonempty subsets S for each frequent itemset L and a class label C.
• For each nonempty subset S of L, output the strong rule R in the form of “S→ C”

if support_count(R)
support_count(S) ≤ min_con f , where min_con f represents the minimum confidence

threshold.

3.2. Clustering

Clustering algorithms put comparable examples together into clusters, where the
examples in each cluster differ from the examples in other clusters and share commonalities
with each other. Among the different clustering techniques, K-modes is a noteworthy one.
Because of its unique benefits in some situations, such as efficiently managing datasets
with discrete qualities or categorical variables, like the suggested distance matrix we use to
describe association rules, the K-modes technique is used.

3.2.1. Distance Metric

We suggest a new distance metric in this part that is based on direct measurements
for rule items. Our main objective is to decrease the rule space by using direct distance
measurements for clustering.

The encoding of rules as a binary vector of itemsets is one of our work’s contributions.
With this structure, calculating similarities across rules is quick and easy, and our binary
governed dataset is a perfect fit for clustering methods like K-modes.

The antecedent, or left side of the rule, is taken into consideration when we are
calculating the distance between the rules that have the same class value.

Let R = {r1, r2, . . . , rn} be a rule set, and each rule is denoted as follows: r = {a1, a2, . . . , ak}
→ {c}, where {a1, a2, . . . , ak} are values of the attribute and c is a class value. We first
transfer the rule items ai into a binary vector. The existing attribute’s value is replaced
with 1 and the remaining attribute’s values (which were not present in a rule) are replaced
with 0.

Example: Let us assume that attribute Windy has two values: “T” and “F”, and
attribute Temperature has three values: “Hot”, “Mild” and “Cool”. An antecedent of
the example rule is as follows: Windy = T and Temp = Cool; a subsetted example of the
represented rule is shown below.

Rule Windy = T Windy = F Temp = Hot Temp = Mild Temp = Cool

{Windy=T,
Temp=Cool} 1 0 0 0 1

After transferring the rules into binary vectors, we use a simple method of computing
the distance between two rules as follows:

Given two rules (rule1, rule2):

rule1 = {y1, y2, . . . , yk} → {c}

rule2 = {z1, z2, . . . , zk} → {c}

where {y1, y2, . . . , yk and z1, z2, . . . , zk} ⊆ 0, 1, and c ∈ C. We compute the similarity
between rule1 and rule2 as follows:

distance(rule1, rule2) =
k

∑
i=1
|yi − zi| (2)

3.2.2. K-Modes

In K-modes, the clustering process involves iteratively assigning examples to clus-
ters, considering the modes (the most frequent values) of the categorical attributes. This
approach seeks to identify groups of examples that share similar modes across all categor-
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ical variables, ensuring that the resulting clusters are internally cohesive. By employing
K-modes, we can achieve several benefits. Firstly, it allows us to capture the inherent
structure within the itemsets contained in the rules, revealing patterns and associations
that might be hidden in numerical-based clustering methods. Secondly, K-modes offers
computational efficiency and scalability for large datasets with categorical variables. It
can handle high-dimensional data and handle a large number of categories within each at-
tribute, making it suitable for real-world applications with diverse and complex categorical
data. The K-modes algorithm is described in Algorithm 1.

Algorithm 1 The K-modes algorithm for partitioning, where each cluster’s center is repre-
sented by the median value of the objects in the cluster.
Input: k: the number of clusters, D: a dataset containing n rules
Output: A set of k clusters

1: Arbitrarily choose k rules from D as the initial cluster centers;
2: repeat
3: (Re)assign each rule to the cluster to which the rule is the most similar based on the median

value of the rules in the cluster;
4: Update the cluster medians, i.e., calculate the median value of the rules for each cluster;
5: until no change.

We run the K-modes method twice. Since Algorithm 1 takes the number of clusters in
advance, we initially run the algorithm to determine the optimal number of clusters. Then,
the algorithm is run again with the determined optimal clusters. When determining the
optimal number of clusters in K-modes, the silhouette score can be utilized as a metric. The
silhouette score assists in identifying the “natural” number of clusters by evaluating the
cohesion and separation of examples within the clusters.

To calculate the silhouette score, each example is assigned to a cluster, and the follow-
ing values are computed:

• The average dissimilarity (distance) between an example i and all other examples
within the same cluster. This value measures how well an example fits within its
assigned cluster with lower values indicating better cohesion.

• The average dissimilarity (distance) between an example i and all examples in the near-
est neighboring cluster. This value captures the separation or dissimilarity between an
example and other clusters with higher values indicating greater dissimilarity.

By computing the silhouette scores for all examples across a range of cluster numbers,
the optimal number of clusters can be identified. The “natural” number of clusters corre-
sponds to the point where the silhouette score is highest, indicating the configuration with
the best balance of cohesion and separation. The algorithm that identifies the “natural”
number of clusters is presented in Algorithm 2.

Algorithm 2 Computing the optimal number of clusters.
Input: D: a dataset containing n rules; max_clusters: the maximum number of clusters to search for
Output: Optimal number of clusters

1: Opt_number_o f _cluster = 1;
2: Best_score = 1;
3: for (k = 2; k ≤ max_clusters; k ++) do
4: Run K-modes with dataset D and number of clusters as k;
5: Calculate silhouette_score;
6: if silhouette_score >= Best_score then
7: Best_score = silhouette_score;
8: Opt_number_o f _cluster = k;
9: end if

10: end for
11: return Opt_number_o f _clusters
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3.3. Extracting the Representative CAR

After locating each cluster, the last step is to separate the representative CARs from
each cluster to create a descriptive, compact, and useful associative classifier. In this
work, we extracted representative rules based on dataset coverage while considering the
rules similarity.

The decision was made to utilize this approach in order to raise the classification
accuracy and overall coverage. It is not necessary to consider the outer-class overlapping
problem—which indicates that some samples from different classes have similar charac-
teristics—because we are clustering similar rules with the same class value. However, we
should avoid the inter-class overlapping problem, which arises when multiple rules from
the same class cover the same samples. By choosing the representative CARs according
to database coverage, we work around this issue. When the coverage of the rules is the
same, we take into account how similar the rules are to each other. This means that we
select the CAR that is closest to the cluster center (it has the lowest average distance to all
other rules). The steps are described in Algorithm 3.

Algorithm 3 A Representative CAR based on Dataset Coverage and Minimum Distance.
Input: A set of class association rules in CARs array, a training dataset D and
covered_traindata array
Output: Three representative class association rules

1: CARs = sort(CARs, coverage, minimum_distance);
2: Representative_CARs. add (CARs[1]):
3: for (i = 2; i ≤ CARs.length; i ++) do
4: for (j = 1; j ≤ D.length; j ++) do
5: if covered_traindata[j] = false then
6: if CARs[i] covers D[j] then
7: covered_traindata[j] = true;
8: increment contribution of CARs[i] by 1;
9: end if

10: end if
11: end for
12: if contribution of CARs[i] > 0 then
13: Representative_CARs. add (CARs[i]);
14: break;
15: end if
16: if Representative_CARs. length = 3 then
17: return Representative_CARs;
18: end if
19: end for

Firstly, class association rules within the cluster are sorted (line 1) by coverage and
minimum_distance in descending order by the following criteria: Given two rules R1 and R2,
R1 is said to have a higher rank than R2, which is denoted as R1 > R2,

• If and only if, coverage(R1) > coverage(R2); or
• If coverage(R1) = coverage(R2) but, minimumdistance(R1) > minimumdistance(R2);
• If the entire set of parameters of the rules is equal, we may choose any of one of them.

After sorting the rules based on coverage and minimum distance, we extracted the
top three rules for each cluster. We selected three rules as optimal according to experi-
ments. Each potential rule is checked (Lines 3–19); if it covers at least one new example
(Lines 12–15), then we add it to the representative CARs array and remove all the examples
covered by that rule; otherwise, we continue.



Mathematics 2023, 11, 3978 8 of 14

Associative Classification Model

After extracting the representative class association rules, we produce our explainable,
compact and descriptive model which is represented in Algorithm 4.

Algorithm 4 Compact and Explainable Associative Classification Model.
Input: A distance matrix d and number of clusters S
Output: Cluster heights (AHCCLH), Cluster of CARs (AHCCLC)

1: Initialization: minimum support and minimum confidence thresholds are set to generate
the CARs;

2: Generate: The frequent itemsets are generated from the dataset by using the FP-Growth
algorithm and used to produce strong class association rules, which are sorted based
on confidence and support. Cars are then groupped according to class label;

3: Cluster: For each group of CARs, the K-modes clustering algorithm is utilized to cluster
them. For this purpose, the newly developed distance metric (Section 3.2.1) is used
to find the similarity between CARs, and the optimal number of clusters is identified
based on the silhouette score (Algorithm 2);

4: Extract representative rules: Three representative rules are extracted for each cluster
according to Algorithm 3:

5: Producing final model: For each class value, all the rules extracted from each cluster are
collected to produce the final compact and explainable associative classification model.

4. Results

Experimental assessment supported the accomplishment of the scientific goals. Thir-
teen real-world datasets from Kaggle and the UCI Machine Learning Database Repository
were used to test our models. By comparing our classifier’s classification accuracy and
rule count to those of eight well-known rule-based classification algorithms (DTNB, DT,
C4.5, CPAR, CMAR, CBA, and SA), we were able to assess its performance. A paired
t-test was used to determine the statistical significance of each difference (with a 95% level
of significance).

Associative classifiers were run with default parameters at minimum support = 1%
and minimum confidence = 50%. We utilized their WEKA workbench implementation with
default parameters for the other classification models. The description of the datasets is
shown in Table 1.

An evaluation methodology that uses 10-fold cross-validation was used to achieve
all experimental outcomes. Table 2 displays the experimental findings for classification
accuracy (mean values throughout the 10-fold cross-validation with standard deviations).

Table 2 shows that the ACMKC model achieved the best accuracies on the “Abalone”,
“Adult”, “Connect4” and “Diabetes” datasets among all classification models and obtained
comparable accuracies on other datasets. Our proposed model attained the third highest
result on average accuracy with 80.0%, which was slightly lower than the results of the C4.5
(82.7%) and CMAR (82.4%) models. Rule-based models DTNB, DT, and C4.5 obtained better
accuracies on the “Car.Evn” and “Nursery” datasets than associative classifications CPAR,
CMAR, CBA, SA, and ACMKC. The main reason is that those datasets are imbalanced,
which causes a problem in the rule-generation part of AC models (AC models were not able
to produce enough class association rules for each class value with imbalanced datasets).
Interestingly, CPAR and CMAR achieved over 99% accuracy on the “Mushroom” dataset,
which was 15–25% higher than other rule learners.
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Table 1. Datasets description.

Dataset Attributes Classes Records
Analyzed

Rules

Car.Evn 7 4 1728 10,000

Tic-Tac-Toe 10 2 958 10,000

Nursery 9 5 12,960 20,000

Mushroom 23 2 8124 20,000

Abalone 9 3 4177 10,000

Adult 15 2 45,221 20,000

Laptop 11 3 1303 10,000

Chess 37 2 3196 10,000

Connect4 43 3 67,557 10,000

Airplane 17 2 103,904 20,000

Airline Reviews 8 2 129,455 20,000

Diabetes 13 2 70,692 10,000

Recruitment 7 2 215 1000

Table 2. Evaluation of classification models on accuracy.

Dataset DTNB DT C4.5 CPAR CMAR CBA SA ACMKC

Car.Evn 95.4 ± 0.8 91.3 ± 1.7 92.1 ± 1.7 78.1 ± 2.5 86.7 ± 2.1 91.2 ± 3.9 86.2 ± 2.1 83.0 ± 3.0
Tic-Tac-Toe 69.9 ± 2.7 74.4 ± 4.4 85.2 ± 2.7 70.5 ± 1.6 95.3 ± 1.8 73.1 ± 0.8 91.7 ± 1.5 74.4 ± 3.7
Nursery 94.0 ± 1.5 93.6 ± 1.2 95.4 ± 1.4 78.9 ± 1.2 91.7 ± 2.2 92.1 ± 2.4 91.6 ± 1.2 85.6 ± 1.3
Mushroom 75.0 ± 7.2 53.4 ± 8.3 78.7 ± 8.4 99.1 ± 0.0 99.4 ± 0.0 75.6 ± 10.9 73.1 ± 6.0 83.0 ± 0.9
Abalone 62.1 ± 1.3 61.8 ± 1.5 62.3 ± 1.2 60.2 ± 1.1 58.3 ± 1.7 61.1 ± 1.0 61.0 ± 0.9 66.9 ± 5.3
Adult 73.0 ± 4.1 82.0 ± 2.3 82.4 ± 4.7 77.4 ± 2.9 80.2 ± 2.4 81.8 ± 3.4 80.8 ± 2.6 82.8 ± 4.5
Laptop 75.7 ± 2.6 72.9 ± 2.9 75.3 ± 2.3 70.9 ± 2.7 72.8 ± 1.0 75.4 ± 2.0 72.0 ± 1.4 71.5 ± 3.3
Chess 93.7 ± 3.0 97.3 ± 3.1 98.9 ± 3.6 93.7 ± 3.2 93.8 ± 2.9 95.4 ± 2.9 92.2 ± 3.8 95.7 ± 2.7
Connect4 78.8 ± 5.9 76.7 ± 7.7 80.0 ± 6.8 68.6 ± 4.4 68.8 ± 4.7 80.9 ± 8.1 78.7 ± 6.0 82.4 ± 4.4
Airplane 89.6 ± 0.9 93.2 ± 0.3 95.7 ± 0.2 88.2 ± 1.3 91.7 ± 2.2 75.7 ± 6.9 77.4 ± 8.1 83.2 ± 0.8
Airline Reviews 94.0 ± 1.0 94.0 ± 1.9 93.8 ± 1.4 96.0 ± 0.9 94.2 ± 1.2 74.2 ± 1.8 76.2 ± 2.6 92.1 ± 2.1
Diabetes 72.9 ± 0.6 73.1 ± 0.5 72.9 ± 0.4 69.9 ± 1.7 70.9 ± 0.6 71.7 ± 2.4 70.0 ± 1.7 74.2 ± 1.5
Recruitment 65.1 ± 5.2 67.5 ± 5.9 63.0 ± 6.4 63.8 ± 3.4 67.2 ± 2.8 64.4 ± 2.5 61.6 ± 4.1 65.3 ± 5.5

Average (%): 79.9 ± 2.8 79.3 ± 3.2 82.7 ± 3.2 78.8 ± 2.1 82.4 ± 2.0 77.8 ± 3.8 77.9 ± 3.2 80.0 ± 3.0

Table 3 displays statistically significant testing (wins/losses counts) on accuracy be-
tween ACMKC and other classification methods. The following represent the results
displayed below: W: our approach was significantly better than the algorithms being com-
pared; L: the selected rule-learning algorithm significantly outperformed our algorithm; N:
no significant difference has been detected in the comparison.

It can be seen from Table 3 that our proposed model outperformed SA (8/3/2) and
CPAR (7/3/3) methods based on win/losses counts. Although ACMKC statistically lost
to the C4.5 model on 6 datasets out of 13, it achieved comparable results with DTNB,
DT and CMAR algorithms and had a slightly better result than CBA (5/3/5) in terms of
win/losses counts.

In our goal to develop an association rule-based model that significantly reduces the
required number of rules, we find our model uses far less rules that many other common
rule-based and associative classification models, which is shown in Table 4. On average, for
the datasets we tested, our model produced 71 rules with the other two closest algorithms
being CPAR at 90 rules and CBA at 95 rules. Our method beats the other compared methods
for seven out of thirteen datasets and performs in the top two for the least amount of rules
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for ten of the thirteen tested datasets. The other models in comparison produced far more
rules on average.

Table 3. Comparison of classification models on accuracy based on statistically significant wins/
losses counts.

DTNB DT C4.5 CPAR CMAR CBA SA

W 5 3 3 7 4 5 8
L 4 3 6 3 5 3 3
N 4 7 4 3 4 5 2

Table 4. Evaluation of classification models based on number of rules.

Dataset DTNB DT C4.5 CPAR CMAR CBA SA ACMKC

Car.Evn 144 432 123 40 567 72 160 21
Tic-Tac-Toe 258 121 88 11 166 23 60 48
Nursery 1240 804 301 60 1935 141 175 132
Mushroom 50 50 26 19 100 15 70 12
Abalone 165 60 49 17 834 132 155 36
Adult 737 1571 279 120 3411 126 130 101
Laptop 101 101 72 41 783 39 75 45
Chess 507 101 31 14 282 14 120 12
Connect4 3826 952 3973 657 6877 349 600 267
Airplane 3201 4444 772 41 391 104 660 120
Airline Reviews 186 890 259 117 3218 121 140 99
Diabetes 160 244 221 37 3572 95 160 24
Recruitment 20 8 13 10 106 15 14 12

Average: 773 1060 477 90 1710 95 184 71

The main advantage of our model is producing noticeably smaller classifiers on bigger
datasets comparing to other rule-based and associative classification models (illustrated in
Figure 1).

When the size of the dataset increases, the number of rules in the DTNB, DT, C4.5
and CMAR models also rises. However, ACMKC is not sensitive to the dataset size, which
can be proven on selected datasets in Figure 1. Figure 1 illustrates the huge advantage
of our proposed model compared to other classification models in terms of classifier size.
Table 5 provides detailed information on the statistically significant win/loss counts of our
methods when compared to other classification models for the number of rules.

Table 5 shows that ACMKC statistically outperformed all the models on the number
of rules according to the win/losses counts. Although ACMKC achieved slightly worse
results than the C4.5 and CMAR algorithms on accuracy, it produced statistically smaller
classifiers than those models in all datasets. Our proposed model achieved statistically
better results than DTNB on every dataset and DT on 12 datasets out of 13 in terms of
classifier size. Our model had a statistically worse result than CBA on three datasets and
CPAR on four datasets, and there were no statistical differences between those methods on
three datasets out of 13.

As displayed in Figure 2, our method provides competitive accuracies against the
other classification models while utilizing significantly less rules. Only the CPAR algorithm
provides a similar result when trading accuracy and number of rules; yet, on average, our
method utilizes far less rules.
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Figure 1. Comparison of classification models on bigger datasets based on classifier size.

Table 5. Comparison of classification models on rules based on statistically significant wins/
losses counts.

DTNB DT C4.5 CPAR CMAR CBA SA

W 13 12 12 6 13 7 12
L 0 1 0 4 0 3 0
N 0 0 1 3 0 3 1

Figure 2. Comparison of classification models in terms of average accuracy and number of rules.

It is of note that not only does our method perform comparably and sometimes
better in regard to accuracy, it also has better precision, recall and F-measure scoreswhen
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comparing our method to other class association rule algorithms used in classification tasks
(shown in Figure 3). As mentioned above, it does this while producing significantly fewer
rules than other methods, which was the main goal of this research.

Figure 3. Comparison of classification models on “precision”, “recall” and “F-measure”.

5. Conclusions

By exhaustively searching the whole example space utilizing constraints and clustering,
the fundamental goal of this research is to produce a compact and meaningful yet accurate
classifier. According to experimental findings, ACMKC greatly decreased the number of
classification rules while retaining classification accuracy, which was the major objective of
this study. More specifically, the ACMKC method outperformed all other models in terms
of average number of rules with 71 rules, which was ten times better than the results of
the DTNB, DT, and CMAR algorithms. The proposed model’s overall accuracy was on par
with that of all other models, and it was the third highest between all classification models.

The advantage of the proposed model over previous rule-based and associative clas-
sification models was demonstrated experimentally by the fact that it produced smaller
classifiers on larger datasets.

In future work, we plan to optimize our model ACMKC to improve its time complexity,
which is a major drawback of our method. We also would like to investigate ways of
including numeric attributes into the associative classification models, as using clustering
on class association rules with numeric attributes may reveal new interesting perspectives
on the subject.
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