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Abstract: In facial landmark localization, facial region initialization usually plays an important
role in guiding the model to learn critical face features. Most facial landmark detectors assume a
well-cropped face as input and may underperform in real applications if the input is unexpected. To
alleviate this problem, we present a region-aware deep feature-fused network (RDFN). The RDFN
consists of a region detection subnetwork and a region-wise landmark localization subnetwork to
explicitly solve the input initialization problem and derive the landmark score maps, respectively.
To exploit the association between tasks, we develop a cross-task feature fusion scheme to extract
multi-semantic region features while trading off their importance in different dimensions via global
channel attention and global spatial attention. Furthermore, we design a within-task feature fusion
scheme to capture the multi-scale context and improve the gradient flow for the landmark localization
subnetwork. At the inference stage, a location reweighting strategy is employed to transform the
score maps into 2D landmark coordinates. Extensive experimental results demonstrate that our
method has competitive performance compared to recent state-of-the-art methods, achieving NMEs
of 3.28%, 1.48%, and 3.43% on the 300W, AFLW, and COFW datasets, respectively.

Keywords: facial landmark localization; face alignment; region-based CNN; deep feature fusion

MSC: 68T07

1. Introduction

Facial landmark localization, also known as face alignment, aims to detect a set of
semantic points on a face image, including eye corners, mouth corners, nose tip, etc.
It typically serves as a critical step in many computer vision applications, such as face
recognition, face attribute analysis, and human–computer interaction. Over the past
decades, many studies have been reported in the literature to improve the performance
of landmark localization. However, it remains a challenging problem to develop a robust
facial landmark detector that accurately detects different landmarks in unconstrained face
images with illumination variations, large poses, and strong occlusion.

In previous works, the methods based on conventional cascaded shape regression
(CSR) [1–3] made significant progress in facial landmark localization by directly learning
a mapping function to iteratively correct the landmark position estimation. Although
these methods have been successful in solving near-frontal face alignment, their accuracy
is dramatically degraded on some challenging datasets, such as 300W [4], AFLW [5],
and COFW [2]. One of the main reasons is that the extracted image features are either
hand-crafted features, such as SIFT [1] or simply learned features [6], which are weakly
discriminative for unconstrained face images.

Recently, with the advancement of deep learning techniques in computer vision, deep
neural network (DNN)-based methods [7–9] have demonstrated superior performance
on the challenging benchmarks. These methods typically assume that a well-cropped
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facial region is used for input initialization. However, they may underperform in real-
world applications if an off-the-shelf face detector cannot provide a suitable bounding
box to capture the expected facial region. Some recent works [10–12] have focused on
solving the initialization problem by cascading multiple DNNs to explicitly reinitialize the
input image. In our work, we propose a new deep network architecture with automatic
region initialization. As shown in Figure 1, given a coarse face image as input, the critical
facial region is first detected by a region detection subnetwork. Then, the corresponding
region features are extracted and fed into a landmark localization subnetwork to obtain the
landmark score maps. Finally, these score maps are transformed into a set of 2D landmark
coordinates using a location reweighting strategy. In contrast to the previous works, a key
difference is that we concatenate all the subnetworks into an end-to-end architecture by
designing a cross-task feature fusion scheme and a within-task feature fusion scheme. The
contributions of our work are described as follows:

• We present an end-to-end deep convolutional network called region-aware deep
feature-fused network (RDFN). The proposed network can simultaneously solve the
region initialization problem and the facial landmark localization task.

• In the RDFN, we design two efficient feature fusion schemes to derive the cross-task
and within-task feature representations, which further improve the accuracy of facial
landmark localization on various unconstrained face images.

• At the inference stage, we introduce a location reweighting strategy to effectively
transform the landmark score maps into 2D landmark coordinates.

• We perform extensive experiments to demonstrate the effectiveness of the proposed
components and the superior performance of our approach on several challenging
datasets, including 300W, AFLW, and COFW.
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Figure 1. Overview of the proposed region-aware deep feature-fused network for facial landmark localization.
The landmark score map is a heatmap that ranges from blue to red and represents the spatial probability
distribution of a landmark from 0 to 1.
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2. Related Work

In the early literature of the last decade, the conventional CSR-based methods repre-
sent a significant milestone in facial landmark localization. They formulate the landmark
localization task as a regression problem, which can be solved by creating a mapping func-
tion from extracted image features to estimated landmark positions. The key to the success
of CSR-based methods is the use of cascaded weak regressors to iteratively refine the land-
mark position estimation. Several classical approaches have been proposed using different
regression methods and extracted features. The supervised descent method (SDM) [1]
uses the scale-invariant feature transform (SIFT) features and constructs a cascaded linear
regressor for facial landmark prediction. Robust cascaded pose regression (RCPR) [2]
and explicit shape regression (ESR) [13] apply the shape-indexed features to a multi-stage
boosted regression method to estimate the landmark coordinates. Local binary features
(LBFs) [6] accelerate the landmark estimation process using the local binary features and a
classical regression random forest to learn the mapping function. Cascaded collaborative
regression (CCR) [14] combines the dynamic multi-scale histograms of oriented gradient
(HOG) features with a cascaded linear regression method for facial landmark detection.
Coarse-to-fine shape searching (CFSS) [15] improves the CSR regression scheme using
the SIFT features and the binary robust independent elementary (BRIEF) features in a
coarse-to-fine shape searching method.

In recent years, deep learning methods for face landmark localization have received
more attention than conventional CSR-based methods because DNN can learn and extract
more discriminative features from face images. The deep learning methods can be simply
divided into the DNN-based method without or with reinitialization. The method without
reinitialization usually takes a well-cropped face image as input to the DNN and does not
introduce the refinement operations on the raw input. The mnemonic descent method
(MDM) [16] and recurrent attentive refinement (RAR) [17] propose an end-to-end recurrent
convolutional network for coarse-to-fine facial landmark refinement. Task-constrained deep
convolutional network (TCDCN) [18] is a multi-task CNN architecture for jointly learning
the tasks of face alignment and facial attribute analysis. With the development of large
DNN models, some works use more complex network architectures to enhance the feature
extraction capability, such as the high-resolution representation network (HRNet) [19] and
stacked hourglass network [20] with adaptive wing loss (AWing) [7]. To achieve efficient
landmark localization, some recent works [8,21] have started to explore how to reduce the
computational cost using lightweight DNN models.

Although these methods have achieved impressive performance on various challeng-
ing benchmarks, they may underperform in real-world applications without an appropriate
facial region as input. To alleviate this problem, the DNN-based method with reinitializa-
tion has been proposed to refine the raw input in the inference process. In the early works,
most of the methods [10,22,23] cascade multiple convolutional networks to perform coarse-
to-fine landmark estimation by iteratively reinitializing the input image of the global or
local facial region at each stage. To reduce the number of cascaded networks, PicassoNet [9]
proposes a single network with group convolution, which uses each convolution group to
predict the landmarks of each local facial region instead of using each individual network.
Recently, some works [11,12] tend to construct an end-to-end DNN architecture using the
refined facial region or facial parts to reinitialize the input features.

From the above literature, we can see that deep learning methods have significantly
advanced the development of facial landmark localization in recent years. An increasing
number of researchers aim to develop a practical facial landmark detector by explicitly
reinitializing the input to reduce the dependence on the well-cropped face image. Inspired
by these works, we propose a region-aware convolutional network to jointly solve the input
initialization problem and the facial landmark localization task. Compared to existing
DNN-based methods with reinitialization, our method is based on an end-to-end region-
aware network architecture with a lightweight component design, which can effectively
trade off model complexity and inference performance.
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3. Methodology
3.1. Motivation and Overview

Inspired by the region-based multi-task CNN (RM-CNN) architecture for jointly
solving detection and other vision tasks, such as object segmentation in Mask R-CNN [24],
we find that the detection process in RM-CNN can locate the regions of interest (RoIs)
used to reinitialize the input region-wise features for subsequent tasks. In contrast to the
cascaded DNN methods with the multi-stage reinitialization of an input image in different
networks, RM-CNN can solve the region initialization problem directly through a built-in
detection subnetwork working with a task-specific subnetwork in an end-to-end manner.
Nevertheless, a vanilla RM-CNN would underperform in the facial landmark localization
task for the following reasons:

• The input features are only extracted from the top layer of the network backbone
and are weakly discriminative for the fine-grained tasks due to the lack of low-level
semantic information from the lower layers.

• In the downstream task, the ability to extract features is further limited by the simple
stacked encoding structure of the task-specific subnetwork, which only considers a
single gradient flow between network layers.

In our work, we aim to propose a new RM-CNN model with two feature fusion
schemes to address the above problems and achieve robust facial landmark localization.
As shown in Figure 1, the network backbone of our model is constructed by following the
ResNet-50 [25] architecture and using the top three groups of bottleneck residual blocks
with repetition numbers of 3, 4, and 6. Each residual block contains three C ×Wk × Hk
convolution operations with a skip connection, where C, Wk and Hk denote the number
of channels and the width and height of a kernel, respectively. Batch normalization (BN)
and ReLu activation are the standard operations performed after each convolution opera-
tion in our model. Through bottom–up continuous encoding, we can obtain hierarchical
feature maps with different levels of semantics. On top of the backbone module, we add
a lightweight detection head consisting of a depthwise separable convolution and two
decision convolutions to generate the 4×Nr×Wi/16×Hi/16 and 2×Nr×Wi/16×Hi/16
feature maps, where Nr, Wi and Hi denote the number of reference bounding boxes in each
output pixel and the width and height of an input image, respectively. From the feature
maps, we can derive two classes (facial region/non-facial region) and four parameterized
coordinates of all reference bounding boxes.

To obtain the region-wise input features with rich semantic information, we introduce
a cross-task feature fusion scheme. First, we extract and aggregate the facial features from
the top block in each bottleneck residual group using the predicted region bounding boxes.
Then, we trade off the importance of these features in the channel and spatial denominations
using the global channel and spatial attention blocks, respectively. In the downstream
subnetwork, we replace the original stacked encoding scheme with a within-task feature
fusion scheme to explicitly improve the gradient flow and capture the multi-scale context.
At the landmark localization stage, we use a 64× 3× 3 deconvolution operation with a
stride of 9 and a (Nl + 1)× 1× 1 convolution operation to transform the final feature maps
into (Nl + 1) Wl × Hl landmark score maps, where Nl , Wl and Hl denote the number of
predicted landmarks and the width and height of a landmark score map, respectively.
Finally, we can obtain a set of 2D landmark coordinates by applying a location reweighting
strategy to these score maps.

3.2. Cross-Task Feature Fusion Scheme

Given an RoI from the region detection subnetwork as input, we first perform a
RoIAlign operation with L2 normalization to extract and concatenate a set of region-wise
feature maps Fr ∈ RCa×Wr×Hr , where Ca, Wr, and Hr denote the number of aggregated
channels and the width and height of the feature maps, respectively. The RoIAlign oper-
ation is defined in the work [24] to ensure that the features are extracted from the same
spatial location as the RoI, preserving spatial accuracy and avoiding misalignment. L2
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normalization is applied to normalize the feature values at each spatial location across
different channels, mitigating the scalar differences that may occur among the feature maps
from different layers. Then, through two proposed global attention blocks as shown in
Figure 2, we can obtain a channel weight vector Ac ∈ RCa×1×1 and a spatial weight map
As ∈ R1×Wr×Wr . The region-wise feature maps are reweighted by Ac and As as follows:

F
′
r = Mbroadcast(Ac, Fr)⊗ Fr,

F
′′
r = Mbroadcast(As, F

′
r)⊗ F

′
r ,

(1)

where Mbroadcast is the broadcast function to adapt the weight vector or map to the shape of
the region-wise feature maps by copying the values along the channel or spatial dimension.
⊗ denotes an element-wise multiplication operation. In the following, we detail the process
of two global attention blocks.

DS-Conv + BN+ Relu
128 × Wr × 1

DS-Conv + BN+ Relu
128 × 1 × Hr

DS-Conv + BN+ Relu
128 × 1 × Hr

DS-Conv + BN+ Relu
128 × Wr × 1

Conv + BN + Sigmoid
Ca × 1 × 1

Input

Broadcast

Ca × Wr × Hr

256 × 1 × 1

Ca × 1 × 1

⊗
Ca × Wr × Hr

(a)

DS-Conv + BN+ Relu
128 × Wr × 1, Pw

DS-Conv + BN+ Relu
128 × 1 × Hr, Ph

DS-Conv + BN+ Relu
128 × 1 × Hr, Ph

DS-Conv + BN+ Relu
128 × Wr × 1, Pw

Deconv + BN + Sigmoid
1 × 2 × 2, S=2

Input

Ca × Wr × Hr

256 × Wr /2 × Hr /2  

1 × Wr × Hr

Broadcast

⊗
Ca × Wr × Hr

(b)

Figure 2. Overview of the proposed global channel attention block (a) and global spatial attention
block (b).

3.2.1. Global Channel Attention Block

In CNN, the channel attention focuses on the channel dimension of the input feature
maps. By learning the interdependencies among different channels, the channel attention
can generate a channel weight vector to find which feature map is important in a latent
space. This process allows the network to emphasize important channel features while
suppressing irrelevant ones. The channel weight vector is given as follows:

Ac = Sigmoid(Fc(Fr)), (2)

where Fc denotes a learned composite function that receives the input features and outputs
a channel-wise weight vector. In the previous works [26,27], Fc usually includes a global
max-pooling or average-pooling operation to squeeze the spatial information of the feature
maps, and a multi-layer perceptron (MLP) with a hidden layer to learn the weight vector.
This design cannot explicitly learn the potential relationship among the feature pixels in
different locations for the contribution to each channel weight. An intuitive method is to
use a global convolution operation with a Wr × Hr kernel instead of the pooling operation.
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However, this results in a large number of parameters, i.e., Ca
2 ×Wr × Hr #Params, and

high computational cost, i.e., Ca
2 ×Wr × Hr multiply–accumulate operations (MACC).

In our work, we combine the depthwise and spatially separable convolutions to
efficiently achieve global feature encoding. As shown in Figure 2a, the input feature
maps are separately and continuously encoded along the horizontal and vertical directions
by two groups of depthwise separable convolutions (DS-Convs). Each group contains
a 128×Wr × 1 DS-Conv and a 128× 1× Hr DS-Conv, which work together to perform
feature encoding with a global receptive field. The DS-Conv consists of a depthwise
convolution and a pointwise convolution, where the former encodes the feature map in
each channel independently and the latter encodes the feature maps across all channels
using a 1× 1 kernel. Then, we use a 1× 1 convolution operation with a sigmoid activation
to generate the channel attention map Ac with the original input length. Compared to
global convolution under the same inputs (2688× 14× 14), our method can reduce the
number of parameters and the computational cost by more than 99.8%.

3.2.2. Global Spatial Attention Block

As a complement to the channel attention, the spatial attention aims to emphasize
the spatial dimension of the input feature maps. It can learn the relationships among
different spatial locations and generate a spatial weight map to find where feature pixels are
important across all channels. The computation of a spatial weight map follows Equation (2)
with a composite function and a sigmoid activation. In the previous works [27,28], the
composite function is realized by a series of dilated convolutions or a large convolution
with channel-wise pooling operations. The former may cause the gridding effect due
to discontinuous feature encoding, while the latter has a limited receptive field, as an
oversized convolution kernel easily leads to high model complexity.

In our work, we follow the global channel attention and use the depthwise and
spatially separable convolutions to encode the input feature maps with a global receptive
field. A key difference is that we add the spatial padding (Pw or Ph) along the horizontal or
vertical direction to the feature maps before each convolution operation. The purpose is to
preserve sufficient spatial cues by keeping the feature maps at a 1/2 downsampling rate
during encoding. Then, we use a 1× 2× 2 deconvolution operation with a stride of two
and a sigmoid activation to generate the spatial weight map As with the input spatial size.

3.3. Within-Task Feature Fusion Scheme

In the early RM-CNN model [24], the head architecture is typically designed as a
stacked encoding structure, as shown in Figure 3a. Through 4 stacked 3× 3 convolutions
with 256 channels, the input features are encoded with increasing receptive field size to
capture the spatial context. However, the number of stacked layers is limited using a
single gradient flow between them. Too many stacked layers would cause the vanishing
gradient problem during training. In addition, this stacked encoding scheme easily leads to
excessive parameters and computational cost. Figure 3b shows a dense encoding scheme in
DenseNet [29], which introduces dense skip connections into a predefined composite unit
containing successive 1× 1 and 3× 3 convolutions with 128 and 64 channels, respectively.
The dense encoding scheme can effectively improve the gradient flow of a network by
adding i + 1 layer connections when performing the i-th encoding operation. However, the
#Params and MACC of each encoding operation are increased by 4096 and 4096×Wr × Hr,
respectively. This would result in a rapidly increasing model complexity if the encoding
operation is performed multiple times.

In our work, we combine the advantages of the above two encoding schemes and
design a new within-task encoding scheme based on deep feature fusion among layers.
As shown in Figure 3c, we replace the composite unit of the dense encoding scheme with
a new composite unit consisting of three consecutive 3× 3 DS-Convs with progressively
reduced channels of {192, 128, 64}. The output of each encoding operation is linked to the



Mathematics 2023, 11, 4026 7 of 14

outputs of previous DS-Convs operations using multiple skip connections. Compared to
the previous encoding schemes, this design has the following three major strengths:

• Further improvement of gradient flow: In the proposed scheme, 3i + 1 layer con-
nections are added when the i-th encoding operation is performed. This feature can
further improve the gradient flow of the downstream subnetwork during training.

• Lowerintroduction of model complexity: We replace standard convolutions with
depthwise separable convolutions to reduce the overall model complexity of the
proposed scheme. Compared to the stacked and dense encoding schemes under the
same inputs (2688× 14× 14), our method can reduce the number of parameters and
MACC by about 98.1% and 97.5%, respectively.

• Better capture of multi-scale context: In each encoding operation, the outputs contain
the intermediate features with different receptive fields. Taking advantage of the
lightweight design, we can perform the proposed encoding operation multiple times
to capture more features with different scales of context information.

Convolution + Relu
256 × 3 × 3

Convolution + Relu
256 × 3 × 3

Convolution + Relu
256 × 3 × 3

Convolution + Relu
256 × 3 × 3

(a)

Conv + BN + Relu
256 × 3 × 3

Conv + BN + Relu
128 × 1 × 1

Conv + BN + Relu
32 × 3 × 3C

i

(b)

DS-Conv + BN+ Relu
256 × 3 × 3

DS-Conv + BN+ Relu
192 × 3 × 3

DS-Conv + BN+ Relu
128 × 3 × 3

DS-Conv + BN+ Relu
64 × 3 × 3C

C

C

i

(c)

Figure 3. Overview of the stacked encoding scheme in Mask R-CNN (a), the dense encoding scheme
in DenseNet (b), and the proposed feature-fused scheme (c). Note: “c” denotes a concatenation, and
“i” denotes the output of the i-th encoding operation.

3.4. Location Reweighting Strategy

Instead of directly obtaining the points with the maximum probability values on
the landmark score maps, we adopt a location reweighting strategy to account for the
contribution of each predicted location with a probability value greater than 0.5. The
strategy is formulated as follows:

[
Ln

x
Ln

y

]
=

∑
ij

I(Mn
ij)Mn

ij

[
i
j

]
∑
ij

I(Mn
ij)Mn

ij
, (3)

where Ln
x and Ln

y denote the coordinates of the n-th predicted facial landmark on a
detected region. Mn

ij is a probability value at the pixel location (i, j) of the corresponding
score map. I ∈ {0, 1} denotes an indicator function that is 0 if the input value is less than
0.5 and 1 otherwise.
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3.5. Implementation Detail

Following the work [30], we train the region detection subnetwork using a softmax
loss and a smooth L1 loss for the facial region classification and the bounding box re-
gression, respectively. For the anchor setting, we use nine reference boxes with three
scales {160, 208, 256} and three aspect ratios {0.5, 1, 2}. In our model, we formulate the
landmark localization task as a pixel-wise classification problem on the location response
maps and train the landmark localization subnetwork using a multinomial cross-entropy
loss with the per-pixel softmax operation. Each input image is resized to have a shortest
side length of 256 pixels, and the training images are augmented using three scale ratios
{0.5, 1, 2} and three rotation angles {−30, 0, 30}. Each set of annotated facial landmarks is
transformed into the ground-truth bounding box that tightly covers a facial region. The
size of the region-wise features from the network backbone is uniformly set to 14× 14 by
the RoIAlign operation. The landmark localization subnetwork receives 2688× 14× 14
region-wise features and outputs 120× 120 landmark score maps. During training, we first
fine-tune the region detection subnetwork based on the pre-trained ResNet-50 model and
then train the landmark localization subnetwork from scratch. We use a stochastic gradient
descent (SGD) optimizer with a mini-batch size of 2 and an initial learning rate of 0.001,
which is decreased by a factor of 0.1 every 50k iterations. The momentum and weight
decay are set to 0.9 and 5× 10−4, respectively. Our code will be made publicly available
(https://github.com/MUST-AI-Lab/RDFN, accessed on 11 September 2023).

4. Experiments
4.1. Datasets and Settings

To demonstrate the effectiveness of the proposed model, we perform extensive experi-
ments on three common datasets described as follows:

• 300W [4]: The 300W dataset consists of several popular datasets, such as the HE-
LEN [31], LFPW [32] and AFW [33] datasets, and has been widely used to evaluate
the face-alignment algorithms. It contains 3148 training images and 689 test images
with 68 annotated landmarks. The test images are divided into the challenge subset
(135 images) and the common subset (554 images).

• AFLW [5]: The AFLW dataset is an in-the-wild dataset containing 24,386 faces with
large variations in head pose. Following the work [34], the AFLW dataset is split
into the AFLW-Full and AFLW-Frontal datasets with 19 reduced landmarks. The
AFLW-Full dataset contains 20,000 training images and 4384 test images, of which
1314 near-frontal test images are collected in the AFLW-Frontal dataset.

• COFW [2]: The COFW dataset provides 1852 unconstrained faces with different
occlusions, which are divided into 1345 training images and 507 test images. Each face
image is annotated with 29 landmarks and the corresponding occlusion state.

In our experiments, we follow most previous studies and use the normalized mean
error (NME) with a specific normalized distance to evaluate the accuracy of the methods
on different datasets. We also use the failure rate (FR) metric by setting a maximum NME
of 10%. The number of parameters (#Params) and the number of floating point operations
(FLOPs) are used to measure the model size and computational cost, respectively.

4.2. Comparison with Existing Methods on Common Datasets

In this section, we compare the proposed method (RDFN) with existing methods,
including conventional CSR-based methods, such as SDM [1], RCPR [2] and ESR [13], DNN-
based methods without reinitialization, such as TCDCN [18], HRNet [19] and AWing [7],
and recent DNN-based methods with reinitialization, such as RCEN [11], PicassoNet [9],
and SLPT [12]. For a fair comparison, we follow the train–test setting of common datasets
to report all the methods. In the experiments, RDFNod denotes the proposed method
using the detected bounding boxes from the region detection subnetwork for region-wise
feature extraction, while RDFNgt is the one using the ground-truth bounding boxes in the
landmark localization subnetwork.

https://github.com/MUST-AI-Lab/RDFN
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4.2.1. Results on 300W

Following the 300W dataset setting [4], we normalize the NME metric using the
interocular distance of a face. Table 1 reports the NMEs of the methods on the common
subset, challenging subset and full set of 300W. We find that DNN-based methods have
a clear performance advantage and dominate the state-of-the-art results compared to the
conventional CSR-based method on different subsets. Our method achieves competitive
performance compared to recent DNN-based methods with reinitialization and shows a
promising potential of the RM-CNN architecture for facial landmark localization. We also
find that the performance of RDFNod is slightly weaker than that of RDFNgt on all the
subsets. This suggests that the detected bounding boxes of our method are suitable for the
region-wise feature extraction in the landmark localization subnetwork.

Table 1. Comparison of NME (%) on the common subset, challenging subset and full set of 300W
with 68 landmarks.

Method Common Subset Challenging
Subset Full Set

Conventional
CSR-Based Method

SDM [1] 5.57 15.40 7.50
RCPR [2] 6.18 17.26 8.35
ESR [13] 5.28 17.00 7.58
ERT [35] - - 6.40
LBF [6] 4.95 11.98 6.32
CFSS [15] 4.73 9.98 5.76

DNN-Based Method
w/o Reinitialization

MDM [16] 4.83 10.14 5.88
TCDCN [18] 4.80 8.60 5.54
RAR [17] 4.12 8.35 4.94
SAN [36] 3.34 6.60 3.98
LAB [37] 2.98 5.19 3.49
ODN [38] 3.56 6.67 4.17
HRNet [19] 2.87 5.15 3.32
AWing [7] 2.72 4.52 3.07
3FabRec [8] 3.36 5.74 3.82
LGSA [39] 2.92 5.16 3.36
SD-HRNet [21] 2.93 5.32 3.40

DNN-Based Method
w/ Reinitialization

TSR [23] 4.36 7.42 4.96
DAN [10] 3.19 5.24 3.59
RCEN [11] 3.26 6.84 3.96
PicassoNet [9] 3.03 5.81 3.58
SLPT [12] 2.75 4.90 3.17

Ours RDFNod 2.82 5.19 3.28
RDFNgt 2.79 5.12 3.25

4.2.2. Results on AFLW

Due to the presence of different profile faces in AFLW, we follow the work [34] to
use a face size as the normalized distance of the NME metric. Table 2 reports the NMEs
of the methods on the test set of AFLW-Full and AFLW-Frontal. We find that our method
has better performance than recent DNN-based methods with or without reinitialization.
This means that a carefully designed RM-CNN architecture can achieve an impressive
advantage when detecting a small number of face keypoints. Moreover, the experimental
results show that the NMEs of RDFNod have a small gap of no more than 0.06% when
compared to those of RDFNgt on both datasets.
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Table 2. Comparison of NME (%) on the test set of AFLW-Full and AFLW-Frontal with 19 landmarks.

Method AFLW-Full AFLW-Frontal

Conventional
CSR-Based Method

SDM [1] 4.05 2.94
RCPR [2] 3.73 2.87
ERT [35] 4.35 2.75
LBF [6] 4.25 2.74
CFSS [15] 3.92 2.68
CCL [34] 2.72 2.17

DNN-Based Method
w/o Reinitialization

SAN [36] 1.91 1.85
LAB [37] 1.85 1.62
Wing [40] 1.65 -
ODN [38] 1.63 1.38
AWing [7] 1.53 1.38
3FabRec [8] 1.84 1.59

DNN-Based Method
w/Reinitialization

TSR [23] 2.17 -
RCEN [11] 2.11 1.69
PicassoNet [9] 1.59 1.30

Ours RDFNod 1.48 1.25
RDFNgt 1.42 1.21

4.2.3. Results on COFW

To validate the robustness of our method on occluded face images, we perform an
evaluation on the test set of COFW and compare it with several popular conventional
methods and recent DNN-based methods. Following the setting of previous works, we
report the NME results normalized by the interocular distance as well as the corresponding
FR results in Table 3. Our method outperforms most of the classical DNN-based methods,
such as LAB and HRNet, and achieves competitive performance when compared to recent
state-of-the-art methods, such as LGSA and SLPT. Similar to the observations on 300W
and AFLW, our method generates the expected region bounding boxes with a performance
close to that using the ground-truth bounding boxes. In Figure 4, we show the example
results of our method on 300W, AFLW and COFW.

Figure 4. Example results of our facial landmark localization method. Top row: the results on 300W
(68 landmarks). Second row: the results on AFLW (19 landmarks). Bottom row: the results on COFW
(29 landmarks). The blue boxes indicate the detected region bounding boxes.
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Table 3. Comparison of NME (%) and FR (%) on the test set of COFW with 29 landmarks.

Method NME (%) FR (%)

Conventional
CSR-Based Method

SDM [1] 11.14 -
RCPR [2] 8.50 20.00
ESR [13] 11.20 -

DNN-Based Method
w/o Reinitialization

TCDCN [18] 8.05 -
RAR [17] 6.03 4.14
ECT [41] 5.98 4.54
LAB [37] 3.92 0.39
HRNet [19] 3.45 0.19
LGSA [39] 3.13 0.002
SD-HRNet [21] 3.61 0.12

DNN-Based Method
w/Reinitialization

DRDA [22] 6.46 6.00
RCEN [11] 4.44 2.56
SLPT [12] 3.32 0.00

Ours RDFNod 3.43 0.18
RDFNgt 3.36 0.10

4.2.4. Complexity Analysis

In Table 4, we report the types of network backbone, #Params, and FLOPs of our
method and recent DNN-based methods. We find that most of the previous methods use
large backbone models, such as ResNet-50/152 and Hourglass, and achieve state-of-the-art
performance at that time with a large number of parameters and high computational cost.
In recent years, some works have improved the model complexity using efficient backbone
models, such as HRNet, or network architecture search (NAS) techniques, such as SD-
HRNet and PicassoNet. In our work, we use a reduced ResNet-50 network as the backbone
module and introduce efficient feature fusion schemes. Our model is more lightweight than
recent state-of-the-art methods, such as SLPT while achieving competitive performance on
several common datasets. However, our model still has much room for improvement in
terms of model complexity when compared to recent small models using the NAS method.

Table 4. Comparison of types of network backbone, #Params, and FLOPs in different methods.

Method Backbone #Params (M) FLOPs (G)

DNN-Based Method
w/o Reinitialization

SAN [36] ResNet-152 57.4 10.7
LAB [37] Hourglass 25.1 19.1
Wing [40] ResNet-50 25 -
HRNet [19] HRNetV2-W18 9.3 4.3
AWing [7] Hourglass 24.15 26.79
LGSA [39] Hourglass 18.64 -
SD-HRNet [21] - 0.98 0.59

DNN-Based Method
w/Reinitialization

PicassoNet [9] - 1.96 0.11
SLPT [12] HRNetV2-W18 13.18 5.17

Ours RDFN ResNet-50-C4 10.66 4.38

4.3. Ablation Experiments

To evaluate the contribution of each component in the proposed RDFN, we perform
the ablation experiments on the common subset, challenging subset and full set of 300W.
We use a vanilla RM-CNN with only the stacked encoding scheme as the baseline model
and compare it with other variants using the proposed components, including the global
channel attention block (GCA), the global spatial attention block (GSA), the within-task
feature fusion scheme (WFF), and the location reweighting strategy (LR).

As shown in Figure 5, we find that the performance of a vanilla RM-CNN is poor and
worse than recent DNN-based methods. By introducing the GCA block with cross-task
feature fusion from multiple layers, the RM-CNN model achieves a significant improvement
with NME reduced by 1.26% and FR reduced by 5.7% on the 300W full set. As other
components are added, the NMEs of the RM-CNN model are progressively improved,
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which indicates the effectiveness of each component. Furthermore, we find that our method
performs better on the simple and near-frontal face images and achieves lower NME and
FR results on the common subset, while there is still considerable room for improvement
on the complex face images from the challenging subset.

Common Subset Challenging Subset Full Set
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E 
(%

)

4.05

8.13

4.85

3.12

5.54

3.59

3.01

5.37

3.47

2.88

5.26

3.35
2.82

5.19

3.28

Baseline
Baseline + GCA
Baseline + GCA + GSA
Baseline + GCA + GSA + WFF
Baseline + GCA + GSA + WFF + LR

(a)
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(b)

Figure 5. Comparison of NME (%) (a) and FR (%) (b) on the 300W common subset, challenging subset
and full set. Note: “Baseline” denotes a vanilla RM-CNN model, “GCA” denotes the global channel
attention block, “GSA” denotes the global spatial attention block, “WFF” denotes the within-task
feature fusion scheme, “LR” denotes the location reweighting strategy.

5. Conclusions

As a crucial step in face applications, facial landmark localization has been widely
studied to achieve increasingly accurate performance. However, how to make the landmark
detector adaptive to different unconstrained inputs is still a challenging problem. In this
paper, we propose an end-to-end region-aware network architecture that aims to simul-
taneously solve the input initialization problem and the facial landmark localization task.
To balance the model complexity and inference performance, we design two lightweight
feature fusion schemes to enhance the discriminative ability of the feature representation.
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Furthermore, we consider the overall contribution of landmark score maps and present a
location reweighting strategy to transform the score maps into 2D landmark coordinates
in the post-processing stage. Extensive experiments demonstrate the effectiveness of the
proposed model and related components. Our method achieves competitive performance
compared to recent state-of-the-art methods while avoiding expensive computational costs.
Nevertheless, our model still has potential room for improvement in terms of the model
complexity when used in real-time applications. In future work, we will investigate the
design of more efficient and effective backbone and feature fusion modules to further
improve the accuracy and efficiency of our model.
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