Trace Formulae for Second-Order Differential Pencils with a Frozen Argument
Abstract
:1. Introduction
2. Preliminaries and Main Results
3. Conclusions
- 1.
- Operator is non-selfadjoint which may have complex eigenvalues with multiplicity; however, the method we use allows us dealing with the regularized sum of eigenvalues in the whole meaning.
- 2.
- The regularized trace of depends only on the value of at the frozen point a, regardless of the boundary conditions and the potential .
- 3.
- In the study of inverse spectral problem of , the rationality of frozen argument a is important. Whether a is rational leads to different approachs of inverse spectral problem. However, we do not need this distinction while calculating the trace formulae.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gelfand, I.M.; Levitan, B.M. On a formula for eigenvalues of a differential operator of second order. Dokl. Akad. Nauk SSSR 1953, 88, 593–596. (In Russian) [Google Scholar]
- Gesztesy, F.; Holden, H. On trace formulas for Schrödinger-type operators. In Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics; The IMA Volumes in Mathematics and Its Applications Series; Springer: New York, NY, USA, 1977; Volume 89, pp. 121–145. [Google Scholar]
- Trubowitz, E. The inverse problem for periodic potentials. Comm. Pure Appl. Math. 1977, 30, 321–337. [Google Scholar] [CrossRef]
- Lax, P.D. Trace formulas for the Schrödinger operator. Comm. Pure Appl. Math. 1994, 47, 503–512. [Google Scholar] [CrossRef]
- Gesztesy, F.; Ratnaseelan, R.; Teschl, G. The KdV hierarchy and associated trace formulas. In Proceedings of the International Conference on Applications of Operator Theory, Winnipeg, MB, Canada, 2–6 October 1994; Gohberg, I., Lancaster, P., Shivakumar, P.N., Eds.; Operator Theory: Advances and Applications Series. Birkháuser: Basel, Switzerland, 1996; Volume 87, pp. 125–163. [Google Scholar]
- Gesztesy, F.; Simon, B. The xi function. Acta Math. 1996, 176, 49–71. [Google Scholar] [CrossRef]
- Sadovnichii, V.A.; Podol’skii, V.E. Traces of operators. Russ. Math. Surv. 2006, 61, 885–953. [Google Scholar] [CrossRef]
- Jaulent, M.; Jean, C. 1972 The inverse s-wave scattering problem for a class of potentials depending on energy. Commun. Math. Phys. 1972, 28, 177–220. [Google Scholar] [CrossRef]
- Chen, M.; Liu, S.Q.; Zhang, Y. A two-component generalization of the Camassa-Holm equation and its solutions. Lett. Math. Phys. 2006, 75, 1–15. [Google Scholar] [CrossRef]
- Gasymov, M.G.; Guseinov, G.S. Determination of diffusion operator from spectral data. Akad. Nauk Azerb. SSR Dokl. 1981, 37, 19–23. (In Russian) [Google Scholar]
- Guseinov, I.M.; Nabiev, I.M. A class of inverse problems for a quadratic pencil of Sturm-Liouville operators. Diff. Equ. 2000, 36, 471–473. [Google Scholar] [CrossRef]
- Guseinov, I.M.; Nabiev, I.M. The inverse spectral problem for pencils of differential operators. Sb. Math. 2007, 198, 1579–1598. [Google Scholar] [CrossRef]
- Buterin, S.A.; Yurko, V.A. Inverse problems for second-order differential pencils with Dirichlet boundary conditions. J. Inverse Ill-Posed Probl. 2012, 20, 855–881. [Google Scholar] [CrossRef]
- Hryniv, R.O.; Pronska, N. Inverse spectral problems for energy-dependent Sturm-Liouville equations. Inverse Probl. 2012, 28, 085008. [Google Scholar] [CrossRef]
- Pronska, N. Reconstruction of energy-dependent Sturm-Liouville quations from two spectra. Integral Equ. Oper. Theory 2013, 76, 403–419. [Google Scholar] [CrossRef]
- Hryniv, R.O.; Manko, S.S. Inverse scattering on the half-line for energy-dependent Schrödinger equations. Inverse Probl. 2020, 36, 095002. [Google Scholar] [CrossRef]
- Cao, C. Asymptotic traces of non-self-adjoint Sturm-Liouville operators. Acta Math. Sci. 1981, 241, 84–94. (In Chinese) [Google Scholar]
- Cao, C.; Zhuang, D. Some trace formulas for the Schrödinger equation with energy-dependent potential. Acta Math. Sci. 1985, 5, 131–140. [Google Scholar] [CrossRef]
- Yang, C.F. New trace formulae for a quadratic pencil of the Schrödinger operator. J. Math. Phys. 2010, 51, 033506. [Google Scholar] [CrossRef]
- Yang, C.F.; Huang, Z.Y.; Wang, Y.P. Trace formulae for the Schrödinger equation with energy-dependent potential. J. Phys. A Math. Theor. 2010, 43, 415207. [Google Scholar] [CrossRef]
- Yang, C.F. Identities for eigenvalues of the Schrödinger equation with energy-dependent potential. Z. Naturforsch. A 2011, 66, 699–704. [Google Scholar] [CrossRef]
- Nakhushev, A.M. Loaded Equations and Their Applications; Nauka: Moscow, Russia, 2012. [Google Scholar]
- Nakhushev, A.M.; Borisov, V.N. Boundary value problems for loaded parabolic equations and their applications to the prediction of ground water level. Differ. Equ. 1977, 13, 105–110. [Google Scholar]
- Nakhushev, A.M. An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water. Differ. Equ. 1982, 18, 72–81. [Google Scholar]
- Iskenderov, A.D. The first boundary-value problem for a loaded system of quasilinear parabolic equations. Differ. Equ. 1971, 7, 1911–1913. [Google Scholar]
- Dikinov, K.; Kerefov, A.A.; Nakhushev, A.M. A certain boundary value problem for a loaded heat equation. Differ. Equ. 1976, 12, 177–179. [Google Scholar]
- Krall, A.M. The development of general differential and general differential-boundary systems. Rocky Mt. J. Math. 1975, 5, 493–542. [Google Scholar] [CrossRef]
- Albeverio, S.; Hryniv, R.O.; Nizhnik, L.P. Inverse spectral problems for non-local Sturm-Liouville operators. Inverse Probl. 2007, 23, 523–535. [Google Scholar] [CrossRef]
- Nizhnik, L.P. Inverse eigenvalue problems for nonlocal Sturm-Liouville operators. Methods Funct. Anal. Topol. 2009, 15, 41–47. [Google Scholar]
- Nizhnik, L.P. Inverse nonlocal Sturm-Liouville problem. Inverse Probl. 2010, 26, 125006. [Google Scholar] [CrossRef]
- Bondarenko, N.P.; Buterin, S.V.; Vasiliev, S.V. An inverse spectral problem for Sturm-Liouville operators with frozen argument. J. Math. Anal. Appl. 2019, 472, 1028–1041. [Google Scholar] [CrossRef]
- Buterin, S.A.; Vasiliev, S.V. On recovering a Sturm-Liouville-type operator with the frozen argument rationally proportioned to the interval length. J. Inverse Ill-Posed Probl. 2019, 27, 429–438. [Google Scholar] [CrossRef]
- Buterin, S.A.; Kuznetsova, M. On the inverse problem for Sturm-Liouville-type operators with frozen argument: Rational case. Comput. Appl. Math. 2020, 39, 15. [Google Scholar] [CrossRef]
- Hu, Y.T.; Bondarenko, N.P.; Yang, C.F. Traces and inverse nodal problem for Sturm-Liouville operators with frozen argument. Appl. Math. Lett. 2020, 102, 106096. [Google Scholar] [CrossRef]
- Hu, Y.T.; Huang, Z.Y.; Yang, C.F. Traces for Sturm-Liouville operators with frozen argument on star graphs. Results Math. 2020, 75, 9. [Google Scholar] [CrossRef]
- Buterin, S.A.; Hu, Y.T. Inverse spectral problems for Hill-type operators with frozen argument. Anal. Math. Phys. 2021, 11, 22. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zhang, M.; Zhao, W.; Wei, X. Reconstruction for Sturm-Liouville operators with frozen argument for irrational cases. Appl. Math. Lett. 2021, 111, 106590. [Google Scholar] [CrossRef]
- Bondarenko, N.P. Finite-difference approximation of the inverse Sturm-Liouville problem with frozen argument. Appl. Math. Comput. 2022, 413, 126653. [Google Scholar] [CrossRef]
- Dobosevych, O.; Hryniv, R.O. Reconstruction of differential operators with frozen argument. Axioms 2022, 11, 24. [Google Scholar] [CrossRef]
- Tsai, T.M.; Liu, H.F.; Buterin, S.A.; Chen, L.H.; Shieh, C.T. Sturm-Liouville-type operators with frozen argument and Chebyshev polynomials. Math. Methods Appl. Sci. 2022, 45, 9635–9652. [Google Scholar] [CrossRef]
- Kuznetsova, M. Necessary and sufficient conditions for the spectra of the Sturm-Liouville operators with frozen argument. Appl. Math. Lett. 2022, 131, 108035. [Google Scholar] [CrossRef]
- Kuznetsova, M. Uniform stability of recovering the Sturm-Liouville operators with frozen argument. Results Math. 2023, 78, 169. [Google Scholar] [CrossRef]
- Bondarenko, N.P. Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition. Boletn de la Sociedad Matemática Mex. 2023, 29, 27. [Google Scholar] [CrossRef]
- Buterin, S.; Vasilev, S. An inverse Sturm-Liouville-type problem with constant delay and non-zero initial function. arXiv 2023, arXiv:2304.05487. [Google Scholar]
- Borcea, L.; Vladimir, D.; Jörn, Z. A reduced order model approach to inverse scattering in lossy layered media. J. Sci. Comput. 2021, 89, 36. [Google Scholar] [CrossRef]
- Hu, Y.T.; Sat, M. Inverse spectral problem for differential pencils with a frozen argument. arXiv 2023, arXiv:2305.02529. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.-T.; Şat, M. Trace Formulae for Second-Order Differential Pencils with a Frozen Argument. Mathematics 2023, 11, 3996. https://doi.org/10.3390/math11183996
Hu Y-T, Şat M. Trace Formulae for Second-Order Differential Pencils with a Frozen Argument. Mathematics. 2023; 11(18):3996. https://doi.org/10.3390/math11183996
Chicago/Turabian StyleHu, Yi-Teng, and Murat Şat. 2023. "Trace Formulae for Second-Order Differential Pencils with a Frozen Argument" Mathematics 11, no. 18: 3996. https://doi.org/10.3390/math11183996
APA StyleHu, Y. -T., & Şat, M. (2023). Trace Formulae for Second-Order Differential Pencils with a Frozen Argument. Mathematics, 11(18), 3996. https://doi.org/10.3390/math11183996