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Abstract: In this work, we examine a predator–prey model that considers the implicit marine reserve
in prey species and a linear function of critical biomass level. The model’s basic properties (existence,
uniqueness, positivity, boundedness, and permanence) and equilibrium points are determined. We
obtain three equilibrium points: the trivial equilibrium point, the equilibrium point where there is no
harvest, and the co-existing equilibrium point. The local and global stability of each equilibrium point
of the model is explored. Moreover, the interior equilibrium point is always globally asymptotically
stable, and the system experiences no limit cycles around the interior equilibrium point. Numerical
simulations are conducted to illustrate the theoretical results obtained. Finally, we find overlapping
conditions regarding the dynamics between the model we developed and a model that considers a
constant critical biomass level for certain parameters.
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1. Introduction

The predator–prey interaction is one of the interactions that occurs in ecological
problems. This interaction has been researched for decades by mathematicians who invest
their time in creating accurate and useful models. The predator–prey model was first
introduced independently by Alfred J. Lotka in 1925 and Vito Volterra in 1926 [1]. The
Lotka–Volterra predator–prey system for two species is modeled as follows:{

dx
dt = gx− pxy
dy
dt = nxy− dy

.

In the Lotka–Volterra predator–prey model, the variables x and y represent the prey
and predator population densities, respectively. The intrinsic growth rate of the prey is
represented by g. The predation rate of the predator on the prey is represented by p. The
growth of the predator is assumed to be influenced only by the predation effect, with
a growth rate represented by n. Finally, the parameter d is the natural mortality rate of
the predator.

To incorporate the human effect into a natural growth of a population, researchers then
introduced the harvesting effect into the growth model in various ways. As an example, in
1957, Schaefer [2] introduced a harvesting model in a simple fisheries ecosystem without
considering predation. Harvesting is expressed as a function qEx, where q and E represent
catchability coefficient and harvesting effort, respectively. The Schaefer [2] model was
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developed as a management tool for the Eastern Tropical Pacific Tuna Fishery [3]. The
Schaefer [2] fishery model is presented as follows:{

dx
dt

= gx
(

1− x
K

)
− qEx.

The Schaefer model [2] consists of only one equation with only one variable. The
variable can be represented as either predator or prey. The parameter K represents the
tuna population’s carrying capacity. Besides the harvesting function in Schaefer [2], there
are also other harvesting functions, including the constant harvesting function [4,5], the
rational harvesting function [6–8], the periodic harvesting function [9–11], and the piecewise
harvesting function [11,12].

Since real problems are more complex than those modeled by the Lotka–Volterra
and Schaefer models, the two models have been widely combined and developed to
get realistic modeling or at least one that is close to the real problem. Meng et al. [13]
combined the two models by considering a disease in a species so that the prey species
consisted of susceptible and infected preys. Thirthar et al. [14] studied three species of prey,
predator, and superpredator species and added the effect of fear between predators and
prey. They showed in their analysis that fear has a noticeable effect on the system’s stability.
Suryanto et al. [15] studied the fractional derivative Caputo model with a ratio-dependent
predation function. The fractional model was formed by them because the population
growth rate depends on long-term memory. Panigoro et al. [16] studied the fractional
derivative Caputo predator–prey model and harvesting by considering the age structure
of predators consisting of juvenile and adult predators. They assumed that only adult
predators can prey on preys.

In recent years, the development of research on predator–prey mathematical models
and harvesting by mathematicians has extended to marine reserves (can be seen in [17]).
Mapunda et al. [18] studied the predator–prey system by considering the creation of a
marine reserve as a solution to over-exploitation and drought in the system. Based on
their results, when the creation of marine reserves is not performed, it will have a negative
impact on the predator and prey populations. Abid et al. [19] analyzed the stability and
determined the optimal harvesting of the modified Leslie–Gower predator–prey model
by considering the implicit marine reserve. Ibrahim [20] proposed a predator–prey model
that considers the implicit marine reserve and critical biomass level with the harvesting
function following the harvesting function in [2,21], namely

h(x, E) = qEx, (1)

where q, E, and x are the catchability coefficient, constant harvesting effort, and prey
population density. Furthermore, the research model from Ibrahim [20] is presented
as follows: { dx

dt = rx
(
1− x

K
)
− uqEx

dE
dt = uqE(x− a)

, (2)

Based on the model in (2), Ibrahim [20] assumed that changes in population density
increase with prey population growth and decrease with prey harvesting. Prey population
growth is described by a logistic function, rx(1− x

K ), with K and r being the prey’s carrying
capacity and intrinsic growth rate, respectively. Then, prey harvesting is described by the
function in (1), with u being the implicit marine reserve fraction, i.e., the fraction of prey
stock allowed to be harvested. Therefore, (1− u) is the fraction of prey stock that is not
allowed to be harvested. Furthermore, the change in fishing effort can increase or decrease
depending on the value of (x− a), where a ∈ (0, K) is the economically critical stock size
level. The term (x− a) has the interpretation that when the prey population density (x)
is greater than the threshold a (x > a), the effort (E) in harvesting the prey population
increases. When the prey population density is smaller than threshold a, harvesting effort
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(E) decreases. In this condition, if E is still increased, the fishermen will not get profit (loss).
Finally, when x = a, the effort in harvesting does not change (constant).

In this study, we modify the model in [20] by replacing the term (x− a) with (x− aE).
The modified model is presented as follows:

dU
dt

=

[ dx
dt
dE
dt

]
=

[
rx
(
1− x

K
)
− uqEx

uqE(x− aE)

]
=

[
H1(U)
H2(U)

]
= H(U), (3)

Based on the economic system prevailing in most regions, fishermen will flock there
when the fishery shows success. As a result, the fishing rate increases and the fish popula-
tion catches up [21]. Therefore, the amount of fishing effort made by fishermen also greatly
affects the rise and fall of the fishing rate. Based on the term (x− aE), the harvesting effort
on prey increases when x

E > a, which is the ratio of prey population density to fishing effort
greater than a. Then, when x

E < a, the harvesting effort on the prey decreases. This means
that some fishermen choose to move to other waters because fishermen can experience
losses if they continue harvesting in these waters. Finally, when x

E = a, the harvesting
effort does not change.

This study aims to explore the solution properties of the model developed in (3). The
exploration of the solution properties of the model in (3) is presented in Section 2. Then, this
study determines the equilibrium points of the model in (3) and analyzes their local stability,
which is presented in Sections 3 and 4, respectively. In Sections 5 and 6, the asymptotic
global stability and existence of limit cycles are analyzed. The bionomic equilibrium point
is determined and discussed in Section 7. In Section 8, numerical simulations are performed
to demonstrate the results obtained graphically. Next, Section 9 aims to discuss or show
that there are overlapping conditions between the model we developed and the model
developed by Ibrahim [20]. These conditions are obtained by selecting certain parameters.
Finally, the conclusion of this study is presented in Section 10.

2. Basic Properties of the Model Solution

In this section, we present some basic properties of the solution of the model in (3). The
properties that will be discussed include existence and uniqueness, positivity, boundedness,
and permanence. The solution properties ensure that the model has a unique solution and
that the solution is related to the biological problem.

2.1. Existence and Uniqueness of Solutions

Lemma 1 (Picard–Lindelöf theorem in [22]). If the function f : A→ Rn is continuous and
locally Lipschitz in x in an open set A ⊂ R×Rn, then for every (t0, x0) ∈ A there exists a unique
solution of the initial value problem

dx
dt

= f (x(t)), x(t0) = x0.

in some open interval containing t0.

Lemma 1 is used to show the existence and uniqueness of the solution of the model in
(3) which is presented in the following Theorem.

Theorem 1. H(U) in (3) is Lipschitz-continuous, so (3) has a unique solution, namely x(t) and
E(t) in ΩM =

{
[x, E]T ∈ R2

+

∣∣∣max{|x|, |E| ≤ M}
}

for t ≥ 0.

Proof of Theorem 1. First, it is clear that H1(U) and H2(U) of H(U) in (3) are continuous
functions. Second, we will show that H(U) is a Lipschitz function in the region [0, ∞)×ΩM.
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In this case, the solution of the model in (3) is assumed to be bounded in M, whose
boundedness is shown in Theorem A2. Suppose U = [x, E]T , U =

[
x, E

]T , and mapping

H(U) =

[
H1(U)
H2(U)

]
, (4)

where
H1(U) = rx

(
1− x

K
)
− uqEx

H2(U) = uqE(x− aE).
(5)

For any U, U ∈ ΩM, we have that∥∥H(U)− H
(
U
)∥∥ =

∣∣H1(U)− H1
(
U
)∣∣+ ∣∣H2(U)− H2

(
U
)∣∣

=
∣∣rx
(
1− x

K
)
− uqEx− rx

(
1− x

K
)
+ uqEx

∣∣
+
∣∣∣uqEx− uqE2a− uqEx + uqE2a

∣∣∣
=
∣∣r(x− x) + r

K
(
−x2 + x2)+ uq

(
−Ex + Ex

)∣∣
+
∣∣∣uq
(
Ex− Ex

)
+ uqa

(
−E2 + E2

)∣∣∣
≤ r|x− x|+ r

K

∣∣−x2 + x2∣∣+ uq
∣∣−Ex + Ex

∣∣+ uq
∣∣Ex− Ex

∣∣
+uqa

∣∣∣−E2 + E2
∣∣∣

= r|x− x|+ r
K |x + x||x− x|+ 2uq

∣∣Ex− Ex
∣∣+ uqa|E + E||E− E|

≤
(
r + 2r

K M + 2uqM
)
|x− x|+ (2uqM + 2uqaM)

∣∣E− E
∣∣

≤ L
∥∥U −U

∥∥,

(6)

where L = max
{(

r + 2r
K M + 2uqM

)
, (2uqM + 2uqaM)

}
. Based on this, there exists L such that

∥∥H(U)− H
(
U
)∥∥ ≤

L
∥∥U −U

∥∥. Consequently, H(U) satisfies the Lipschitz condition on U. Hence, H(U) is a Lipschitz-continuous
function. Furthermore, by Lemma 1, the model in (3) has unique solutions x(t) and E(t) on ΩM . �

2.2. Permanence of Solutions

Definition 1 ([23]). A system of equations, namely dx
dt = f (x, y) and dy

dt = g(x, y), is said to be permanent if there are
constants m and M (0 < m < M) such that the positive solution of the system (x(t) and y(t)) with respect to the initial
values (x(0), y(0) > 0) satisfies the condition of

min{ lim
t→+∞

infx(t), lim
t→+∞

infy(t)} ≥ m,

max{ lim
t→+∞

supx(t), lim
t→+∞

supy(t)} ≤ M,
(7)

Lemma 2 ([24] in [23]). For τ1, τ2 > 0, x(0) > 0, and

1. dx
dt ≤ x(τ1 − τ2x), then lim

t→+∞
supx(t) ≤ τ1

τ2
;

2. dx
dt ≥ x(τ1 − τ2x), then lim

t→+∞
infx(t) ≥ τ1

τ2
.

Theorem 2. If r > uqK
a , then the solution of the model in (3), i.e., x(t) and E(t) for each t ≥ 0, is a permanent solution

by satisfying the initial values x(0) > 0 and E(0) > 0.

Proof of Theorem 2. We first claim that the solution of the model in (3) is a bounded solution. The proof of
this claim is presented in Appendix A. Based on the boundedness of the solutions of the model in (3) proven in
Appendix A, we get

lim
t→+∞

supx(t) ≤ K and lim
t→+∞

supE(t) ≤ K
a

.

Therefore, for a sufficiently small ε > 0, there exists T > 0 such that

x(t) ≤ K + ε and E(t) ≤ K
a
+ ε for t > T.

As a result,
dx
dt

= x
((

r− rx
K

)
− uqE

)
≥ x

(
r− uq

(
K
a
+ ε

)
− r

K
x
)

.

Based on Lemma 2 with τ1 = r− uq
( K

a + ε
)

and τ2 = r
K , when τ1 > 0, we obtain

lim
t→+∞

infx(t) ≥
r− uq

( K
a + ε

)
r
K

=
K
(
r− uq

( K
a + ε

))
r

.
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Therefore, for ε→ 0 , we obtain

lim
t→+∞

infx(t) ≥
K
(
r− uq K

a
)

r
= ω1.

Thus, ω1 > 0 if r > uqK
a .

Using the same steps with τ1 = uqK and τ2 = uqa, we obtain

lim
t→+∞

infE(t) ≥ uqK
uqa

=
K
a
= ω2 > 0.

Thus, x(t) and E(t) are permanent solutions for each t ≥ 0 to the initial conditions x(0) > 0 and E(0) > 0 if
values m = min{ω1, ω2} and M = max

{
K, K

a
}

. �

3. Equilibrium Points and Their Existence
The equilibrium points can be determined by making the terms dx

dt and dE
dt of Equation (3) equal zero, i.e.,

dx
dt = dE

dt = 0. By finding the solution of dx
dt = dE

dt = 0, there are three equilibrium points, namely

1. The trivial (origin) equilibrium point P0 = [x0, E0]
T = [0, 0]T which always exists;

2. The effort harvesting extinction equilibrium point P1 = [x1, E1]
T = [K, 0]T which always exists;

3. The co-existence (interior) equilibrium point P2 = [x2, E2]
T =

[
aE2, rK

Kqu+ar

]T
which always exists.

4. Local Stability of Each Equilibrium Point
The local stability of each equilibrium point for system (3) is explored with the help of its Jacobian matrix. If

the real parts of all eigenvalues of the Jacobian matrix for each equilibrium point are nonpositive, then system
(3) is locally stable toward the corresponding equilibrium point. Conversely, if the real part of any eigenvalue is
positive, system (3) is not locally stable at the corresponding equilibrium point. Suppose the eigenvalues of the
Jacobian matrix of an equilibrium point cannot be obtained explicitly. In that case, the help of the Routh–Hurwitz
criterion is needed in determining the local stability of the equilibrium point. The local stability of the equilibrium
points P0, P1, and P2 are presented in Theorem 3, Theorem 4, and Theorem 5, respectively.

Theorem 3. For the model in (3), the equilibrium point P0 is always a saddle.

Proof of Theorem 3. For equilibrium point P0, the Jacobian matrix is

J(P0) = J(x0, E0) =

[
r 0
0 0

]
.

Furthermore, the eigenvalues obtained from the matrix J(P0) are λ1 = r > 0 and λ2 = 0. Since λ1 > 0, the
equilibrium point P0 is always a saddle. �

Theorem 4. For the model in (3), the equilibrium point P1 is always a saddle.

Proof of Theorem 4. For equilibrium point P1, the Jacobian matrix is

J(P1) = J(x1, E1) =

[
−r −Kqu
0 Kqu

]
.

Furthermore, the eigenvalues obtained from the matrix J(P1) are λ1 = −r < 0 and λ2 = Kqu > 0. Based on
these two eigenvalues, the equilibrium point P1 is a saddle. �

Theorem 5. For the model in (3), the equilibrium point P2 is always asymptotically locally stable. Furthermore, the
equilibrium point P2 yields the following

1. Semi-spiral sink or star sink, if (uqK− r)2a > 4(uqK)2;
2. Sink, if (uqK− r)2a = 4(uqK)2;
3. Spiral sink, if (uqK− r)2a < 4(uqK)2.

Proof of Theorem 5. Evaluation of the Jacobian matrix at equilibrium point P2, namely

J(P2) = J(x2, E2) =

[
rK−(uqK+2ar)E2

K −uqaE2
uqE2 −uqaE2

]
.
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Then,

trace(J(P2)) = −
ar(uqK + r)

uqK + ar
< 0 and det(J(P2)) =

aKqr2u
uqK + ar

> 0.

Therefore, the equilibrium point P2 is locally asymptotically stable. Furthermore, the value of

det(J(P2))−
(trace(J(P2)))

2

4
= −ar2

(
(uqK− r)2a− 4(Kqu)2

)
. (8)

Equation (8) is zero if (uqK− r)2a = 4(uqK)2. Therefore, if Equation (8) is zero, the equilibrium point P2

produces a semi-spiral sink or star sink. Then, Equation (8) is less than zero if (uqK− r)2a > 4(uqK)2. Therefore,
if Equation (8) is less than zero, the equilibrium point P2 generates a sink. Finally, Equation (8) is greater than
zero if (uqK− r)2a < 4(uqK)2. Therefore, if Equation (6) is greater than zero, the equilibrium point P2 produces a
spiral sink. �

5. Global Stability of Equilibrium Point P2
Based on the local stability analysis of each equilibrium point of the model in Equation (3), there is only one

stable equilibrium point, namely equilibrium point P2. Therefore, the global stability analysis is only carried out
at equilibrium point P2. The stability can be determined using the Lyapunov method or theorem. This method
starts by determining a positive definite function. The global stability of P2 is presented in Theorem 6.

Theorem 6. The equilibrium point P2 of the model in (3) is globally asymptotically stable ∀(x0, E0) > 0

Proof of Theorem 6. A positive definite function of the model in (3) is presented as follows:

V =
(

x− x∗ − x∗ln
x
x∗
)
+

(
E− E∗ − E∗ln

E
E∗

)
.

The derivative of the function V with respect to time t is given by

dV
dt

=

(
1− x∗

x

)
dx
dt

+

(
1− E∗

E

)
dE
dt

.

Then, based on the model in (3),

dV
dt

= (x− x∗)
[
r
(

1− x
K

)
− uqE

]
+ uq(x− aE)(E− E∗).

At equilibrium point P2 (interior equilibrium),

r
(

1− x∗

K

)
− uqE∗ = 0→ r = uqE∗ +

rx∗

K
, x∗ = aE∗.

Thus,
dV
dt = (x− x∗)

[
r− rx

K − uqE
]
+ uq(E− E∗)(x− aE)

= (x− x∗)
[
uqE∗ + rx∗

K −
rx
K − uqE

]
+ uq(E− E∗)(x− aE)

= (x− x∗)
[
− r(x−x∗)

K − uq(E− E∗)
]
+ uq(E− E∗)(x− aE)

= −(x− x∗)
[

r(x−x∗)
K + uq(E− E∗)

]
+ uq(E− E∗)(x− aE)

= − r
K (x− x∗)2 − uq(E− E∗)x + uq(E− E∗)x + uq(E− E∗)aE∗

−uq(E− E∗)aE
= − r

K (x− x∗)2 − auq(E− E∗)2 < 0.

Therefore, dV
dt has a negative definite value. Consequently, the equilibrium point P2 is globally asymptotically

stable [25]. �

6. Limit Cycles
The following theorem indicates that system (3) does not possess any closed trajectories (or limit cycles) in

the interior of the positive quadrant of the x − E plane.

Theorem 7. The model in (3) has no limit cycles around the equilibrium point P2.

Proof of Theorem 7. Let

D(x, E) =
1

xE
, H1(x, E) = rx

(
1− x

K

)
− uqEx, H2(x, E) = uqE(x− aE).

Based on the positivity of the model solution in (3), D(x, E) > 0 in the interior of the positive quadrant.
Then,

∆(x, E) =
∂(h f )

∂x
+

∂(hg)
∂E

=
∂

dx

[ r
E

(
1− x

K

)
− uq

]
+

∂

∂E

[
uq
(

1− aE
x

)]
= − r

EK
− a

x
< 0.
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Since ∆(x, E) does not change the sign in the positive quadrant, based on the Bendixson–Dulac criterion,
consequently, the model in (3) has no limit cycles [26,27]. �

7. Bionomic Equilibrium
Bionomic equilibrium is a condition where the total revenue from harvested biomass sales equals the total

cost incurred in harvesting fish. Let c and p represent the harvesting cost per unit effort and the selling price per
unit biomass of landed fish, respectively. The net economic revenue at time t is expressed as follows:

π(x, E, t) = (puqx− c)E. (9)

Based on (9) and (3), bioeconomic equilibrium can be determined by finding the solution

dx
dt

=
dE
dt

= π = 0.

This means,
r
(

1− x
K

)
− uqE = 0, uqE(x− aE) = 0, (puqx− c)E = 0. (10)

Based on Equation (10), when c > puqx, the profit obtained will be negative (loss). Therefore, profit
(existence of bionomic equilibrium) is obtained when puqx > c [22]. Suppose P∞ (x∞, E∞, u∞) represents the
bionomic equilibrium point. Based on Equation (10), the bioeconomic equilibrium point is given by x∞ = aE∞,

E∞ = K
ra

(
r− c

ap

)
, and u∞ = c

pqx∞
. It is clear that E∞ > 0 if rap > c.

Managers in the fisheries sector must be able to balance the commercial interests of fishermen and the
sustainability of fisheries’ natural resources. Fishermen will suffer huge losses when the marine reserve area is too
large. On the other hand, the sustainability of natural resources may not be achieved when the marine reserve is
too small. Therefore, managers in the fisheries sector need to be careful in dividing the percentage of the area
between marine reserve and unreserved areas. This can be done by considering the percentage of marine reserve
area not approaching the bionomic equilibrium point. For example, when u > u∞ = c

pqx∞
, we obtain

(puqx− c)E > (pu∞qx∞ − c)E∞

=
(

p
(

c
pqx∞

)
qx∞ − c

)
E∞

= (c− c)E∞ = 0.

This result represents a positive economic rent. This condition attracts fishermen to enter this sector. On the
other hand, if u < u∞ = c

pqx∞
, we obtain

(puqx− c)E < (pu∞qx∞ − c)E∞

=
(

p
(

c
pqx∞

)
qx∞ − c

)
E∞

= (c− c)E∞ = 0.

This result represents a negative economic rent so that fishermen leave the sector.

8. Numerical Simulations
This section presents numerical simulations of the results obtained in the previous sections. The soft-

ware used for this numerical simulation was Maple 2019. All the codes are attached to the link listed in the
Supplementary Materials section. Based on the results in Section 3, there are three equilibrium points, including
(1) equilibrium point P0 (trivial), which is the point where the element value of the equilibrium point is zero,
meaning that the population density of prey species (x) is extinct and there is no capture effort (E); (2) equilibrium
point P1, which is the point where the population density of the prey (x) is equal to K while there is no capture
effort (E); (3) equilibrium point P2, which is the point where the prey density (x) and capture effort (E ) exist. One
of the three equilibrium points is always stable, namely equilibrium point P2. Meanwhile, equilibrium points P0
and P1 are always saddle. Furthermore, equilibrium point P2 is globally asymptotically stable, and system (3) has
no limit cycle around equilibrium point P2.

Numerical simulations were explored to show the local stability results of the three equilibrium points in
Theorems 3, 4, and 5. The values of each parameter were r = 1.42, K = 1000, u = 0.6, and q = 0.0018. Meanwhile,
the value of a was varied based on the three conditions that satisfy Theorem 5. The value of a is obtained from the

result of 4(uqK)2

(uqK−r)2 , which is 40.35986159. To fulfill the first, second, and third conditions of Theorem 6, parameter a

was greater than, equal to, and smaller than 40.35986159 with values of 250, 40.35986159, and 0.025.
The numerical simulation result for a = 250 is presented in Figure 1. This choice of parameter a is intended

to show that equilibrium point P2 produces a semi-spiral sink or star sink. Figure 1 shows that all initial values of
x and E in the positive quadrant will lead to equilibrium point P2 = [x2, E2]

T = [996.9669737, 3.987867895]T . In
Figure 1, the blue line represents more clearly that for some initial points [x(0), E(0)]T , including{

[200, 10]T , [200, 100]T , [300, 100]T , [1800, 100]T , [2000, 5]T , [2000, 100]T
}

.
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resents more clearly that for some initial points [(0)ܧ,(0)ݔ]், including 
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Figure 1. Phase-plane portrait for a = 250. The blue line is the trajectory for the set of initial values{
[200, 10]T , [200, 100]T , [300, 100]T , [1800, 100]T , [2000, 5]T , [2000, 100]T

}
.

For t→ ∞ , the points tend to equilibrium point P2.
The numerical simulation result for a = 40.35986159 is presented in Figure 2. The choice of parameter a

is intended to show that equilibrium point P2 generates a sink. Figure 2 shows that all initial values of x and E
in the positive quadrant will lead to equilibrium point P2 = [x2, E2]

T = [981.504, 24.31881481]T . In Figure 2, the
blue line represents more clearly that for some initial points [x(0), E(0)]T , including{

[200, 10]T , [200, 35]T , [500, 40]T , [1000, 40]T , [1500, 5]T , [1500, 10]T , [1500, 20]T
}

.
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For t→ ∞ , the points tend to equilibrium point P2.
The numerical simulation result for a = 0.025 is presented in Figure 3. The choice of parameter a is intended

to show that equilibrium point P2 produces a spiral sink. Figure 3 shows that all initial values of x and E in the
positive quadrant will lead to equilibrium point P2 = [x2, E2]

T = [31.82429404, 1272.971762]T . In Figure 3, the
blue line represents more clearly that for some initial points [x(0), E(0)]T , including{

[80, 1200]T , [80, 1300]T , [90, 1200]T , [90, 1500]T , [120, 1500]T , [150, 1800]T
}

,
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For t→ ∞ , the points tend to equilibrium point P2.
Furthermore, Figures 1–3 show that all initial values of x and E around equilibrium points P0 = [0, 0]T ,

P1 = [1000, 0]T , and P2 converge to the corresponding equilibrium point P2. It shows that the system around the
equilibrium points P0 and P1 is always a saddle. Consequently, the equilibrium points are globally stable since
they are valid for initial values in the positive quadrant. In addition, Figures 1–3 also show that the equilibrium
points are asymptotically globally stable, as shown by the absence of limit cycles.

9. Discussion
A predator–prey model considering implicit marine protected areas and critical biomass level was built and

analyzed in this study. The model is presented in (3), which is a modification of the model from Ibrahim [20] in (2).
Ibrahim [20], in his research, examined the boundedness of the solution of the model in (2). We also examined
the boundedness of the solution of the model in (3). Furthermore, we examined the existence, uniqueness, and
permanence of the solution of the model in (3), which was not studied by Ibrahim [20].

The next discussion in this paper is to determine the local and global stability of the equilibrium points of
model (3). The determination of stability begins with the determination of the equilibrium point of model (3).
Based on the results obtained in Section 3, there are three equilibrium points, namely P0, P1, and P2. We found
that the equilibrium points P0 and P1 of the models in (2) and (3) are the same: P0 = [0, 0]T and P1 = [K, 0]T ,
respectively. However, the equilibrium point P2 of the models in (2) and (3) can have the same and different values.
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The equilibrium point P2 of model (2) is [x2, E2]
T =

[
a, r

uq
(
1− a

K
)]T

. Then, the equilibrium point P2 of model (3)

is [x2, E2]
T =

[
aE2, rK

Kqu+ar

]T
. Furthermore, the equilibrium point P2 of the model in (3) always exists. Meanwhile,

the equilibrium point P2 of the model in (2) will exist if K > a, which is stated in Ibrahim’s research [20]. The
following remark presents the conditions under which the equilibrium points P2 of models (2) and (3) are equal at
P2 = [a, 1]T .

Remark 1. The equilibrium point P2 = [a, 1]T of models (2) and (3) is the same if and only if r(K− a) = uqK.

Referring to Ibrahim’s research [20], the parameter values u = 0.6, q = 0.0018, a = 300, and K = 1000.
Based on Remark 1, we obtain r = 0.001542857143. Therefore, the equilibrium point P2 = [300, 1]T is 300 tons
of fish and one fishing trip. With these parameters, the numerical simulation results for models (2) and (3) are
presented in Figures 4 and 5, respectively. The steady state of model (3) is faster than the steady state of model (2)
at P2 with initial values of x = 400 and E = 2. In addition, we tried to change the value of a to a smaller value,
a = 0.3. As a result, we obtained a value of 0.001080324097. The simulation results for the new values of a and r
are presented in Figures 6 and 7. Figures 6 and 7 show that the results for parameter a = 0.3 are opposite to the
results for parameter a = 300. Figures 6 and 7 show that the steady state of model (2) is faster than the steady
state of model (3) at P2 = [10, 1]T with initial values x = 11 and E = 2.
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(య)൫(య)ି(మ)൯
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  with ܣ =

(ଷ)ܭ൫(ଶ)ܭ(ଶ)ݍ(ଷ)ݎ − ܽ(ଶ)൯ and ܤ = (ଶ)ܭ൫(ଷ)ܭ(ଷ)ݍ(ଶ)ݎ − ܽ(ଶ)൯. 
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ଶݔ
(ଷ)

ଶܧ
(ଷ)൩ 


ܽ(ଶ)

(ଶ)ݎ

(ଶ)ݍ(ଶ)ݑ ቆ1 −
ܽ(ଶ)

ቇ(ଶ)ܭ
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⎣
⎢
⎢
⎢
⎡ܽ(ଷ) (ଷ)ܭ(ଷ)ݎ

(ଷ)ݑ(ଷ)ݍ(ଷ)ܭ + ܽ(ଷ)ݎ(ଷ)

(ଷ)ܭ(ଷ)ݎ
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⎢
⎡ܽ(ଷ) (ଷ)ܭ(ଷ)ݎ

(ଷ)ݑ(ଷ)ݍ(ଷ)ܭ + ܽ(ଷ)ݎ(ଷ)

(ଷ)ܭ(ଷ)ݎ

(ଷ)ݑ(ଷ)ݍ(ଷ)ܭ + ܽ(ଷ)ݎ(ଷ) ⎦
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Hence, 

Figure 7. Graphs of x and E against time t from model (3) for a = 0.3: (a) x; (b) E.

After determining the equilibrium points of model (3), the next step was to determine the local and global
stability of each of the equilibrium points. Based on our analysis, the local stability of P0 and P1 is always saddle,
and P2 is always asymptotically stable. This result is similar to the equilibrium points P0 and P1 of model (2),
which are also always saddle, and P2 is always asymptotically stable. In addition, equilibrium point P2 is always
globally stable, as proved using Lyapunov’s theorem. Furthermore, equilibrium point P2 is globally asymptotically
stable, and system (3) has no limit cycle around equilibrium point P2. The results obtained are also similar to
those of the equilibrium point P2 of model (2) in that the equilibrium point is asymptotically globally stable.

Figures 4–7 show that the same value of parameters for models (2) and (3) and r(K− a) = uqK will result in
the system stabilizing toward the same equilibrium point, which is at P2 = [a, 1]T . The following theorem shows
that different parameter values of models (2) and (3) can also result in a stable system at any equilibrium point P2.

Theorem 8. For any parameters r > 0, K > 0, 0 < u ≤ 1, 0 < q < 1, and a > 0 of models (2) and (3) with

equilibrium points P2 of models (2) and (3), respectively, i.e., P(2)
2 =

[
x(2)2 , E(2)

2

]T
and P(3)

2 =
[

x(3)2 , E(3)
2

]T
. Let r(i),

K(i), u(i), q(i), and a(i) be the parameters r, K, u, q, and a of model (i) for i = 2, 3. The two equilibrium points have the

same values, namelyP2 =
[

x(2)2 , E(2)
2

]T
=
[

x(3)2 , E(3)
2

]T
if and only if a(3) = a(2) K(3)q(3)u(3)

r(3)(K(3)−a(2))
and u(3) = u(2) A

B with

A = r(3)q(2)K(2)
(

K(3) − a(2)
)

and B = r(2)q(3)K(3)
(

K(2) − a(2)
)

.
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Proof of Theorem 8. (→) Suppose the two equilibrium points, P(2)
2 =

[
x(2)2 , E(2)

2

]T
and P(3)

2 =
[

x(3)2 , E(3)
2

]T
are

equal. This means, [
x(2)2

E(2)
2

]
=

[
x(3)2

E(3)
2

]
[

a(2)
r(2)

u(2)q(2)

(
1− a(2)

K(2)

)] =

a(3) r(3)K(3)

K(3)q(3)u(3)+a(3)r(3)

r(3)K(3)

K(3)q(3)u(3)+a(3)r(3)


[

a(2)
r(2)

u(2)q(2)

(
K(2)−a(2)

K(2)

)] =

a(3) r(3)K(3)

K(3)q(3)u(3)+a(3)r(3)

r(3)K(3)

K(3)q(3)u(3)+a(3)r(3)

. (11)

Based on the first equation in (11), we have

a(2) = a(3)
r(3)K(3)

K(3)q(3)u(3) + a(3)r(3)
a(2)K(3)q(3)u(3) + a(2)a(3)r(3) = a(3)r(3)K(3).

Hence,

a(3) = a(2)
K(3)q(3)u(3)

r(3)
(
K(3) − a(2)

) . (12)

By elaborating the second equation of (11), we obtain

r(2)

u(2)q(2)

(
K(2) − a(2)

K(2)

)
=

r(3)K(3)

K(3)q(3)u(3) + a(3)r(3)
K(3)q(3)u(3) + a(3)r(3) =

r(3)K(3)u(2)q(2)K(2)

r(2)
(
K(2) − a(2)

) . (13)

Based on (12), then (13) becomes

K(3)q(3)u(3) + a(2)K(3)q(3)u(3)

(K(3)−a(2))
= r(3)K(3)u(2)q(2)K(2)

r(2)(K(2)−a(2))
(K(3)−a(2))K(3)q(3)u(3)+a(2)K(3)q(3)u(3)

(K(3)−a(2))
= r(3)K(3)u(2)q(2)K(2)

r(2)(K(2)−a(2))(
K(3) − a(2)

)
K(3)q(3)u(3) + a(2)K(3)q(3)u(3) =

r(3)(K(3)−a(2))K(3)u(2)q(2)K(2)

r(2)(K(2)−a(2))(
K(3)

)2
q(3)u(3) =

r(3)(K(3)−a(2))K(3)u(2)q(2)K(2)

r(2)(K(2)−a(2))

u(3) = u(2)
r(3)q(2)K(2)

(
K(3) − a(2)

)
r(2)q(3)K(3)

(
K(2) − a(2)

) . (14)

So, if P(2)
2 = P(3)

2 , then a(3) = a(2) K(3)q(3)u(3)

r(3)(K(3)−a(2))
and u(3) = u(2) r(3)q(2)K(2)(K(3)−a(2))

r(2)q(3)K(3)(K(2)−a(2))
.

(←) Given

a(3) = a(2) K(3)q(3)u(3)

r(3)(K(3)−a(2))

u(3) = u(2) r(3)q(2)K(2)(K(3)−a(2))
r(2)q(3)K(3)(K(2)−a(2))

.
(15)

Then, P(2)
2 =

[
x(2)2 , E(2)

2

]T
and P(3)

2 =
[

x(3)2 , E(3)
2

]T
. We have P(3)

2 =
[

x(3)2 , E(3)
2

]T
with

x(3)2 = a(3)
r(3)K(3)

K(3)q(3)u(3) + a(3)r(3)
(16)

Based on (15) and (16),
x(3)2 = a(2) = x(2)2 . (17)

Then,

E(3)
2 =

r(3)K(3)

K(3)q(3)u(3) + a(3)r(3)
. (18)

Based on (15) and (18),

E(3)
2 =

r(2)

u(2)q(2)

(
1− a(2)

K(2)

)
= E(2)

2 . (19)

Hence, if (15) is satisfied, then the equilibrium points P(2)
2 and P(3)

2 will have the same value. �

Remark 2. For the parameter values r > 0, K > 0, and 0 < q < 1 and let u(i) and a(i) be the parameters u and a of the

model (i) for i = 2, 3, the equilibrium point P2 of model (2) and that of model (3) are equal if and only if a(3) = a(2) Kqu(3)

r(K−a(2))

and u(3) = u(2).
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For model (2), Ibrahim [20], in his research, assumed that u(2) = 0.6, i.e., 60% of the fish population in the
sea is allowed to be harvested. The parameters r(2) = 1.42, K(2) = 1000, q(2) = 0.0018, and a(2) = 300. As a result,

the equilibrium point P(2)
2 = [300, 000; 920, 370]T . That is, there are 300,000 tons of fish and 920,370 fishing trips

in a steady state. In this case, we assume that r, K, and q values are the same as in Ibrahim’s study [20]. Based

on Remark 2, u(3) = u(2) = 0.6 and a(3) = a(2) Kqu(3)

r(K−a(2))
= 0.3259557343. From the perspective of the model (3),

equilibrium condition P(2)
2 can be achieved by applying the same marine reserve where 60% of the fish population

is allowed to be harvested. Meanwhile, the threshold value of a, the ratio of the total fish population in the sea to
the number of fishing trips, is 0.3259557343. Figure 8 shows that the trajectories of model (2) and model (3) with
these parameters spiral inward toward the same equilibrium point with 300,000 tons of fish and 920,370 fishing
trips. This number of fishing trips is twice the number of fishing trips (effort) at maximum sustainable yield
(MSY), which is 394,444 [20]. In Figure 8, the cyan arrow and red solid line represent the model in (2). Meanwhile,
the gray arrow and blue solid line represent the model in (3).
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Meanwhile, the gray arrow and blue solid line represent the trajectory of the model in (3). The set of
initial values for the trajectories of models (2) and (3) represented by the red and blue solid lines are{
[200, 2000]T , [250, 2000]T , [1200, 100]T , [1200, 300]T , [1200, 400]T

}
.

10. Conclusions
This study constructs a predator–prey model considering marine protected areas and critical biomass levels.

In this case, the critical biomass level is assumed to be proportional to the fishing effort E. The model is presented
in (3). The stability properties of the model are analyzed by determining the equilibrium points and the local
stability by Jacobian linearization and global stability by the Lyapunov theorem of each equilibrium point.

Based on the stability analysis, there are three equilibrium points, P0 = [x0, E0]
T = [0, 0]T , P1 = [x1, E1]

T =

[K, 0]T , and P2 = [x2, E2]
T =

[
aE2, rK

Kqu+ar

]T
. Then, one of the equilibrium points, P2, is always stable. Meanwhile,

equilibrium points P0 and P1 are always saddle. Furthermore, the global stability analysis of equilibrium point P2 is
analyzed by the Lyapunov theorem. As a result, equilibrium point P2 is globally asymptotically stable. The presence
or absence of a limit cycle is shown using the Bendixson–Dulac criterion. We found that system (3) has no limit cycles
around equilibrium point P2.

In Section 9, we discuss the model studied by Ibrahim [20], namely the model in (2), alongside our model,
namely the model in (3). We conclude that the equilibrium points P0 and P1 of models (2) and (3) have the same
values and the same type of stability. Furthermore, the equilibrium point P2 of model (2) and that of model (3) also
have the same type of stability. Then, we derive one theorem and two remarks regarding determining parameter
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values of models (2) and (3) that result in the same value of equilibrium point P2. Finally, when 60% (u = 0.6) of
the marine fish population is allowed to be harvested and a = 0.3259557343 ≈ 0.33, the number of fishing trips
(effort) is twice that of fishing trips at maximum sustainable yield (MSY).

So far, we have only focused on showing that models (2) and (3) have overlapping conditions, especially
the similarity of the value of equilibrium point P2 that occurs under certain conditions. Furthermore, studies
on equilibrium points P0 and P1 are also interesting to explore. For example, if possible, it would be better to
show the regions of attraction and repulsion for P0 and P1 in the region x ≥ 0 and E ≥ 0. In addition, it would be
interesting to investigate further the possibility that model (3) provides some types of dynamics that cannot be
obtained in model (2). A comparison of the application of models (2) and (3) to natural observational data would
also be interesting. This comparison would show which model is better for real-world problems.

The results above are deduced from the specific assumptions used in the construction of the model. It
would be interesting to explore the robustness of the results for other ecological issues that are worthy to be taken
into account in developing a more realistic model, such as different levels of intraspecific competition [28], the
Allee effect [29,30], fear effect [31,32], and a coupled growth function caused by a metapopulation structure [33],
which may alter the result in this study. These are being investigated by the authors.

Supplementary Materials: Numerical simulations link for Figures 1–8: https://bit.ly/Maple-Mathe
matics-2572043.
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Appendix A

Theorem A1. The solutions of the model in (3), i.e., x(t) and E(t) for each t ≥ 0, are positive solutions under the initial
value conditions x(0) > 0 and E(0) > 0.

Proof of Theorem A1. The first equation of (3) is known, i.e.,

dx
dt

= rx
(

1− x
K

)
− uqEx

Therefore, by integrating the right and left segments, we obtain

x(t) = x(0)exp
{∫ t

0

(
r
(

1− x(s)
K

)
− uqE(s)

)
ds
}

> 0.

Similarly, in the second equation of (3), we obtain

E(t) = E(0)exp
{∫ t

0
(uq(x− aE))ds

}
> 0.

Thus, x(t) and E(t) are positive solutions for every t ≥ 0 to the initial conditions x(0) > 0 and E(0) > 0,
respectively. �

Theorem A2. The solutions of the model in (3), i.e., x(t) and E(t) for every t ≥ 0, are bounded solutions by satisfying the
initial values x(0) > 0 and E(0) > 0.

Proof of Theorem A2. Based on the positivity of the variables x and E from the model in (3), we have

dx
dt

= rx
(

1− x
K

)
− uqEx ≤ rx

(
1− x

K

)
= x

(
r− r

K
x
)

https://bit.ly/Maple-Mathematics-2572043
https://bit.ly/Maple-Mathematics-2572043
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Based on Lemma 2, we obtain
lim

t→+∞
supx(t) ≤ r

r
K

= K.

Hence, for t→ ∞ , 0 ≤ x ≤ K.
Meanwhile, for the second equation of (3), we have

dE
dt

= uqE(x− aE) = uqEx− uqaE2 ≤ uqEK− uqE2 = E(uqK− auqE).

Based on Lemma 2 and the boundedness of the solution of x, we obtain

lim
t→+∞

supE(t) ≤ uqK
auq

=
K
a

.

Hence, for t→ ∞ , 0 ≤ E ≤ K
a . �
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