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Abstract: Cryptosystem cryptanalysis is regarded as an NP-Hard task in modern cryptography. Due
to block ciphers that are part of a modern cipher and have nonlinearity and low autocorrelation in
their structure, traditional techniques and brute-force attacks suffer from breaking the key presented
in traditional techniques, and brute-force attacks against modern cipher S-AES (simplified-advanced
encryption standard) are complex. Thus, developing robust and reliable optimization with high
searching capability is essential. Motivated by this, this paper attempts to present a novel binary
hybridization algorithm based on the mathematical procedures of the grey wolf optimizer (GWO)
and particle swarm optimization (PSO), named BPSOGWO, to deal with the cryptanalysis of (S-AES).
The proposed BPSOGWO employs a known plaintext attack that requires only one pair of plaintext–
ciphertext pairs instead of other strategies that require more pairs (i.e., it reduces the number of
messages needed in an attack, and secret information such as plaintext-ciphertext pairs cannot be
obtained easily). The comprehensive and statistical results indicate that the BPSOGWO is more
accurate and provides superior results compared to other peers, where it improved the cryptanalysis
accurateness of S-AES by 82.5%, 84.79%, and 79.6% compared to PSO, GA, and ACO, respectively.
Furthermore, the proposed BPSOGWO retrieves the optimal key with a significant reduction in search
space compared to a brute-force attack. Experiments show that combining the suggested fitness
function with HPSOGWO resulted in a 109-fold reduction in the search space. In cryptanalysis, this
is a significant factor. The results prove that BPSOGWO is a promising and effective alternative to
attack the key employed in the S-AES cipher.

Keywords: cryptanalysis; simplified-AES; binary optimization; grey wolf optimizer; particle
swarm optimization

MSC: 94A60

1. Introduction

With the development of virtual communication, users can safely communicate and
share information with other systems worldwide [1]. Cryptography is a key topic for secure
data transfer. Cryptology is divided into two branches: cryptography and cryptanaly-
sis [2]. Cryptography is the science of creating ciphertext, which renders communication
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meaningless to anyone but the intended receiver. Plaintext is the unmasked text, whereas
the ciphertext is the masked version. Only the recipient, who knows the secret key, can
read this disguised text. Cryptanalysis, meanwhile, is the science of decrypting ciphertext
after obtaining the key. Cryptanalysis is a crucial tool for determining the strengths and
weaknesses of cryptosystems. The brute-force attack and the cryptanalytic attack are two
types of cryptanalysis techniques. The extensive search approach, commonly known as
brute force, searches all potential keys until the cipher is cracked. If the search problem
is large, the cryptanalysis task becomes an NP-hard problem; the Advanced Encryption
Standard (AES) and Data Encryption Standard (DES) represent two ciphers of NP-hard
problems. There are many types of attacks that a cryptanalyst can use to break a cipher
based on the attacker’s availability of information. The goal is to find the key to recover the
ciphertext easily. A brute-force attack represents one of the popular methods of doing so.
In this attack, the cryptanalyst attempts each key combination until the right one is found.
For long keys, a network of computers can be used to combine their computational power
and cumulative power, making a brute-force attack possible at a higher cost.

The Simplified-Advanced Encryption Standard (S-AES) is a not-Feistel cipher that
produces a 16-bit ciphertext using a 16-bit plaintext and a 16-bit key. S-AES is utilized in
embedded devices with low memory and processing capacity, such as mobile phones and
GPS receivers [3]. The encryption consists of one round pre-round, and two rounds are
modified. Depending on how much information is accessible to the attacker, a cryptanalyst
can employ various techniques to break a cipher. The known-plaintext attack (KPA) is an
attack where the attacker possesses plaintext and ciphertext samples. The ciphertext-only
attack (COA) is another attack in which the cryptanalyst can only access the ciphertext.
Compared to the COA, the KPA is simpler to implement because the attacker owns more
information (one pair of plain text and ciphertext) to help them obtain the key.

Recently, cryptanalysis experts have begun considering several methods for crack-
ing cryptographic systems. Metaheuristic optimization methods (MOMs) have attracted
the scientific community’s attention due to their capacity to handle complex issues that
can’t be solved using conventional methods [2]. MOMs are divided into three topics:
evolutionary-based, physical-based, and swarm-based methods. The first method is a
generic population-based metaheuristic inspired by biological evolution processes, such
as reproduction, mutation, recombination, and selection. Physical-based algorithms make
up the second group. Search agents communicate and move about the search space using
these algorithms based on physics rules. The last type is swarm-based algorithms based
on social organisms’ collective activity. The interaction of the swarms with one another
and with their environment inspires collective intelligence. MOMs are becoming more
common in several applications due to their advantages, such as being easy to implement,
not relying on gradient information, and being able to avoid strikes in local optima due to
exploration and exploitation features. Some of the popular MOMs include particle swarm
optimization (PSO) [4], binary aquila optimizer (BAO) [5], genetic algorithm (GA) [6],
differential evolution (DE) [7], ant colony optimization (ACO) [8], grey wolf optimization
(GWO) [9], bat algorithm (BA) [10], and fruity fly algorithm (FA) [11]. However, optimal
solutions may not be guaranteed because more exploration and exploitation searches are
needed, especially when dealing with complicated optimization tasks. Exploitation is the
activity of covering each individual’s immediate surroundings Meanwhile, exploration
allows for the research of space that is farther away from the individual’s current location.
Nature’s exploitation and exploration calculations are difficult to comprehend because of
a lack of consensus. On the other hand, as one capacity strengthens, the other weakens,
and vice versa [12]. To reach a proper balance, one alternative is to develop hybrid tech-
niques, in which two or more algorithms are integrated to increase the performance of
each algorithm, and the resulting hybrid technique is referred to as a memetic method [13].
In [14], the exploration–exploitation equilibrium generated by the swap operator during the
search in Hamming space was probabilistically evaluated using weight classes of nonlinear,
power-attack-resistant S-boxes.
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The PSO has been combined with various metaheuristics in several studies, including
hybrid PSO with GA (PSOGA) [15,16], PSO with Ant Lion Optimization (PSO-AlO) [17];
PSO was also combined with the Bacterial Foraging Optimization (BFO) algorithm in [18].
These hybrid approaches are meant to complement one another’s capabilities to enhance
exploitation while reducing the possibility of a local optimum.

Similarly, in the field of hybrid metaheuristics, GWO has sparked significant attention.
For example, for test scheduling and continuous optimization, the authors of [19] combined
GWO with the sine cosine algorithm (SCA). The authors of [20] hybridized GWO and GA
for breast cancer detection. This encouraged us to test the binary hybrid PSOGWO variant,
which solves the continuous problems as well as our cryptanalysis problem. The following
are the main contributions of the suggested algorithm.

1- This work introduces a hybrid technique that combines the GWO and the PSO
(HPSOGWO) and converts it to a binary version for simplified AES cryptanalysis.

2- This technique improves the exploitation ability in the particle swarm optimiza-
tion with the ability of exploration in the grey wolf optimizer to produce both
variants’ strength.

3- HPSOGWO is used to describe the cryptanalysis challenge as a combinatorial problem
to break the Simplified-AES cryptosystem using KPA.

4- The performance of the proposed BPSOGWO is compared to other attacks, where it
exhibits faster performance with only one pair of plaintext–ciphertext pairs (i.e., it
reduces the number of messages needed in an attack, and secret information, such as
plaintext–ciphertext pairs, cannot be obtained easily).

5- It can improve the cryptanalysis for the fitness of the S-AES by 82.5% compared to
PSO, 84.79% compared to GA, and 79.6% compared to ACO.

The remaining sections of this article are as follows: The scope of work in the field
of cryptanalysis is discussed in Section 2. Section 3 introduces the Simplified Advanced
Encryption Standard. The basics of the PSO and GWO are introduced in Section 4. Section 5
introduces the proposed HPSOGWO algorithm for attacking S-AES, while Section 6 offers
the results and discussion. Finally, in Section 7, the work’s conclusion is presented.

2. Related Work

Many researchers have addressed the cryptanalysis of S-AES. For instance, Musa et al. [21]
employed linear and differential cryptanalysis to attack S-AES, where their linear analysis
method is more efficient than brute force attacks because it only takes 109 plaintext and
ciphertext combinations to attack the first round of S-AES. Mansoori et al. [22] performed a
linear cryptanalysis on S-AES to break the first round, which took at least 116 plaintext and
ciphertext couples, whereas breaking the second round required 548 plaintext and cipher-
text pairings, implying that a linear attack on S-AES is possible. Simmons [23] performed
algebraic cryptanalysis on S-AES by solving polynomial equations. Vimalathithan and
Valarmathi [24,25] are two such metaheuristic-based attacks that have been carried out. An
intelligent agent for cryptanalysis of S-AES with only one plaintext was proposed by Rania
Saeed and Ashraf Bhery [26]. Moreover, several works have addressed the metaheuristic
attacks on stream ciphers, modern symmetric block ciphers, and classical ciphers [27–31].
In [32], authors concentrated on the cryptanalysis of classical ciphers, such as substitution,
transposition, and Vigenere ciphers, using a variety of well-liked metaheuristics, including
EA, ACO, PSO, and cuckoo search algorithms. Ref. [33] presented the binary cuckoo search
technique for SDES ciphertext. In contrast, the dolphin swarm algorithm (DSA), binary
firefly (BF), and binary cat swarm optimization (BCSO) have been proposed in [34–36]
to deal with the DES cryptosystem. Tabu Search (TS) has been introduced to handle the
stream ciphers (RC4, VMPC, and RC4+) in [37,38], while the Grari [39] presented an ACO
algorithm-specific Merkle–Hellman cipher. In [40], the effectiveness of eight popular, newly
released metaheuristic algorithms for the MHKC were examined. The authors in [41]
presented quantum cryptanalysis for binary elliptic curves by reducing the circuit depth,
complementing recent research that focused on reducing the circuit width. A novel binary
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hybrid PSO-EO algorithm for cryptanalysis of the internal state of the RC4 cipher was
presented in [42].

3. Simplified Advanced Encryption Standard (S-AES)

This section introduces the fundamentals of the S-AES algorithm [2,43] with its related
information, the S-AES encryption, key expansion, and decryption technologies. S-AES is a
block cipher that accepts a 16-bit plaintext and a 16-bit key as input and outputs of a 16-bit
ciphertext. A state is created from the 16-bit input plaintext, which is a 4 × 4 matrix of
nibbles (a nibble is a 4-bit block). A state is taken and replaced with another one for the next
round; this process occurs in each round. Substitution (Sub. Nibbles), mix columns, shift
row, and round key addition represent four S-AES transformations. The S-AES encryption,
decryption and key generation, and decryption techniques are described in Figure 1.
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3.1. Substitution

Substitution (Sub. Nibbles) is done for each nibble as the first step in Round 1. A basic
lookup table contains the nibble substitution function, often called an S-box or substitution
table. All possible 4-bit values are permuted in the S-box, creating a 44-bit array of nibble
values. The state matrix’s component bits are mapped into new nibbles, and a row index is
calculated using the nibble’s leftmost two bits. These row and column indices in the S-box
imply a unique 4-bit value (the new nibble). The change has a clear, confusing impact, making
the relationship between the ciphertext’s statistics and the key as convoluted as possible, so
that attempts to crack the key become more difficult. The S-box is used for encryption; for
example, the inverse of the S-box used for decryption is s−1 (see Equation (1)).

S =


9 4 A B
D 1 8 5
6 2 0 3
C E F 7

 S−1 =


A 5 9 B
1 7 8 F
6 0 2 3

C 4 D E

 (1)
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3.2. Shift Row

The state matrix’s first row remains unchanged during this stage. The one-piece
circular offset occurs during the second row.

3.3. Mix Columns

The Mix Columns transformation is completed with each column in the matrix in
the third stage, converting each state column into a new column. To calculate the trans-
formation, multiply the state column by a constant square matrix. In Galois Field GF (2),
polynomial coefficients are regarded as nibbles and moved into the state column and the
matrix of constants. To verify that the new matrix remains within the filed GF (24), multiply
the bytes with the irreducible polynomial modulus (x4 + x + 1). The block at the output
(b0, b1, b2, b3) is defined as follows: Let (a0, a1, a2, a3) be the input nibbles of the Mix
Columns operation (see Equation (2)). [

b0 b2
b1 b3

]
=

[
1 4
4 1

][
a0 a2
a1 a3

]
(2)

3.4. Add Round Key

At the end of each round, the round key is appended. The state matrix and the key
round are included by bitwise XOR operation.

3.5. S-AES Key Expansion

In this stage, three-round keys are generated using the primary key, and each one is
employed in a different specialized round, making S-AES safer. The keys used in decryption
are the same as those used in the encryption algorithm.

The key expansion method creates round keys word per word, with a word being
a two-bit array. The procedure generates six words, w0, w1, w2, w3, w4, and w5, where
k0= w0 w1, k1= w2 w3, and k2= w4 w5. We generate the two bytes w0 and w1 from the
original key. The S-AES key expansion algorithm is defined in Algorithm 1.

Algorithm 1: S-AES Key Expansion Algorithm

For 2 ≤ i ≤ 5 do
If i(mod 2) = 0 then
wi = wi−2 ⊕ REC(i/2)⊕ SubNib(RotNib(wi−1))

Else
wi = wi−1 ⊕ wi−2

end if
end for

This method is based on REC(i) = xi+2 ∈ GF
(
24), where REC(i) is described as

REC(i) = xi+2 ∈ GF
(
24), so REC(1) = x3 = 1000 and REC(2) = x4 = x + 1 = 0011.

If N0 and N1 are two nibbles and N1N0 is the result of their concatenation, the RotNib
and SubNib functions are defined as RotNib (N0N1) = N1N0 and SubNib (N0N1) = Sbox
(N0) Sbox (N1); this means that the “rotate nibble” is completed first, followed by the
“substitute nibble”.

3.6. Decryption

The opposite of encryption is decryption. When ciphertext contains 16 bits and a 16-bit
key, the original plaintext also contains 16 bits. As seen in Figure 1, decryption employs
single pre-round and two-round modifications, just like encryption. Decryption techniques
are opposed to encryption procedures [2].
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4. Material and Methods
4.1. Basics of the Particle Swarm Optimization (PSO)

J. Kennedy and R. Eberhat devised the PSO algorithm [4] as an optimization method
for describing how individuals (particles) in a population behave. Algorithm 2 shows
the pseudo-code for PSO. It mimics the behavior of swarming and flocking in creatures
such as locusts, fish schools, and bird flocks. A swarm of particles is given a population
of random alternative solutions in the canonical PSO model. They search continuously
for novel solutions in the D-dimension issue space. The location of a particle has a direct
relationship with its fitness. Each particle j is associated with a velocity (Vj) and a location
(Xj) that can be used during the evolution stage (see Equations (3) and (4)).

Xj =
(

xj,1 , xj,2 , . . . , xi,D
)

(3)

Vj =
(
vj,1 , vj,2 , . . . , vi,D

)
(4)

The updating or evolution of velocity and the location of the jth particle can be formed
for the next time (t + 1) as follows in (Equations (5) and (6)).

Vj(t + 1) = w·Vj(t) + c1.r1·
(

pbestj(t)− Xj(t)
)
+ c2·r2·

(
gbestj(t)− Xj(t)

)
(5)

Xj(t + 1) = Xj(t) + Vj(t + 1) (6)

where j = 1, 2, . . . . . . , N, w is the inertia weight. pbest defines the personal best associated
with each particle, gbest defines the global best location among all particles, c1 defines the
self-recognition component’s coefficient, c2 notes the social component factor, and r1, r2 are
random numbers generated between 0.0 and 1.0.

Algorithm 2: PSO procedures

Define the size of the swarm N.
Define tmax, which is the greatest number of generations possible.
Create a population of N particles as a starting point.
Set particle positions and velocities at random.
Determine the fitness of each particle.
Find the most suitable particle, the best

t = 0
While (t < tmax)

For i = 1 to N
Calculate the ith particle’s new position.
Find pbest

End For
Find gbest
t = t + 1

End while
Return gbest

4.2. Binary PSO (BPSO)

Kennedy and Eberhart [44] proposed the BPSO to create binary solutions for searching
space’s discrete or binary domain. In this context, the BPSO uses the original PSO’s velocity
and formulates the binary string of solution as follows in Equation (7).

Xj(t + 1) =
{

1, i f r3 ≤ sig
(
Vj(t + 1)

)
0, otherwise

(7)

where r3 is random numbers from [0, 1], sig denotes the sigmoidal function that is deter-
mined by Equation (8).

sig
(
Vj(t + 1)

)
=

1

1 + e−Vj(t+1)
(8)



Mathematics 2023, 11, 3982 7 of 16

4.3. Basics of Grey Wolf Optimization (GWO)

GWO was introduced by Mirjalili et al. [8] as a metaheuristic algorithm influenced by
the natural leadership of grey wolves’ structure and hunting strategy. Grey wolves are apex
predators that live in groups of five to twelve individuals. They lived in a well-knit group.
To replicate the leadership hierarchy, there are four members in the GWO’s population:
alpha, beta, delta, and omega. Alphas are the bosses, both male and female. The alpha
(α) decides when to sleep, wake up, hunt, etc. The grey wolf hierarchy’s beta (β) is the
second-highest rank. Subordinate wolves assist the alpha wolf with collective decision-
making and other tasks and are called betas (β). The wolves’ second-level members (beta)
should obey the wolves’ first-level members (alpha) and command the pack’s lower-level
members. The alpha receives information from the second-level wolf (beta), which then
enforces the wolf leader’s (alpha) directives across the group. Omega (γ) is the grey wolves’
third rank. Omega wolves are used as victims. Third-rank grey wolves must always obey
the commands of all other dominating wolves. They are the last wolves to eat. Although
the omega wolves in the pack may not appear to have a strong character, it is apparent that,
without the omega, the entire pack would face internal friction and hardships because the
omega receives the other wolves’ wrath and violence. This contributes to the fulfillment
of the entire pack and the preservation of the dominant structure. Subordinate delta (δ)
wolves have to surrender to alpha (α) and beta (β), but they dominate the omega (γ).

The following is a mathematical model of a grey wolf’s hunting mechanism:

i. Searching (looking for the prey).
ii. Pursuing (following, chasing, and nearing the prey).
iii. Encircling and pestering the prey until it comes to a halt.
iv. Prey attack.

To determine each agent’s encircling behavior in the group, the following mathematical
formulae are used as shown in Equations (9) and (10).

D =
∣∣C· Xp − X(t)

∣∣ (9)

X(t + 1) =
∣∣Xp(t)− A·D

∣∣ (10)

The current iteration is denoted by t, Xp is the prey’s position, X denotes the grey
wolf’s position, and A, C mean coefficient vectors. The following formulas (see Equation
(11)) are used to calculate the vectors A and C:

A = 2a·r1 − a, C = 2·r2 (11)

where r1 and r2 are random vectors with values between 0 and 1, and a’s components are
linearly reduced from 2 to 0 overtime. The value of a is presented as follows (see Equation (12)):

a = 2− t· 2
tmax

(12)

where tmax defines the maximum number of iterations.
Prey hunting is typically led by α and β, with δ joining occasionally. The most effective

proposal solutions, α, β, and δ, have more information about prospective prey locations.
The positions of (γ) agents are adjusted according to the positions of α, β, and δ agents. In
this regard, the Equations (13) and (14) are provided.

Dα = |C1· Xα − X|,
Dα =

∣∣C2· Xβ − X
∣∣,

Dδ = |C3· Xδ − X|,
(13)

X1 = Xα − A1·Dα,
X2 = Xβ − A2·Dβ,
X3 = Xδ − A3·Dδ,

(14)
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The position of the grey wolves is updated as shown in Equation (15):

X (t + 1) =
X1(t) + X2(t) + X3(t)

3
(15)

The variable A is a random number between [−2a, 2a]. When the random variable
|A| is smaller than one, wolves are compelled to attack their victim. The ability to hunt
for prey is known as exploration, whereas exploitation is the ability to attack the prey. To
divert the hunter’s attention away from the prey, arbitrary values of A are used. When |A|
exceeds 1, wolves are compelled to leave this victim and seek a better one. The main steps
of GWO are presented in Algorithm 3.

Algorithm 3: The main steps of GWO

Creation the grey wolves’ population Xi(i = 1, 2, 3, . . . , n).
Initialize the variables a, A, and C.

Computing the search agent fitness values and agent ranking (xα, xβ, xδ)

t = 0
While (t < tmax)

For i = 1 to N
We are updating the current search agent’s position by Equation (15).

End For
Updating of a , A , and C.
Calculation of search agent fitness values and rating of the agents.
Updating the position of (xα , xβ and xδ)

t = t + 1
End while

End

4.4. Binary GWO (BGWO)

The BGWO was developed with the binary format for feature selection problems
in [39], where the grey wolf position vector is updated according to Equation (16) to firm
the conversion from the continuous domain to the binary domain.

X(t + 1) =

{
1, i f rand ≤ sigmoid

(
x1+x2+x3

3

)
0, otherwise

(16)

where rand is randomly selected from a uniform distribution, ∈ [0, 1], X(t + 1) is the
updated binary location at iteration t, and sigmoid(.) is defined as the transfer function that
is defined as shown in Equation (17).

sigmoid(a) =
1

1 + e−10(x−0.5)
(17)

5. The Proposed Hybrid PSO-GWO (PSOGWO)

The primary motivation behind the suggested PSOGWO is thoroughly explained in
this section, along with a step-by-step introduction.

5.1. The Motivation of the Proposed PSOGWO

PSO has several flaws, including stagnation and the particles’ inclination to become
inactive after a given number of iterations. As a result, local and worldwide search capabil-
ities are lacking. To overcome some of the limitations of the ordinary versions of GWO and
PSO, this hybridization of the two optimizers boosts GWO’s population diversity while
also increasing PSO’s capacity to escape the local minima. This hybridization technique
improves the exploration phase of the PSO algorithm with the ability of exploration in the
grey wolf optimizer, allowing it to produce both variants’ strengths and evaluate many
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possible solutions. In this regard, rather than utilizing traditional procedures of the PSO,
the velocity aspect is updated using the hierarchical structure of the grey wolf aspect.

Also, the grey wolf’s exploitation and exploration were governed by the inertia con-
stant (w). The first three agents’ locations in the search space have been updated by
Equations (18) and (14) as follows:

Dα = |C1·Xα − w× X|,
Dβ =

∣∣C2· Xβ − w× X
∣∣,

Dδ = |C3·Xδ − w× X|,
(18)

Then, the velocity of the PSO is integrated with the solutions obtained by the GWO
variant to perform the following updating procedures (see Equation (19)).

Vj(t + 1) = w·
(

Vj(t) + c1·r1·
(

X1 − Xj(t)
)
+ c2·r2·

(
X2 − Xj(t)

)
+ c3·r3·

(
X3 − Xj(t)

))
(19)

Xj(t + 1) = Xj(t) + Vj(t + 1) (20)

This algorithm provides a high-level coevolutionary hybrid by combining merits of
the PSO and GWO as they work together.

5.2. The Proposed PSOGWO Based on the Binary Aspect (BPSOGWO) for Attacking S-AES

The proposed BPSOGWO is discussed to find the encryption key in the cryptanalysis
field. The BPSOGWO is designed to deal with the binary aspect of cryptanalysis tasks. In
this regard, after computing Equations (19) and (20), the binary value is obtained using
Equation (21).

xd(t + 1) =
{

1, i f rand ≤ sigmoid(X)
0, otherwise

(21)

where sigmoid (X) denotes the sigmoid function (i.e., Equation (22)) of the position vector
obtained in Equation (20), and xd(t + 1) represents the resultant binary location at the
iteration (t + 1).

sigmoid(X) =
1

1 + e−(X/2)
(22)

5.3. Fitness Function of the S-AES

During cryptanalysis, a suggested key created by metaheuristic algorithms must be
evaluated for acceptability (fitness or cost). The known plaintext attack (KPA), which
requires many plaintext/ciphertext pairs, is adopted in this study. As a result, the fitness
should always be built to compare a created plaintext obtained from the trial key and
the original plaintext. Using Equation (23), compute the produced plaintext PG using the
known ciphertext C and the trail key obtained by optimization algorithm. The key’s fitness
function F(Kc) is specified in Equation (24).

PG = S_AESdecrypt (C, Kc) (23)

F(Kc) =
#( PG ⊕ P)

16
(24)

where # stands for the quantity of zeros in (PG ⊕ P), ⊕ specifies the Xor operation, and P is
the original plaintext. F lies in a range of [0, 1]. F is equivalent to 1 if all bits in PG are the
same as those in P. The produced key matches the original one in this situation; thus, we
want to optimize the fitness function.

Each agent represents a 16-bit binary key in this algorithm. Initialize an agent of N
wolves ∈ [0.1], and then, Equation (24) is applied to calculate the agent’s fitness. Then,
solutions are evolved using Equations (14) and (19)–(22). For the updated agent’s position,
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the fitness is calculated. The procedure is repeated until the desired number of iterations has
been reached. Figure 2 presents the flowchart of the proposed algorithm.
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6. Experimental Setup and Results

This section investigates the assessment of the proposed BPSOGWO on the S-AES,
where its performance is compared with the BGWO, BPSO, and binary whale optimization
algorithm (BWOA).

6.1. Parameters Configuration

To ensure a fair comparison between the proposed BHOSOFWO algorithm and the
compared ones (i.e., BGWO, BPSO, and BWOA), each algorithm is run through 5 indepen-
dent times with the same number of iterations. As in the original works, the parameter
configuration for the implemented optimizers is provided and listed in Table 1. It is im-
portant to note that after a certain number of trials, the common parameters, such as
population size (Np), of the provided optimizers are set to 30. The BPSO, BGWO, BWOA,
and BPSOGWO algorithms were implemented using a MATLAB environment (R2013a) on
a laptop with an Intel® core ™ i5-5200U CPU, 2.7 GHz, and 6 GB RAM.

The investigation is performed using different sizes of population (10, 20, 30, 40,
and 50) and 100 iterations. Figure 3 shows the outcomes of the experiments with two
noteworthy observations: (a) For all algorithms BPSOGWO, BGWO, BPSO, and BWOA,
with increasing population size, the average fitness of optimal solutions rises, and the
proposed BPSOGWO is superior. Also, it was noticed that the proposed BPSOGWO
achieves the optimal results with the population size of 30 agents, and (b) the optimum
solutions obtained with BPSOGWO in different population sizes are significantly higher
than those obtained from other algorithms. Accordingly, the population size is adopted as
30 agents and 100 iterations. By applying the proposed algorithms, it can be noted that the
BPSOGWO provides faster convergence than the others, saving the computation efforts as it
reaches 30 search agents only with 49 iterations. Furthermore, the statistical results during
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the different runs for the proposed BPSOGWO and the compared ones are presented in
Table 2. Based on reported results, the proposed BPSOGWO provides competitive results in
terms of best value, while the BPSOGWO achieves superior results in terms of mean values.
Moreover, the BPSOGWO saves more computational time than the other optimizers.

Table 1. The configurations of parameters for the presented algorithms.

Parameter Definition Value

c1 Coefficient of cognitive acceleration 0.5
c2 Coefficient of social acceleration 0.5
c3 Coefficient vector 0.5
W Inertia weight 0.5 + rand()/2
N Population size 30
D No. of variables 16

tmax Maximum iterations 100
R The number of runs 5
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for different population sizes.
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Table 2. The statistical results for cryptanalysis of S-AES.

Statistics BPSO BWOA BGWO BPSOGWO

Best 1 1 0.9375 1
Mean 0.9187 0.93125 0.89375 0.9375

Median 0.9375 0.9375 0.875 0.9375
Sdt 0.0422 0.035478 0.03019 0.041667

Time 10.397315 11.866 13.40509 9.769446

6.2. Index Storage Space

Storage space is a crucial aspect to be considered in secure retrieval. Data storage
in all the presented algorithms has the same number of bytes because we are looking for
the encryption key, which consists of 16 bits. Therefore, other variables were used for
comparison, such as time, fitness value, and the superiority of the presented algorithm over
other algorithms, as shown in Table 2.

6.3. Impact of Population Size on the S-AES Characteristics

As mentioned in this work, the final accuracy of the obtained key and the fitness
function strongly depend on the population size (N), which controls the effort of the
algorithm and the search size. To exhibit the better characteristics of the S-AES such as
fitness, key found, no. of keys, and browsed no. of bits correct, the effective choice of these
characteristics is investigated. As shown in Table 3, by increasing the population size, the
fitness value increases, and the space search and number of bits needed to obtain a correct
key also increased. Therefore, it can be noted that the proposed BPSOGWO reaches the
best solution with 16 bits and 3000 evaluations, where some of the compared solutions can
reach the correct key but require 4000 and 5000 evolutions.

Table 3. Experimental results of different population size values.

BPSOGWO

N = 10 N = 20 N = 30 N = 40 N = 50

Fitness 0.8750 0.9375 1 1 1
Key found DBAC 95BC A73B A73B A73B
No of keys
Browsed 1000 2000 3000 4000 5000

No of bits correct 6 9 16 16 16

BGWO

N = 10 N = 20 N = 30 N = 40 N = 50

Fitness 0.8125 0.8750 0.8750 0.8750 0.9375
Key found 5CFF FBCF 7DF9 EDAA E7FD
No of keys
Browsed 1000 2000 3000 4000 5000

No of bits correct 6 7 8 10 11

BPSO

N = 10 N = 20 N = 30 N = 40 N = 50

Fitness 0.8125 0.8750 0.9375 0.9375 1
Key found DC88 DBAC BBBE B1F2 A73B
No of keys
Browsed 1000 2000 3000 4000 5000

No of bits correct 5 6 10 9 16

BWOA

N = 10 N = 20 N = 30 N = 40 N = 50

Fitness 0.8125 0.8750 0.8750 1 1
Key found 97B5 E7FD BBBE A73B A73B
No of keys
Browsed 1000 2000 3000 4000 5000

No of bits correct 10 11 10 16 16

6.4. The Fitness Function’s Suitability

Designing a fitness function is an important stage in evolutionary algorithms. For
different population sizes, calculate the correlation coefficient (corr) between it and the
number of bits that are corrected in the generated key and the cost function using Equation
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(25). The link between the number of items that can be accurately recovered, and the cost
function is evaluated using this coefficient. If a perfectly straight linear connection exists,
corr = 1 is obtained, which means that a good mechanism for assessing the generated key
can be obtained, where the proposed algorithm is almost certain to reach the best key. If
corr = −1, on the other hand, it is in a perfect decreasing linear connection. As seen in
Figure 4, the correlation coefficient grows with the number of population sizes (N).
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Figure 4. Correlation coefficient of BPSOGWO, BPSO, BGWO, and BWOA for cryptanalysis of S-AES
for different population sizes.

It can be seen from the graph that BPSOGWO performs better than other algorithms
and has the best correlation between our results. We utilized 50 keys as a sample to
construct this coefficient, calculating the fitness of each and the number of correct bits
where x and y are n elements arrays.

corr(x, y)
n ∑ xi yi −∑ xi ∑ yi√

n ∑ xi
2 − (∑ xi)

2
√

n ∑ yi
2 − (∑ yi)

2
(25)

6.5. Comparison of BPSOGWO with Other Methods

To verify the efficiency of BPSOGWO, it is compared with different optimization
methods in this section, where the number of plaintext–ciphertext pairs in previous assaults
is listed in Table 4. The proposed suggested method allows determining the key using
only one known plaintext-ciphertext combination. The strengths of this algorithm in the
cryptanalysis of S-AES are:

• It needs fewer ciphertext and plaintext pairs than other algorithms, as shown in
Table 4.

• In comparison to the brute force attack, the space factor can be reduced.
• In comparison to using either PSO or GWO [45], this algorithm it reaches the correct

key more efficiently and a smaller number of iterations.
• The BPSOGWO improved the cryptanalysis problem for S-AES by a percentage of

82.5% compared with PSO [23], 84.79% compared with GA [24], and 79.6% compared
with ACO [46].
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Table 4. Required number of plaintext-ciphertext for attacking.

Strategy Attacked Rounds Required Number of
Plaintext-Ciphertext Pairs

Linear cryptanalysis
Musa [21] Round 1 109

Linear cryptanalysis
Davood [22]

Round 1
Round 1 and Round 2

116
548

Linear cryptanalysis
Bizaki [47] Round 1 and Round 2 96

Using GA
Vimalathithan [24] Round 1and Round 2 3

Using ACO
Grari, Azouaoui, Zine-Dine [46] Round 1 and Round 2 2

The proposed BPSOGWO Round 1 and Round 2 1

7. Conclusions

The work attempted to compare the efficiency of Simplified-AES cryptanalysis utiliz-
ing KPA. The suggested approach effectively breaks the key, requiring only one known
plaintext–ciphertext pair. In contrast, GA and ACO require three and two plaintext–
ciphertext pairs to identify the genuine key (i.e., it reduces the number of messages needed
in an attack; secret information such as plaintext–ciphertext pairs cannot be obtained easily).
Compared to a brute-force approach, the proposed method helps narrow down the key’s
search space by a factor of 109. In cryptanalysis, this is a significant factor. The challenge
in any cryptanalysis system is to quickly obtain the real key to the encryption system
and not an approximate key. Compared to traditional methods, such as the brute-force
attack, the proposed algorithm exceeds the time tremendously, as the brute-force attack
requires 65,536 attempts to reach the real key while the proposed algorithm only needs
5000 attempts to obtain the real key. Compared to modern MOMS methods, such as GWO,
PSO, and WOA, the algorithm is superior in terms of time and reaching an exact solution,
not an approximate solution. Therefore, the algorithm solved the challenges in the crypto-
graphic solution problem. Finally, because the fitness function utilized in this experiment is
unaffected by the cipher under attack, this technique can be easily applied to other recent
block ciphers or stream ciphers. Future research can be directed toward employing different
swarm intelligence methods to attack AES with large-scale bits. They also present a new
mutation mechanism to explore the search space effectively by hybridization with other
techniques such as red fox, polar bear, and chimp algorithms.
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