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Abstract

:

The slash-weighted Lindley model is introduced due to the need to obtain a model with more kurtosis than the weighted Lindley distribution. Several expressions for the pdf of this model are given. Its cumulative distribution function is expressed in terms of a generalized hypergeometric function and the incomplete gamma function. Moments and maximum likelihood estimation were studied. A simulation study was carried out to illustrate the good performance of the estimates. Finally, two real applications are included.
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1. Introduction


The Lindley distribution was introduced by Lindley [1], and it has been widely used for modeling survival or reliability data. A treatment of the mathematical properties of this model can be seen in Ghitany et al. [2]. Recall that a nonnegative random variable (rv) T follows a Lindley distribution with shape parameter   α > 0  ,   T ∼ L ( α )  , if its probability density function (pdf) is given by


   f T   ( t ; α )  =   α 2   1 + α    ( 1 + t )  exp  ( − α t )  ,  t > 0 .  











On the other hand, Patil and Rao [3] proposed weighted distributions. This is a well-known technique used to generate new models. The weighted distributions are used to describe skewed data and data coming from hidden truncated models. In this paper, we focused on the weighted version of the Lindley distribution proposed by Ghitany et al. [4], which is of interest in survival analysis. A nonnegative rv follows a Weighted Lindley (WL) distribution with parameters   α > 0   and   β > 0  ,   X ∼ W L ( α , β )  , if its pdf is given by


   f X   ( x ; α , β )  =   α  β + 1    ( α + β ) Γ ( β )    x  β − 1    ( 1 + x )  exp  ( − α x )  ,  x > 0 ,  








where   Γ ( · )   denotes the gamma function.



The aim of our paper was to introduce a new extension of the WL distribution by using the slash methodology, in such a way that the new model has a heavier right tail than the original WL one. To reach this end, the Slash-Weighted Lindley (SWL) distribution is defined as follows:


  Z = X  Y  − 1   ,  



(1)




where   X ∼ W L ( α , β ) ,    α > 0  ,   β > 0  ,   Y ∼ B e t a ( q , 1 )  , and   q > 0   are independent. (1) is denoted as   Z ∼ S W L ( α , β , q )  .



We highlight that the slash methodology is appropriate to obtain more-flexible models in terms of kurtosis and skewness than the original distribution. Since the pioneering works by Rogers and Tukey [5] and Mosteller and Tukey [6], it has been applied to a number of symmetrical and skewed distributions. We can cite Gómez et al. [7] for distributions with elliptical contours, Olmos et al. [8] for the generalized half-normal distribution, Del Castillo [9] for the sum of independent logistic distributions, Reyes et al. for the Birnbaum–Saunders distribution in [10,11] and for the normal distribution in [12], Barranco-Chamorro et al. [13] for the generalized Rayleigh distribution in Wang and Genton [14] and in Arslan and Genc [15], who proposed multivariate versions based on the normal multivariate distribution, to cite only a few.



On the other hand, generalizations of the Lindley and weighted Lindley distribution, along with practical applications, can be seen in Nadarajah et al. [16], Gui [17], Shanker et al. [18,19], Asgharzadeh et al. [20], and Arslan et al. [21], among others. Due to the interest in these models and since this issue has not yet been studied, we focused in this paper on the application of the slash methodology to the weighted Lindley model. It is also worth noting that our proposal is appropriate to deal with skewed positive data, quite common in medical research; see for instance, Liu et al. [22] or Ren et al. [23]. In this context, the slash-weighted Lindley distribution is an alternative to lifetime distributions, such as the Weibull distribution [24] or the generalized Gamma distribution introduced by Stacy [25]. This issue will be addressed in our applications.



The outline of this paper is as follows. In Section 2, several expressions for the pdf of the SWL model are given. Next, its cumulative distribution function is obtained in terms of the generalized hypergeometric function and the incomplete gamma function. Moments are also obtained. Section 3 is devoted to maximum likelihood estimation. A simulation study was carried out based on the definition of the SWL model and the representation of the WL model as a mixture proposed by Ghitany [4]. In Section 4, two real applications are given. The final conclusions are included in Section 5.




2. Materials and Methods in the Slash-Weighted Lindley Distribution


In this section, the main results for the SWL model introduced in (1) are given. Special functions are used in our results. Other applications of interest can be seen in Wani [26] or Zayed [27].



2.1. Probability Density Function and Properties


In Proposition 1, the pdf of the SWL distribution will be obtained by using the stochastic representation given in (1). In this result, the confluent hypergeometric function,     1   F 1   , appears. It can be seen in Abramowitz and Stegun [28] that this function has the following integral representation:


    1   F 1   ( a ; b ; x )  =   Γ ( b )   Γ ( a ) Γ ( b − a )    ∫  0  1   v  a − 1     ( 1 − v )   b − a − 1    e  x v   d v ,      b > a > 0  .  



(2)







Moreover, under suitable conditions, we have


   ∫  0  1   u   α 1  − 1     ( 1 − u )    α 2  − 1     1   F 1   ( a ; b ; u y )  d u =   Γ  (  α 1  )  Γ  (  α 2  )    Γ (  α 1  +  α 2  )     2   F 2   ( a ,  α 1  ; b ,  α 1  +  α 2  ; y )  ,  



(3)




where     2   F 2    denotes the generalized hypergeometric function     p   F q    with   p = q = 2  , and the details can be seen in Luke [29] or Zörnig [30]. This result will be used to obtain the cdf of a SWL model.



Next, it is proven that the pdf of SWL  ( α , β , q )   can be expressed in terms of the confluent hypergeometric function,     1   F 1   .



Proposition 1.

Let   Z ∼ S W L ( α , β , q )   with α, β, and   q > 0  . Then, the pdf of Z is given by  


    f Z   ( z ; α , β , q )  =   q  α β   z  β − 1     ( α + β ) Γ ( β )      α + β + q   β + q     1   F 1   ( β + q ; β + q + 1 ; − α z )  −  e  − α z    ,   



(4)




where   z > 0  .





Proof. 

From (1), we can write   Z = X  Y  − 1     with   X ∼ W L ( α )   and   Y ∼ B e t a ( q , 1 )   independent. By applying the Jacobian technique, the joint pdf of   ( Z , W )   with   W = Y   is


      f  Z , W    ( z , w )     =    w  f X   ( z w )   f Y   ( w )   ,   z > 0  ,   0 < w < 1  .     








Marginalizing with respect to W, the pdf of Z is


       f Z   ( z ; α , β , q )     =      q  α  1 + β     ( α + β ) Γ ( β )    z  β − 1    ∫  0  1   w  β + q − 1    ( 1 + z w )  exp  ( − α z w )  d w ,  z > 0  .     








Finally, by integration by parts and applying (2), (4) is obtained.    □





Next, several alternative expressions for the pdf of the SWL distribution are given. They will be useful for estimation purposes.



Proposition 2.

Let   Z ∼ S W L ( α , β , q )  . Then, the pdf of Z can be obtained:


    f Z   ( z ; α , β , q )  =  q   ( α + β )  Γ  ( β )   α q   z  q + 1      α  γ ( β + q , α z ) + γ ( β + q + 1 , α z )  ,  z > 0  ,   



(5)




where   z > 0  ,   α > 0  ,   β > 0  ,   q > 0  , and   γ ( · , · )   denotes the lower incomplete gamma function defined as   γ  ( s , x )  =  ∫  0  x   t  s − 1     e  − t   d t ,    x ≥ 0  , and   s > 0  .





Proof. 

Similar to Proposition 1, by using the definition of the gamma incomplete function and integration by parts, the proposed result is obtained.    □





Remark 1.

The following notation will be used throughout this paper:




	1. 

	
An rv T follows a gamma distribution,   T ∼ G a ( β , α )  , if its pdf is   f  ( t )  =   α β   Γ ( β )    t  β − 1    e  − α t    , α,   β > 0  , and   t > 0  .




	2. 

	
If the pdf of T is   f ( · )  , then we may write   T ∼ f  .











Next, a hierarchical representation for the SWL model is given. Specifically, it is proven that, if the conditional distribution of Z given   Y = y  ,   Z | Y = y  , is the mixture of gamma distributions proposed in Proposition 3 and   Y ∼ B e t a ( q , 1 )  , then the marginal distribution of Z is an SWL.



Proposition 3.

If    Z | Y = y ∼    α  α + β     f 1   ( z )  +   β  α + β     f 2   ( z )    with   f i   the pdf of a gamma distribution,   G a ( β + i − 1 , α y )  , for   i = 1 , 2  , and   Y ∼ B e t a ( q , 1 )  , then   Z ∼ S W L ( α , β , q )  .





Proof. 

Note that the marginal pdf of Z is given by


   f Z   ( z )  = ∫  f  Z | Y = y    ( z )    f y   ( y )   d y  =   ∫  0  1    q   α  β + 1     ( α + β ) Γ ( β )    y  β + q − 1    z  β − 1    ( 1 + y z )   e  − α y z   d y  .  








By proceeding similarly to Proposition 1, the proposed result is obtained.    □





Particular Case of Interest: The Slash Lindley Distribution


Note that, for   β = 1  , the SWL model reduces to the Slash Lindley (SL) distribution introduced in [17], that is SWL  ( α , 1 , q ) =   SL  ( α , q )  .



On the other hand, if   q → ∞  , it will be proven in Proposition 6 that SWL  ( α , β , q )   converges to the WL  ( α , β )   model.





2.2. Cumulative Distribution Function


The following proposition gives the cumulative distribution function (cdf) of the SWL distribution.



Proposition 4.

Let   Z ∼ S W L ( α , β , q )  . Then, the cdf of Z is given by


    F Z   ( z ; θ )  =  q  ( α + β ) Γ ( β )      α + β + q   β ( β + q )     ( α z )  β    2   F 2   ( β + q , β ; β + q + 1 , β + 1 ; − α z )  − γ  ( β , α z )   ,   








where   θ = ( α , β , q )   with α, β, and   q > 0  .





Proof. 

The cdf of Z is given by


    F Z   ( z ; α , β , q )  =  ∫  0  z   f Z   ( t ; α , β , q )  d t .   








It can be seen in Luke [29] that, using the expression of the pdf of Z given in (4) and applying (3), the result proposed is obtained.    □





Next, an expression for the cdf of the SWL distribution is given in terms of the incomplete gamma function.



Proposition 5.

Let   Z ∼ S W L ( α , β , q )  . Then, the cdf of Z is given by


    F Z   ( z ; θ )  =  1  ( α + β ) Γ ( β )    α γ  ( β , α z )  + γ  ( β + 1 , α z )  −  1   α q   z q     α γ ( β + q , α z ) + γ ( β + q + 1 , α z )   ,   








where   θ = ( α , β , q )   with α, β, and   q > 0  .





Proof. 

For   a = β + q   and   β + q + 1  , the proposed result is obtained by applying integration by parts to


   ∫  0  z   t  − ( q + 1 )   γ  ( a , α t )  d t .  











   □





Next, we briefly illustrate that the right tail in the SWL is heavier than the one in the WL model. Figure 1 compares the pdfs of the WL and SWL models with   q = 1 , 5  . Table 1 provides   P ( Z > z )   for several values of z. Figure 1 and Table 1 show that the right tail of the SWL is much heavier than the WL model for decreasing values of q. We will go deeper into these appreciations.




2.3. Properties


Next, we study the convergence in law of an SWL model to a WL distribution. To emphasize the relevance of parameter q, in this section, we include it in the notation, i.e.,    Z q  ∼ S W L  ( α , β , q )   .



Proposition 6.

Let    Z q  ∼ S W L  ( α , β , q )   . If   q → ∞  , then   Z q   converges in law to an rv   X ∼ W L ( α , β )  .





Proof. 

Let    Z q  ∼ S W L  ( α , β , q )   . Then, we can write    Z q  =  X  Y q     with   X ∼ W L ( α , β )   and    Y q  ∼ B e t a  ( q , 1 )   .



Since    Y q  ∼ B e t a  ( q , 1 )   ,   E  [  Y q  ]  =  q  1 + q     and   V a r  [  Y q  ]  =  q   ( q + 2 )    ( q + 1 )  2     . By applying Chebyshev’s inequality to   Y q  , we have that, for all   ϵ > 0  ,


  P   |   Y q  − E  [  Y q  ]   | > ϵ   ≤   V a r (  Y q  )   ϵ 2   =  q   ( q + 2 )    ( q + 1 )  2   ϵ 2    .  



(6)




If   q → ∞  , then the right-hand side of (6) tends to zero, i.e.,    Y q  − E  [  Y q  ]    converges in probability to 0. Moreover, since   E  [  Y q  ]  =  q  1 + q   ⟶ 1 ,  q → ∞  , then we have


   Y q  =  Y q  − E  [  Y q  ]  + E  [  Y q  ]   ⟶ P  1 ,    q → ∞ .  








By applying Slutsky’s lemma to    Z q  =  X Y    and since   X ∼ W L ( α , β )  , it follows that


   Z q   ⟶ L  X ∼ W L  ( α , β )  ,  q → ∞ .  








That is, for increasing values of q,   Z q   converges in law to a WL  ( α , β )   distribution.    □





Proposition 6 implies that, for large q, the pdf of an SWL  ( α , β , q )   distribution can be approached by the pdf of a WL  ( α , β )   distribution.




2.4. Moments


Proposition 7.

Let   Z ∼ S W L ( α , β , q )  . Then, for r a positive integer,   E   Z r     exists, if and only if   r < q  , and in this case,


   E   Z r   =   ( α + β + r ) Γ ( β + r ) q    α r   ( α + β )  Γ  ( β )   ( q − r )    .   













Proof. 

By using the stochastic representation given in (1) and since X and Y are independent, we have


  E   Z r   = E   X r   E   Y  − r     .  



(7)







It can be seen in Ghitany et al. [4] that   E   X r     exists for   r = 1 , 2 , …   and is given by


  E   X r   =   ( α + β + r ) Γ ( β + r )    α r   ( α + β )  Γ  ( β )     .  



(8)







As for   Y ∼ B e t a ( q , 1 )  , we have that   E   Y  − r      exists if and only if   r < q   and


  E   Y  − r    =  q  q − r    ,  q > r  .  



(9)




From (8) and (9), the proposed result follows.    □





From Proposition 7, the next corollary follows.



Corollary 1.

Let   Z ∼ S W L ( α , β , q )  . Then:




	1. 

	
  E  [ Z ]  =   β ( α + β + 1 ) q   α ( α + β ) ( q − 1 )    ,   provided that   q > 1  .




	2. 

	
  V a r  [ Z ]  =   β  q    α 2   ( α + β )       ( α + β + 2 ) ( β + 1 )   ( q − 2 )   −   β  q    ( α + β + 1 )  2     ( α + β )    ( q − 1 )  2     ,   provided that   q > 2  .




	3. 

	
Let    μ j  = E  [  Z j  ]   . Then, the skewness,    β 1   , and kurtosis,   β 2  , coefficients can be obtained by using


       β 1     =       μ 3  − 3  μ 1   μ 2  + 2  μ  1  3     (  μ 2  −  μ  1  2  )   3 2    ,  q > 3 ,       β 2    =       μ 4  − 4  μ 1   μ 3  + 6  μ 2   μ  1  2  − 3  μ  1  4     (  μ 2  −  μ  1  2  )  2   ,  q > 4 .      



















Figure 2 shows the plot of the skewness and kurtosis coefficients for the SWL model when   β = 2  .



Corollary 2.

From (7) and (9), the following relationships between the moments of   Z ∼ S W L ( α , β , q )   and   X ∼ W L ( α , β )   are obtained:




	1. 

	
  E  [ Z ]   =   μ X    q  ( q − 1 )    ,   where    μ X  = E  [ X ]    and   q > 1  .




	2. 

	


   V a r  [ Z ]  =  1 +  2  q − 2    V a r  [ X ]  +   q    ( q − 1 )  2   ( q − 1 )      μ X 2  ,   








where   q > 2   and    ( q − 1 )  2   denotes the falling factorial,     ( q − 1 )  2  =  ( q − 1 )   ( q − 2 )   .




	3. 

	


   E  [   ( Z −  μ Z  )  3  ]  =  1 +  3  q − 3    E  [   ( X −  μ X  )  3  ]  +   6 q    ( q − 1 )  3    μ X  V a r  [ X ]  +   2 q ( q + 1 )     ( q − 1 )  3    ( q − 1 )  2     μ X 3  ,   








where   q > 3   and     ( q − 1 )  3  =  ( q − 1 )   ( q − 2 )   ( q − 3 )   .











The expressions given in Corollary 2 can be used to obtain the central moments of an SWL distribution from the ones in a WL model. They also show that, in general, the central moments of the SWL distribution,   E [   ( Z −  μ Z  )  j  ]  , are greater than the ones in the WL model,   E [   ( X −  μ X  )  j  ]  . Moreover, although, in general, the convergence in law does not imply the convergence of moments [31], we have that, for SWL  ( α , β , q )  , the moments converge to the moments of WL  ( α , β )   when   q → ∞  .





3. Inference


3.1. Maximum Likelihood Estimation


Given    Z 1  ,  Z 2  , … ,  Z n    a random sample of size n from SWL  ( α , β , q )  , then from (5), the log-likelihood function is given by


     ℓ ( θ )    ∝     n log  q − n log  ( α + β )  − n log Γ  ( β )  − n q log  ( α )  −  ( q + 1 )   ∑  i = 1  n  log  (  z i  )         +      ∑  i = 1  n  log  α γ  ( β + q , α  z i  )  + γ  ( β + q + 1 , α  z i  )   ,      



(10)




where   θ = ( α , β , q )   and ∝ means proportional to.



Taking partial derivatives with respect to  α ,  β , and q, the elements of the score vector are obtained,   S  ( θ )  =    ∂ ℓ   ∂ α   ,   ∂ ℓ   ∂ β   ,   ∂ ℓ   ∂ q     , that is


      ∂ ℓ   ∂ α     =    −  n  α + β   −   n q  α  +  ∑  i = 1  n    γ  ( β + q , α  z i  )  +  α  β + q    z i  β + q    e  − α  z i     ( 1 +  z i  )    α γ  ( β + q , α  z i  )  + γ  ( β + q + 1 , α  z i  )    ,        ∂ ℓ   ∂ β     =    −  n  α + β   − n ψ  ( β )  +  ∑  i = 1  n    α  I  ( β + q ,  α  z i  )  + I  ( β + q + 1 ,  α  z i  )    α γ  ( β + q , α  z i  )  + γ  ( β + q + 1 , α  z i  )    ,        ∂ ℓ   ∂ q     =     n q  − n log  ( α )  −  ∑  i = 1  n  log  (  z i  )  +  ∑  i = 1  n    α  I  ( β + q ,  α  z i  )  + I  ( β + q + 1 ,  α  z i  )    α γ  ( β + q , α  z i  )  + γ  ( β + q + 1 , α  z i  )    ,     








where   ψ ( · )   denotes the digamma function and    I  ( a ,  v )  =  ∫  0  v   t  a − 1   log  ( t )   e  − t   d t   ,   a > 0  , and   v > 0  , which is related to the generalized integro-exponential function when   v = ∞   (see Milgram [32]).



The MLEs of   θ ^   are obtained as the solution of   S ( θ ) = 0  . Numerical methods must be used to solve this system. As the initial values to start the recursion, we propose   (   α ^  0  ,   β ^  0  )  , the MLEs of   ( α , β )   in a WL  ( α , β )   model. As for q, note that, using   (   α ^  0  ,   β ^  0  )   and     ∂ ℓ   ∂ β   =   ∂ ℓ   ∂ q   = 0  , an initial estimate of q,    q ^  0  , can be obtained. The existence of the ML estimators for the vector of parameters   θ = ( α , β , q )   does not present any difficulties and follows from the properties of the pdf f. Since f is a smooth and continuous function, with first and second derivatives that exist and are finite, then the existence of the roots of the equation   S ( θ ) = 0   is guaranteed, and they correspond to the ML estimator of the vector  θ . It can be checked that the solutions are a maximum using appropriate calculus techniques.




3.2. Observed Fisher Information Matrix


The asymptotic variance of MLEs,    θ ^  =  (  α ^  ,  β ^  ,  q ^  )   , can be estimated from the Fisher information matrix, given by   I  ( θ )  = − E   ∂ 2  ℓ  ( θ )  / ∂ θ ∂   θ  ⊤    , where   ℓ ( θ )   was given in (10). Under regularity conditions, the MLEs are asymptotically normal, that is


  I   ( θ )   − 1 / 2     θ ^  − θ     ⟶  D   N 3   (  0 3  ,  I 3  )  ,   as  n → + ∞ ,  








where  D  stands for convergence in distribution and    N 3   (  0 3  ,  I 3  )    denotes the standard trivariate normal distribution.   I ( θ )   is obtained from the matrix   −  ∂ 2  ℓ  ( θ )  / ∂ θ ∂   θ  ⊤   , whose elements are given by    I  α α   = −  ∂ 2  ℓ  ( θ )  / ∂  α 2   ,    I  α β   = −  ∂ 2  ℓ  ( θ )  / ∂ α ∂ β  , and so on.



Usually, it is not possible to obtain a closer form to the expected value of previous expressions. Therefore, the covariance matrix of the MLEs,   I   ( θ )   − 1    , can be estimated by   I   (  θ ^  )   − 1    , where   I (  θ ^  )   denotes the observed information matrix, which is obtained by evaluating the previous derivatives at the MLE   θ ^  :


  I  (  θ ^  )  = −  ∂ 2  ℓ  ( θ )  / ∂ θ ∂   θ  ⊤    |   θ =  θ ^    .  








The asymptotic variances of   α ^  ,   β ^  , and   q ^   are estimated by the diagonal elements of   I   (  θ ^  )   − 1     and their standard errors by the square root of asymptotic variances. Details about the theoretical results used in this subsection can be seen in [31,33].




3.3. Simulation Study


Next, the acceptance–rejection algorithm proposed by Ghitany et al. [4] to generate the values of the WL model is tailored to this situation.



Using Algorithm 1, 1000 samples from an SWL distribution were generated, with sample sizes of 100, 150, 200, 300, and 500 and different values of the parameters. For every sample, the MLEs were obtained by using the Newton–Raphson numerical method. The mean of the estimates, standard errors, and 95% empirical coverage probabilities,   C ( · )  , (in percentages) are given in Table 2. We observed that, in general, the bias and standard deviation of estimates decreased if the sample size increased n, which suggests that the MLEs are consistent. The empirical coverage probabilities approached the 95% nominal level. As for this point, note that   β ^   and   q ^   behaved better than   α ^  . The results in Table 2 suggest that it is necessary to have a larger sample size (  n = 300   or 500) so that C  (  α ^  )   approaches 0.95.






	Algorithm 1 Algorithm to simulate values from the   Z ∼ S W L ( α , β , q )   distribution.



	
	1:

	
Simulate   R ∼ U ( 0 , 1 )  .




	2:

	
If   R ≤  α  α + β    , then generate   X ∼ G a m m a ( β , α )  .




	3:

	
If   R >  α  α + β    , then generate   X ∼ G a m m a ( β + 1 , α )  .




	4:

	
Simulate   Y ∼ B e t a ( q , 1 )  .




	5:

	
Compute   Z =  X Y   .
















4. Applications


In this section, applications to two real datasets are given. Explicitly, the SWL model was compared to the SL, WL, Generalized Gamma (GG), and Weibull (W) distributions. It was proven that the SWL model provides a better fit to these datasets since it is able to model more kurtosis. The pdf’s of GG and W models can be seen in Appendix A.



4.1. Application 1 (Patients with Liver Transplants)


The first dataset considers the survival time for 54 patients before undergoing a liver transplant. This dataset was studied by Freund [34]. Maximum likelihood estimates were obtained with the optim function of the R software [35].



Table 3 provides the descriptive summaries for this dataset: sample mean, sample standard deviation, sample skewness (  b 1  ), and sample kurtosis coefficient (  b 2  ). On the other hand, Figure 3 shows the boxplot of this dataset, where we can see the existence of several outliers.



Table 4 provides the estimates of the parameters and their Standard Errors (SE) in parentheses for the W, WL, SL, GG, and SWL models, along with the comparison of these models by using the Akaike Information Criterion (AIC) (see Akaike [36]) and the Bayesian Information Criterion (BIC) (see Schwarz [37]). Both criteria support the fact that the SWL model provides a better fit to this dataset than the other ones.



Figure 4 shows the histogram for this dataset along with the fit provided by the pdfs of these models. Moreover, Figure 5 gives the associated QQ-plots. Both plots support the fact that the SWL distribution provides a better fit than the SL, WL, GG, and W models.




4.2. Application 2 (Survival Times of Guinea Pigs)


The second dataset considers the survival time of 72 guinea pigs injected with different doses of tubercle bacilli. This dataset was analyzed in Kundu [38] and Gómez and Bolfarine [39], among others. Table 5 gives the statistical summaries of this dataset. Figure 6 shows the boxplot, where, again, outliers are found.



Table 6 shows the MLEs of the parameters in the W, WL, SL, GG, and SWL models along with their standard errors in parentheses. The AIC and BIC were obtained, which supported the fact that the SWL model provided a better fit than the other distributions in comparison. Moreover, the histogram and the fit provided by the densities of these models are given in Figure 7. The QQ-plots can be seen in Figure 8. Both plots support the good performance of SWL model in this setting.





5. Conclusions


This paper presented a study of the SWL distribution, which was generated based on the slash methodology using the WL and beta distributions. The SWL distribution had heavier tails than the WL distribution, and this characteristic made it an interesting distribution for modeling datasets that have atypical observations. Some further characteristics of the model are as follows:




	
The SWL distribution can be represented based on the confluent hypergeometric and lower incomplete gamma functions.



	
The cdf is represented based on the hypergeometric function.



	
A limiting case of the SWL distribution happens to be the WL distribution.



	
The moments of the SWL distribution are explicit and depend on the gamma function.



	
The applications showed that the SWL distribution performed well in fitting two real datasets.



	
In these applications, it was shown that the SWL distribution outperformed the Lindley and weighted Lindley and other important lifetime parametric models, such as the Weibull distribution and generalized gamma distribution.
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Appendix A


In this Appendix, the pdf of the Weibull and generalized Gamma distributions considered in Section 4 are given:




	
Weibull,   X ∼ W ( α , β )  , introduced in [24]. Its pdf is


  f  ( x ; α , β )  =  α β     x β    α − 1    e  −   ( x / β )  α    ,  x > 0 ,   α , β > 0 .  



(A1)







	
Generalized Gamma,   X ∼ G G ( α , β , θ )  , introduced in [25], whose pdf is


  f  ( x ; α , β , θ )  =   β  x  β θ − 1    e  −   ( x / α )  β       α  β θ   Γ  ( θ )     x > 0 ,   α , β , θ > 0  .  



(A2)
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Figure 1. pdfs of SWL(2,2,1) (black), SWL(2,2,5) (red), and WL(2,2) (blue) models. 
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Figure 2. Plots of the skewness and kurtosis coefficient in the SWL  ( α , 2 , q )   model. 
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Figure 3. Boxplot for survival of liver transplant patients’ dataset. 
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Figure 4. Density adjusted for survival of liver transplant patients’ dataset in the SWL, SL, WL, W, and GG distributions. 
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Figure 5. QQ-plots for Survival of Liver Transplant Patients’ dataset: (a) SWL model; (b) SL model; (c) WL model; (d) W model; (e) GG model. 
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Figure 6. Boxplot for survival times of guinea pigs’ dataset. 






Figure 6. Boxplot for survival times of guinea pigs’ dataset.



[image: Mathematics 11 03980 g006]







[image: Mathematics 11 03980 g007] 





Figure 7. Density adjusted for survival times of guinea pigs’ dataset in the SWL, SL, WL, W and GG distributions. 
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Figure 8. QQ-plots for survival times of guinea pigs’ dataset: (a) SWL model; (b) SL model; (c) WL model; (d) W model; (e) GG model. 
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Table 1. Right tail comparison for the SWL and WL distributions.
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	Distribution
	    P ( Z > 3 )    
	    P ( Z > 4 )    
	    P ( Z > 5 )    





	SWL(2,2,1)
	   0.4082   
	   0.3112   
	   0.2498   



	SWL(2,2,5)
	   0.0994   
	   0.0370   
	   0.0146   



	WL(2,2)
	   0.0397   
	   0.0084   
	   0.0016   










 





Table 2. Simulations of the SWL  ( α , β , q )   model.
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	n
	   α   
	   β   
	q
	    α ^    
	SD   (  α ^  )   
	C   (  α ^  )   
	    β ^    
	SD   (  β ^  )   
	C   (  β ^  )   
	    q ^    
	SD   (  q ^  )   
	C   (  q ^  )   





	100
	
	
	
	0.3287
	0.0997
	93.4
	1.6667
	0.4718
	93.7
	1.3837
	0.2909
	95.1



	150
	
	
	
	0.3135
	0.0748
	92.7
	1.5758
	0.3533
	94.7
	1.3454
	0.2106
	96.2



	200
	0.3
	1.5
	1.3
	0.3098
	0.0631
	92.3
	1.5550
	0.2978
	93.8
	1.3275
	0.1755
	95.6



	300
	
	
	
	0.3066
	0.0517
	94.4
	1.5300
	0.2430
	94.8
	1.3197
	0.1417
	95.5



	500
	
	
	
	0.3030
	0.0392
	96.2
	1.5209
	0.1859
	95.6
	1.3132
	0.1081
	94.8



	100
	
	
	
	1.0621
	0.3075
	92.9
	2.1282
	0.5232
	94.6
	1.7362
	2.6924
	95,7



	150
	
	
	
	1.0504
	0.2457
	90.9
	2.1005
	0.4175
	92.2
	1.5607
	0.2590
	96.1



	200
	1
	2
	1.5
	1.0482
	0.2088
	93.4
	2.0857
	0.3543
	95.0
	1.5262
	0.2114
	92.9



	300
	
	
	
	1.0122
	0.1659
	93.7
	2.0276
	0.2829
	94.1
	1.5421
	0.1766
	95.4



	500
	
	
	
	1.0058
	0.1270
	94.6
	2.0148
	0.2168
	94.8
	1.5198
	0.1327
	95.7



	100
	
	
	
	5.4999
	1.6739
	92.5
	3.2666
	0.7710
	94.6
	2.4591
	4.4267
	94.4



	150
	
	
	
	5.2170
	1.2349
	92.2
	3.1119
	0.5745
	93.4
	2.1412
	0.4912
	95.5



	200
	5
	3
	2
	5.1907
	1.0507
	93.3
	3.0994
	0.4906
	93.5
	2.0893
	0.3552
	95.9



	300
	
	
	
	5.0983
	0.8443
	93.1
	3.0518
	0.3943
	94.4
	2.0551
	0.2711
	95.9



	500
	
	
	
	5.0874
	0.6450
	94.9
	3.0443
	0.3018
	95.6
	2.0322
	0.2024
	96.4



	100
	
	
	
	2.1336
	0.6727
	93.6
	6.4042
	1.7919
	95.1
	3.2994
	24.8036
	95.8



	150
	
	
	
	2.0935
	0.5267
	93.6
	6.2940
	1.4101
	94.9
	2.6522
	0.5101
	95.6



	200
	2
	6
	2.5
	2.0754
	0.4459
	93.5
	6.2343
	1.1953
	94.2
	2.5915
	0.4001
	94.6



	300
	
	
	
	2.0683
	0.3612
	94.9
	6.2025
	0.9677
	96.0
	2.5567
	0.3135
	94.8



	500
	
	
	
	2.0405
	0.2741
	95.8
	6.1227
	0.7353
	95.2
	2.5248
	0.2346
	95.3



	100
	
	
	
	1.8016
	0.5129
	93.6
	2.1186
	0.4809
	95.4
	2.0067
	2.6226
	95.5



	150
	
	
	
	1.7817
	0.4048
	91.8
	2.0977
	0.3819
	93.9
	1.8022
	0.3460
	95.8



	200
	1.7
	2
	1.7
	1.7800
	0.3473
	94.3
	2.0792
	0.3255
	94.6
	1.7408
	0.2706
	93.5



	300
	
	
	
	1.7368
	0.2767
	93.5
	2.0418
	0.2604
	94.4
	1.7413
	0.2209
	95.2



	500
	
	
	
	1.7197
	0.2097
	96.5
	2.0291
	0.1986
	96.3
	1.7304
	0.1669
	96.5



	100
	
	
	
	1.0959
	0.3507
	92.6
	4.3779
	1.2543
	94.9
	2.1574
	0.5247
	95.7



	150
	
	
	
	1.0535
	0.2656
	92.5
	4.2018
	0.9508
	93.8
	2.0752
	0.3600
	93.8



	200
	1
	4
	2
	1.0361
	0.2255
	93.4
	4.1356
	0.8087
	94.2
	2.0643
	0.3053
	95.2



	300
	
	
	
	1.0186
	0.1793
	96.0
	4.0718
	0.6451
	95.7
	2.0373
	0.2369
	97.1



	500
	
	
	
	1.0168
	0.1371
	95.4
	4.0656
	0.4945
	95.4
	2.0171
	0.1782
	95.4










 





Table 3. Descriptive summaries for patients with liver transplants.
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	n
	    X ¯    
	S
	    b 1    
	    b 2    





	54
	197.1667
	145.2994
	2.1106
	5.43881










 





Table 4. Estimates, SE in parentheses, log-likelihood, AIC, and BIC for patients with liver transplants.
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	Parameters