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Abstract: The distribution of eigenvalues and the upper bounds for the spread of interval matrices are
significant in various fields of mathematics and applied sciences, including linear algebra, numerical
analysis, control theory, and combinatorial optimization. We present the distribution of eigenvalues
within interval matrices and determine upper bounds for their spread using Geršgorin’s theorem.
Specifically, through an equality for the variance of a discrete random variable, we derive upper
bounds for the spread of symmetric interval matrices. Finally, we give three numerical examples to
illustrate the effectiveness of our results.
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1. Introduction

The distribution of eigenvalues of complex matrices is a topic widely researched by
some researchers (see Refs. [1,2]). However, in practical problems, matrix elements are
often obtained through measurements and computations, which can produce perturbations
due to round-off errors and measurement inaccuracies. Consequently, we cannot precisely
determine the elements of a matrix. Instead, we can only establish upper and lower bounds
for the intervals within which these elements are constrained. As a result, the eigenvalues
of real interval matrices become uncertain due to the inherent uncertainties in the matrix
elements. This uncertainty complicates the task of locating and estimating the eigenvalues
of interval matrices. Recently, a growing number of researchers have begun to study the
eigenvalues of interval matrices (see Refs. [3–11]).

Throughout this paper, tr(A) denotes the trace of matrix A; λi(A)(i = 1, 2, . . . , n)
denotes the eigenvalues of the matrix; Reλi(A) and Imλi(A) stand for the real part and
the imaginary part of λi(A), respectively; ‖ · ‖F denotes a Frobenius norm, i.e., for a given

n × n matrix A, ‖A‖2
F =

n
∑

i,j=1
|aij|2; and Sn[a, b] denotes the set of n × n real symmetric

matrices whose entries are in the interval [a, b].
Let AI be a set of real matrices defined by [12]:

AI =
{

A = (aij)|aij ∈ [pij, qij], i, j = 1, 2, . . . , n
}

.

Let A ∈ AI , P = (pij), Q = (qij)(i, j = 1, 2, . . . , n) be real matrices; then, P 6 A 6 Q.
In 1956, Mirsky conducted the first study on the spread of a matrix in [13], denoted by

s(A) = max
i,j
|λi(A)− λj(A)|, i, j = 1, 2, . . . , n,
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and then, he obtained some meaningful inequalities of the spread of a matrix for normal
and hermitian matrices (see Ref. [14]). The spread of an interval matrix is denoted by

s(AI) = max
i,j
|λi(AI)− λj(AI)|, i, j = 1, 2, . . . .

The real spread and the imaginary spread of an interval matrix are defined by

sR(AI) = max
i,j
|Reλi(AI)− Reλj(AI)|, i, j = 1, 2, . . . ,

sI(AI) = max
i,j
|Imλi(AI)− Imλj(AI)|, i, j = 1, 2, . . . .

Many researchers have studied the spread of matrices (see Refs. [1,15–17]). However,
only a few of them were interested in the spread of interval matrices. In [11], upper bounds
of the spread of real symmetric interval matrices were established; it has been shown that if
A ∈ Sn[−a, a] with n > 2 and a > 0, then

s(A) ≤
{ √

2na if n is even,√
2n2 − 1a if n is odd.

(1)

In this article, we focus on the distribution of the eigenvalues and upper bounds for
the spread of interval matrices. In Section 2, we present the distribution for the eigenvalues
of interval matrices based on Geršgorin’s theorem. In Section 3, we obtain some upper
bounds of the spread of interval matrices and establish upper bounds for the spread of
real symmetric interval matrices. In Section 4, we provide three numerical examples to
illustrate the effectiveness of our results.

2. Distribution of the Eigenvalues of Interval Matrices

In this section, we present a theorem concerning the distribution of eigenvalues of in-
terval matrices. To begin, we introduce the following lemma, which is Geršgorin’s theorem.

Lemma 1 ([18], Theorem 6.1.1). Let A = (aij) be an n× n complex matrix; every eigenvalue
λi(A), i = 1, 2, . . . , n, must lie in at least one of n closed discs:

G(A) =

λ(A) ∈ C| |λ(A)− aii| 6
n

∑
j=1
j 6=i

|aij|, i = 1, 2, . . . , n

.

Based on Lemma 1, we obtain the distribution of eigenvalues of interval matrices
using Geršgorin’s theorem.

Theorem 1. Let AI =
{

A = (aij)|aij ∈ [pij, qij], i, j = 1, 2, . . . , n
}

be an n× n interval matrix
and λ(AI) = {λi(A)|A ∈ AI , i = 1, 2, . . . , n} be the set of eigenvalues of AI :

G(AI) = {λ ∈ C| |λ−min pii| 6 max Ri} ∪ {λ ∈ C| |λ−max qii| 6 max Ri}

∪{λ ∈ C|min pii 6 Reλ 6 max qii, |Imλ| 6 max Ri}

where Ri =
n
∑

j=1
j 6=i

max
{
|pij|, |qij|

}
, i, j = 1, 2, . . . , n.

Then, λ(AI) ⊂ G(AI).



Mathematics 2023, 11, 4032 3 of 10

Proof. Applying the Geršgorin disc theorem, for any A = (aij) ∈ AI , i, j = 1, 2, . . . , n, every
λi(A), i = 1, 2, . . . , n must lie in at least one of n closed discs, i.e.,

|λ− aii| 6
n

∑
j=1
j 6=i

|aij| 6 Ri, i = 1, 2, . . . , n.

As aii(i = 1, 2, . . . , n) locates on the x axis, so we can obtain n small discs centered at
aii(pii 6 aii 6 qii) and with radius Ri. There is an annulus runway which is symmetric with
respect to the x axis containing all the n small discs. We can express the annulus runway
as follows:

{λ ∈ C| |λ− pii| 6 Ri} ∪ {λ ∈ C| |λ− qii| 6 Ri}

∪{λ ∈ C| |pii 6 Reλ 6 qii, |Imλ| 6 Ri}.

The significance of the above formula is shown in Figure 1.

pii qiiaii aii aii aii aii

Ri

Figure 1. An annulus runway that contains all the small discs.

For an n× n interval matrix AI , there are numerous annulus runways like Figure 1,
containing all the eigenvalues of interval matrix AI , so we can use a single big annulus
runway containing all the small annulus runways. We can express the big annulus runway
as follows:

G(AI) = {λ ∈ C| |λ−min pii| 6 max Ri} ∪ {λ ∈ C| |λ−max qii| 6 max Ri}

∪{λ ∈ C|min pii 6 Reλ 6 max qii, |Imλ| 6 max Ri}.

The significance of the above formula is shown in Figure 2.

min pii max qii

max Ri

Figure 2. A single big annulus runway that contains the small annulus runways.

Thus, λ(AI) ⊂ G(AI), and the proof is completed.
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If all the elements of an interval matrix belong to the same interval, then an application
of Theorem 1 can be seen in the following result.

Corollary 1. Let A′I =
{

A = (aij)|aij ∈ [a, b], i, j = 1, 2, . . . , n
}

be an n × n interval matrix
and λ(A′I) = {λi(A)|A ∈ A′I , i = 1, 2, . . . , n} be the set of eigenvalues of A′I :

G(A′I) =
{

λ ∈ C| |λ− a| 6 max R′i
}
∪
{

λ ∈ C| |λ− b| 6 max R′i
}

∪
{

λ ∈ C| |a 6 Reλ 6 b, |Imλ| 6 max R′i
}

where R′i =
n
∑

j=1
j 6=i

max{|a|, |b|}, max{|a|, |b|} is the maximum of |aij|(i 6= j), i, j = 1, 2, . . . , n.

Then, λ(A′I) ⊂ G(A′I).

3. The Spread of Interval Matrices

In this section, we give some upper bounds of the spread of general interval matrices
and real symmetric interval matrices.

Based on Theorem 1, we have our first result for upper bounds of the spread of general
interval matrices.

Theorem 2. LetAI be an n × n interval matrix and the set of eigenvalues of AI : λ(AI) =
{λi(A)|A ∈ AI , i = 1, 2, . . . , n}. Then,

s(AI) 6 max qii −min pii + 2 max Ri, i = 1, 2, . . . , n,

sR(AI) 6 max qii −min pii + 2 max Ri, i = 1, 2, . . . , n,

sI(AI) 6 2 max Ri, i = 1, 2, . . . , n.

Proof. In Theorem 1, we bind all eigenvalues of a given interval matrix in a single big
annulus runway in the complex plane; then, the spread of s(AI), sR(AI) must not exceed
the major axis max qii −min pii + 2 max Ri in the annulus runway, that is

s(AI) 6 max qii −min pii + 2 max Ri, i = 1, 2, . . . , n,

sR(AI) 6 max qii −min pii + 2 max Ri, i = 1, 2, . . . , n,

sI(AI) must not exceed the minor axis 2 max Ri in the annulus runway, that is

sI(AI) 6 2 max Ri, i = 1, 2, . . . , n.

The proof is completed.

In order to obtain a better upper bound for the spread of interval matrices, we intro-
duce a lemma from reference [13].

Lemma 2. Let z1, z2, . . . , zn be any complex numbers, and write

s = max
i,j
|zi − zj|;

then,
1
2

ns2 6 ∑
16i<j6n

|zi − zj|2, (2)

with equality if and only if z1, z2, . . . , zn satisfy condition ϕ.
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Remark 1. If n complex numbers z1, z2, . . . , zn are such that n− 2 among them are equal to each
other and to the arithmetic mean of the remaining two, we shall say that the n numbers satisfy
condition ϕ.

Based on inequality (2) in Lemma 2, we have another result about the upper bound
for the spread of interval matrices.

Theorem 3. Let AI be an n× n interval matrix and λ(AI) = {λi(A)|A ∈ AI , i = 1, 2, . . . , n}
be the set of eigenvalues of AI ; then,

s(AI) 6

{
2

n

∑
i,j=1

max
{
|pij|2, |qij|2

}
− 2

n
min

{
(

n

∑
i=1

pii)
2, (

n

∑
i=1

qii)
2

}} 1
2

Proof. According to inequality (2), for any matrix A ∈ AI , we can obtain

1
2

n[s(A)]2 6 ∑
16i<j6n

|λi − λj|2

for the eigenvalues λ1, λ2, . . . , λn of matrix A. By Lagrange’s identity, it follows that

∑
16i<j6n

|λi − λj|2 = n
n

∑
i=1
|λi|2 − |

n

∑
i=1

λi|2 = n
n

∑
i=1
|λi|2 − |trA|2;

thus,
1
2

n[s(A)]2 6 n
n

∑
i=1
|λi|2 − |trA|2,

and then,

s(A) 6 (2
n

∑
i=1
|λi|2 −

2
n
|trA|2)

1
2 . (3)

By the following inequality in [19],

n

∑
i=1
|λi|2 6 ‖A‖2

F;

then, we have

n

∑
i=1
|λi|2 6 ‖A‖2

F =
n

∑
i,j=1
|aij|2 6

n

∑
i,j=1

max
{
|pij|2, |qij|2

}
, (4)

|tr(A)|2 > min

{
(

n

∑
i=1

pii)
2, (

n

∑
i=1

qii)
2

}
, (5)

Apply inequalities (4) and (5) to (3), and we can obtain the following conclusion:

s(A) 6

{
2

n

∑
i,j=1

max
{
|pij|2, |qij|2

}
− 2

n
min

{
(

n

∑
i=1

pii)
2, (

n

∑
i=1

qii)
2

}} 1
2

.

The above inequality holds for any matrix A ∈ AI . The proof is completed.

Remark 2. The upper bound of spread of Theorem 3 is more accurate than the result of Theorem 2.
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Next, we will consider a special type of interval matrices whose entries are in the
interval [a, b]. The following lemma about an equality for the variance of a discrete random
variable is necessary.

Lemma 3 ([20], Lemma 1). Let xi be discrete random variables, P(x = xi) = pi, i = 1, 2, . . . , n,

and b = max
i
{xi}, a = min

i
{xi}, c =

n
∑

i=1
pixi; then,

Var(x) = (b− c)(c− a)−
n

∑
i=1

pi(b− xi)(xi − a).

Based on inequality (3) and Lemma 3, we have the following theorem.

Theorem 4. Let A = (aij) ∈ Sn[a, b] and n > 2, a < b; then,

s(A) ≤


√

2(n2 − n)max{a2, b2}+ n(b−a)2

2 if n is even,√
2(n2 − n)max{a2, b2}+ (n2−1)(b−a)2

2n if n is odd.

Proof. By inequality (3) and
n
∑

i=1
|λi|2 6 ‖A‖2

F, we have

s(A) 6
[

2‖A‖2
F −

2
n
(trA)2

] 1
2
,

Since the elements of A locate in the interval [a, b], s(A) cannot attain the maximum

until
[
2‖A‖2

F −
2
n (trA)2] 1

2 attains the maximum. Without loss of generality, we have the
following inequality:

s(A) 6
[

2‖A‖2
F −

2
n
(trA)2

] 1
2

=
√

2

 n

∑
i,j=1

(aij)
2 −

(
n
∑

i=1
aii)

2

n


1
2

=
√

2

 n

∑
i,j=1
j 6=i

(aij)
2 +

n

∑
i=1

(aii)
2 −

(
n
∑

i=1
aii)

2

n


1
2

.

So taking max{|a|, |b|} as the maximum of |aij|(i 6= j), we obtain

max
n

∑
i,j=1
j 6=i

(aij)
2 = (n2 − n)max

{
a2, b2

}
. (6)

By the variance formula, then we have

1
n

 n

∑
i=1

(aii)
2 −

(
n
∑

i=1
aii)

2

n

 =
1
n

n

∑
i=1

aii −

n
∑

i=1
aii

n


2

= Var(aii), (7)
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Combining (7) with Lemma 3, then

Var(aii) = (b−

n
∑

i=1
aii

n
)(

n
∑

i=1
aii

n
− a)−

n

∑
i=1

1
n
(b− aii)(aii − a),

Var(aii) cannot achieve the maximum until (b−
n
∑

i=1
aii/n)(

n
∑

i=1
aii/n− a) attains the maxi-

mum and
n
∑

i=1
(b− aii)(aii − a)/n attains the minimum simultaneously.

If n is even, let (b− aii)(aii − a) = 0((b− aii)(aii − a) > 0), that is aii = b or aii = a, i =

1, 2, . . . , n. Now, we can consider (b −
n
∑

i=1
aii/n)(

n
∑

i=1
aii/n − a) as a function f (

n
∑

i=1
aii/n),

and Var(aii) can achieve the maximum as
n
∑

i=1
aii/n = (a + b)/2 and aii = b or aii = a. Let

1 < m < n, a11 = a, a22 = a, . . . , amm = a, am+1,m+1 = b, . . . , ann = b; then, (ma + (n −
m)b)/n = (a + b)/2, solving the equation m = n

2 , so we conclude that

max Var(aii) =
(b− a)2

4
.

Considering (7), we have

n

∑
i=1

a2
ii −

(
n
∑

i=1
aii)

2

n
6

n(b− a)2

4
, (8)

Combining (6) with (8), we have

s(A) 6

√
2(n2 − n)max{a2, b2}+ n(b− a)2

2
.

If n is odd, let (b− aii)(aii− a) = 0, that is aii = b or aii = a(i = 1, 2, . . . , n). Similar to n

being even, m = (n− 1)/2, so we conclude that (b−
n
∑

i=1
aii/n)(

n
∑

i=1
aii/n− a) 6 (n2−1)(b−a)2

4n2 ,

and then,

Var(aii) 6
(n2 − 1)(b− a)2

4n2 ,

n

∑
i=1

a2
ii −

(
n
∑

i=1
aii)

2

n
6

(n2 − 1)(b− a)2

4n
, (9)

Combining (6) with (9), we have

s(A) 6

√
2(n2 − n)max{a2, b2}+ (n2 − 1)(b− a)2

2n
.

The proof is completed.

Corollary 2. Let A = (aij) ∈ Sn[−a, a] and n > 2, a > 0; then,

s(A) ≤
{ √

2na if n is even,√
2n3−2

n a if n is odd.

Remark 3. If n is even, the conclusion in Corollary 2 is the same as inequality (1), but we have
provided a more concise proof.
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4. Numerical Example

In this section, we will give several examples to illustrate the effectiveness of our re-
sults.

Example 1.

AI =

 [−1, 2] [0.5, 1] [−2, 1]
[−3,−1] [−1, 1] [0, 1.5]

[−2.5,−0.5] [−0.5, 1] [1, 2]

.

In interval matrix AI , we have min pii = −1, max qii = 2, max Ri = 4.5.
Choose a matrix A ∈ AI ,

A =

 2 1 −2
−3 −1 1.5
−2.5 1 2

.

The eigenvalues of A are

λ1(A) = 4.1910, λ2(A) = −0.5955 + 1.0662i, λ3(A) = −0.5955− 1.0662i, (i2 = −1),

so we obtain
s(A) = 4.9029.

From Theorem 1, we can obtain the following region:

G(AI) = {λ ∈ C| |λ− (−1)| 6 4.5} ∪ {λ ∈ C| |λ− 2| 6 4.5}

∪{λ ∈ C| − 1 6 Reλ 6 2, |Imλ| 6 4.5}.

Clearly, we can obtain λi(A) ∈ G(AI), i = 1, 2, 3.
From Theorem 2, we have

s(AI) 6 9, sR(AI) 6 9, sI(AI) 6 6.

From Theorem 3, we have
s(AI) 6 7.8952,

which provides a more precise estimation for the spread of interval matrices than Theorem 2.

Example 2. Choose a matrix B ∈ S3(1, 4),

B =

 1 4 1
4 1 4
1 4 4

.

The eigenvalues of B are λ1(B) = −3.7163, λ2(B) = 1.4680, λ3(B) = 8.2483; then, we have

s(B) = 11.9646.

From Corollary 1, we obtain the following region:

G(S3[1, 4]) = {λ ∈ C| |λ− 1| 6 8} ∪ {λ ∈ C| |λ− 4| 6 8}

∪{λ ∈ C|1 6 Reλ 6 4, |Imλ| 6 8}

Clearly, we can obtain λi(B) ∈ G(S3[1, 4]), i = 1, 2, 3.
From Theorem 2, we have

s(S3[1, 4]) 6 19, sR(S3[1, 4]) 6 19, sI(S3[1, 4]) 6 16.
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From Theorem 3, we have
s(S3[1, 4]) 6 16.7928.

From Theorem 4, we have
s(S3[1, 4]) 6 14.2828,

and the upper bounds of the spread is more precise than Theorems 2 and 3.

Example 3. Choose a matrix C ∈ S3[−2, 2] and D ∈ S4[−2, 2],

C =

 −2 2 2
2 2 −2
2 −2 2

,

D =


−2 2 2 2
2 2 −2 −2
2 −2 −2 2
2 −2 2 2

.

The eigenvalues of C are λ1(C) = −4, λ2(C) = 2, λ3(C) = 4; then, we have

s(C) = 8,

and the eigenvalues of D are

λ1(D) = −5.2263, λ2(D) = −2.1648, λ3(D) = 2.1648, λ4(D) = 5.2263

Then,
s(D) = 10.4526.

From Corollary 2, we have

s(S3[−2, 2]) 6 8.3266, s(S4[−2, 2]) 6 11.3137,

5. Conclusions

We present the distribution of eigenvalues of interval matrices and establish upper
bounds for their spread. Theorem 1 provide the distribution of eigenvalues of interval
matrices. Theorems 2 and 3 both offer upper bounds for the spread of general interval
matrices. Notably, the upper bound provided by Theorem 4 exhibits higher accuracy
compared with that of Theorems 2 and 3. Theorem 4 introduces upper bounds for the
spread of symmetric interval matrices, and we obtain the same inequality as (1) when n is
even based on a simple proof.
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