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Abstract: Computer virus attacks result in significant losses each year, drawing considerable attention
from enterprises, governments, academic institutions, and various other sectors. Researchers have
proposed various approaches to fight against computer viruses, including antivirus software and
internet firewalls. In this paper, we focus on investigating computer virus transmission from the
perspective of mathematical modeling. Our main contributions in this paper are threefold: (1) we
improve the classical SLBRS model by incorporating cure rates, effectively capturing the dynamics
of computer network maintenance; (2) we introduce an optimal control system within the SLBRS
framework, with the dual objectives of minimizing network detoxification costs and reducing the pro-
portion of broken-out nodes; and (3) by employing Pontryagin’s Maximum Principle, we establish the
existence and uniqueness of an optimal control strategy for the proposed control system. Furthermore,
we perform numerical simulations to demonstrate the effectiveness of our theoretical analyses.
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1. Introduction

In the era of big data, information exchanges have escalated in our daily lives, thereby
amplifying the potential for computer virus propagation within computer networks. Com-
puter virus threats result in substantial losses to enterprises, governments, academic fields,
and various sectors worldwide every year (For instance, notable cases like the Stuxnet virus
in 2010 and the Ransomware virus in 2017 inflicted tens of billions of dollars within the
finance, education, energy, and other sectors). A diverse range of measures must be under-
taken to combat computer viruses, including the implementation of firewalls and antivirus
software. Nevertheless, delving into the propagation mechanisms of computer viruses
is of heightened urgency compared to merely eradicating them from specific networks.
Over the past few decades, various ordinary differential equations have been proposed
to model the propagation mechanisms of computer viruses. Usually, computers within
a network are categorized into distinct compartments: susceptible nodes—S(t), infected
nodes—I(t), quarantine nodes—Q(t), recovery nodes—R(t), broken-out nodes—B(t), latent
nodes—L(t), etc. In accordance with specific scenarios, certain interdependencies among
these compartments are established, leading to the nomenclature of the model based on
the compartments involved, i.e., SI, SEIR, SEIRQ, and so on.

In 1991, Kephart, White et al. introduced the SI model, which stands as the pioneering
work in the field of applying differential equations to model computer virus transmis-
sion [1];

In 2007, Mishra, Saini et al. proposed the SEIR model [2];
In 2010, Mishra, Jha introduced the SEIQRS model [3];
In 2012, Yang, Wen et al. proposed the SLBS model [4].

These early computer virus models are inspired extensively by the results concern-
ing epidemiological virus models, which share a common assumption that an infected
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computer in a latent state will not transmit a virus to other computers. However, this
assumption does not always hold true for computer virus transmission. In fact, when it
comes to computer viruses, the following phenomenon occur:

(a) Once a computer is infected, it immediately gains the ability to spread the infection;
(b) Recovered computers can acquire temporary immunity.

In 2012, Yang, Zhang, Li et al. modified the classical SLBS model by incorporating
a recovery compartment (R(t)) and used the SLBRS to model computer virus transmis-
sion, taking into account the observations in (a) and (b) (see Reference [5]). The detailed
relationships among the involved compartments are illustrated in Figure 1.
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When faced with a computer virus attack, computer users often adopt different
protective measures to fight against it(see Reference [6]). The following are some examples:

(c) Some users promptly execute antivirus software to eliminate the virus once they
become aware of the threat. If the damage is extensive and recovery is not feasible,
users may resort to reinstalling the operating system. This scenario often occurs in
broken-out nodes.

(d) Other users might attempt to clear the virus proactively, even if they are not certain
whether the virus is present on their computers. This behavior is typically observed
in latent nodes.

Take (c) and (d) into account, people usually make the assumption that breaking-
out computers can be cured with specific cure rates γ1 and γ3 (either through executing
antivirus software or by reinstalling the system), and similarly, latent computers can be
cured with a certain cure rate γ2 (by using antivirus softwares). The graded cure rates
γ1,γ2, and γ3 are integrated into the SLBRS model, resulting in a SLBRS model with
cure rates.

Figure 2 can be represented by a system of differential equations, as follows:

dS(t)
dt = p− βS(L + B) + γ3B + σR− µS,

dL(t)
dt = βS(L + B)− αL− γ2L− µL,

dB(t)
dt = αL− γ3B− µB− γ1B,

dR(t)
dt = γ2L− σR− µR + γ1B,

(1)

where γ1,γ2, and γ3 represent the cure rates (usually γ1 > γ2 > γ3); α,β,σ, p, and µ repre-
sent the conversion rates (non-negative constants); and S(t), L(t), B(t), and R(t) represent
the compartments in the network: susceptible nodes, latent nodes, broken-out nodes,
recovery nodes.

The intensity of computer virus attacks fluctuates over time, and the countermeasures
adopted by computer users also vary (with computer users bolstering protection during
hacking threats and vice versa). Hence, a more realistic approach is to hypothesize that the
included cure rates are time-varying. We replace the cure rate γ1 by a Lebesgue measurable
function u1(t).



Mathematics 2023, 11, 4036 3 of 10Mathematics 2023, 11, 4036 3 of 10 
 

 

 
Figure 2. SLBRS with constant cure rates. 

The intensity of computer virus attacks fluctuates over time, and the countermeas-
ures adopted by computer users also vary (with computer users bolstering protection 
during hacking threats and vice versa). Hence, a more realistic approach is to hypothe-
size that the included cure rates are time-varying. We replace the cure rate 1γ  by a 
Lebesgue measurable function 1u (t) . 

Figure 3 can be represented by the following system of differential equations: 

3

2

3 1

2 1

dS(t) p S(L B) B R S,
dt

dL(t) S(L B) L L L,
dt

dB(t) L B B u (t)B,
dt

dR(t) L R R u (t)B.
dt

 = −β + + γ + σ − μ

 = β + − α − γ − μ

 = α − γ − μ −


 = γ − σ − μ +
  

(2) 

Naturally, the inclusion of more control inputs gains a heightened level of manipu-
lation over the system. We replace the cure rates 1γ  and 2γ  with Lebesgue measurable 
functions 1u (t)  and 2u (t)  (the other cases are similar and, thus, we omit the details in this 
paper). 

 

Figure 3. SLBRS with time-varying cure rate 1u (t) . 

Figure 4 can be represented by the following system of differential equations: 

3

2

3 1

1 2

dS(t) p S(L B) B R S,
dt

dL(t) S(L B) L L u (t) L,
dt

dB(t) L B B u (t)B,
dt

dR(t) R R u (t)B u (t) L,
dt

 = −β + + γ + σ − μ

 = β + − α − μ −

 = α − γ − μ −


 = −σ − μ + +


 
(3) 

Research on computer virus models has primarily focused on modeling, stability 
analysis, and related simulations. As research progresses, various mathematical tools 

Figure 2. SLBRS with constant cure rates.

Figure 3 can be represented by the following system of differential equations:

dS(t)
dt = p− βS(L + B) + γ3B + σR− µS,

dL(t)
dt = βS(L + B)− αL− γ2L− µL,

dB(t)
dt = αL− γ3B− µB− u1(t)B,

dR(t)
dt = γ2L− σR− µR + u1(t)B.

(2)
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Naturally, the inclusion of more control inputs gains a heightened level of manipulation
over the system. We replace the cure rates γ1 and γ2 with Lebesgue measurable functions
u1(t) and u2(t) (the other cases are similar and, thus, we omit the details in this paper).

Figure 4 can be represented by the following system of differential equations:

dS(t)
dt = p− βS(L + B) + γ3B + σR− µS,

dL(t)
dt = βS(L + B)− αL− µL− u2(t)L,

dB(t)
dt = αL− γ3B− µB− u1(t)B,

dR(t)
dt = −σR− µR + u1(t)B + u2(t)L,

(3)
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Research on computer virus models has primarily focused on modeling, stability
analysis, and related simulations. As research progresses, various mathematical tools
have been applied to the analysis of computer virus models, particularly control theory
(see [7–11]). In this paper, we treat the time-varying cure rates u1(t) and u2(t) as control
input functions and investigate the optimal control problem for SLBRS. The rest of this
paper is outlined as below:

In Section 2, we establish the theoretical foundations encompassing the existence and
uniqueness of the optimal control strategy, and the necessary conditions for optimal control.

In Section 3, we provide a numerical simulation to demonstrate the effectiveness of
the theoretical analyses presented in Section 2.

In Section 4, we draw the conclusion according to the theoretical analyses and the
numerical experiment.

2. Optimal Control Strategy for SLBRS
2.1. Optimal Control Problem

Let T be a pre-assigned constant. We define the admissible control set as follows:

U = {u = (u1, u2) : 0 ≤ ui(t) ≤ 1, t ∈ [0, T], for i = 1, 2}, (4)

To effectively restore a contaminated network, any undertaken measure should aim to
minimize the proportion of infected computers (L(t) and B(t)) or reduce the cost of system
maintenance. With this objective, we present the optimal control problem as follows:

minJ(u) =
T∫

0

[
L(t)+B(t) +

εu2
1(t)
2

+
τu2

2(t)
2

]
dt, u ∈ U, (5)

which is subject to (3).
Corresponding to (5), we define the Lagrangian as follows:

L(L, B, u) = L(t) + B(t) +
εu2

1(t)
2

+
τu2

2(t)
2

, u = (u1, u2)

And we define the Hamiltonian as follows:

H(L, B, u) = L(L, B, u) + λ1[p− βS(L + B) + γ3B + σR− µS] + λ2[βS(L + B)
−αL− µL− u2(t)L] + λ[αL− γ3B− µB− u1(t)B]
+λ4[−σR− µR + u1(t)B + u2(t)L].

2.2. Main Results and Their Proofs

Firstly, we demonstrate the existence of an optimal solution for the control
system (3)–(5) based on the following theorem:

Theorem 1. There exists an optimal control input u∗ = (u∗1 , u∗2) such that

minu∈U J(u1, u2) = J(u∗1 , u∗2) (6)

subject to the control system (3)–(5) with initial conditions:

S(0) = S0 ≥ 0, L(0) = L0 ≥ 0, B(0) = B0 ≥ 0, R(0) = R0 ≥ 0. (7)

Proof. To establish the existence of an optimal solution for the control system (3)–(5), it
suffices to validate the following general conditions (see [12]):

(a) The set of control and state variables is nonempty.
(b) The admissible control set U is both closed and convex.
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(c) The right-hand side of the state system can be bounded by a linear function of the
state variables.

(d) The Lagrangian is concave on the admissible control set U, and there exist constants
k > 1, c1 > 0, and c2 such that

L(L, B, u) ≥ c1 + c2 (|u1|2+|u2|2) k/2, u = (u1, u2),

�

Next, by using Pontryagin’s Maximum Principle, we deduce a necessary condition for
the optimal control strategy based on the following theorem:

Theorem 2. Given an optimal control input u∗(t) =
[
u∗1(t), u∗2(t)

]
and the corresponding state

trajectory S∗, L∗, B∗, R∗ of (3), there exist adjoint variables λ1, λ2, λ3, λ4 such that

dλ1

dt
= λ1[β(L + B) + µ]− λ2β(L + B), (8)

dλ2

dt
= −1 + λ1βS− λ2[βS− α− µ− u2(t)]− λ3α− λ4u2(t), (9)

dλ3

dt
= −1 + λ1(βS− γ3)− λ2βS + λ3[γ3 + µ+ u1(t)]− λ4u1(t), (10)

dλ4

dt
= −λ1σ+ λ4(σ+ µ), (11)

with the transversal conditions

λ1(T) = 0, λ2(T) = 0, λ3(T) = 0, λ4(T) = 0. (12)

Furthermore, the optimal control inputs were determined by

u∗1(t) = max
{

min
{
λ3−λ4
ε B∗, 1

}
, 0
}

,

u∗2(t) = max
{

min
{
λ2−λ4
τ L∗, 1

}
, 0
}

.
(13)

Proof. By differentiating the Hamiltonian, we obtain the following:

dλ1

dt
= −HS∗(t),

dλ2

dt
= −HL∗(t),

dλ3

dt
= −HB∗(t),

dλ4

dt
= −HR∗(t). (14)

Consequently, we can reformulate (14) into the co-state Equations (8)–(11). By deduc-
ing from the optimal conditions, we derive the control equations as follows:

∂H
∂u1

∣∣∣u1(t)=u∗1(t)
= εu1(t)− λ3B + λ4B,

∂H
∂u2

∣∣∣u2(t)=u∗2(t)
= τu2(t)− λ2L + λ4L.

(15)

It follows from (15) and the admissible condition

U = {u = (u1, u2) : 0 ≤ ui(t) ≤ 1, t ∈ [0, T], for i = 1, 2} (16)

that
u∗1(t) = max

{
min

{
λ3−λ4
ε B∗, 1

}
, 0
}

,

u∗2(t) = max
{

min
{
λ2−λ4
τ L∗, 1

}
, 0
}

.
(17)
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Hence, we have successfully derived the state equations:

dS(t)
dt = p− βS(L + B) + γ3B + σR− µS,

dL(t)
dt = βS(L + B)− αL− µL− u2(t)L,

dB(t)
dt = αL− γ3B− µB− u1(t)B,

dR(t)
dt = −σR− µR + u1(t)B + u2(t)L

(18)

and the co-state equations:

dλ1
dt = λ1[β(L + B) + µ]− λ2β(L + B),

dλ2
dt = −1 + λ1βS− λ2[βS− α− µ− u2(t)]− λ3α− λ4u2(t),

dλ3
dt = −1 + λ1(βS− γ3)− λ2βS + λ3[γ3 + µ+ u1(t)]− λ4u1(t),

dλ4
dt = −λ1σ+ λ4(σ+ µ),

(19)

with the initial condition

S(0) = S0 ≥ 0, L(0) = L0 ≥ 0, B(0) = B0 ≥ 0, R(0) = R0 ≥ 0, (20)

and the transversal condition

λi(T) = 0, i = 1, 2, 3, 4. (21)

�

3. Numerical Example

In this section, we conduct numerical simulations to illustrate the influence of optimal
control on the SLBRS model.

3.1. Algorithm

We employ an iterative algorithm based on the fourth-order Runge–Kutta method,
which involves four distinct steps:

Step 1. Set the initial states S(t0), L(t0), B(t0), R(t0) and control u0(t0) = [u1(t0), u2(t0)];
Step 2. Resolve the state Equation (18) using the fourth-order forward Runge–Kutta method;
Step 3. Resolve the co-state Equation (19) using the fourth-order backward Runge–Kutta
method;
Step 4. Calculate the optimal control input u∗(t) =

[
u∗1(t), u∗2(t)

]
by using Equation (17).

3.2. Simulation

We choose the following initial values:

S(0) = 0.4, L(0) = 0.3, B(0) = 0.2, R(0) = 0.1. (22)

To ensure the stability of the system, we use the parameters presented in Table 1.

Table 1. Values of parameters in the numerical simulation.

Parameters Value Parameters Value

p 0.10 β 0.90
α 0.60 γ1 0.15
γ2 0.10 γ3 0.05
σ 0.05 µ 0.10
ε 2 τ 2
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In the visual representation, the red curves denote the states of SLBRS with constant
cure rates, while the blue curves denote the states of SLBRS with control inputs. The results
of the numerical experiment reveal the following:

(1) The asymptotic stability of SLBRS is evident as both the red and blue curves converge
towards a specific equilibrium.

(2) When controls are applied, the restoration of the contaminated network becomes evident:
susceptible and recovered computers show an increased trend (Figures 5 and 6), whereas
latent and breaking-out computers exhibit a decreased trend (Figures 7 and 8).
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4. Conclusions

In this paper, we investigate the SLBRS model from the perspectives of mathematical
modeling and optimal control theory. The main contributions of this study are as follows:

(1) We improve the SLBRS model by incorporating time-varying cure rates, thereby
effectively capturing the dynamics of computer networks.

(2) We introduce an optimal control system within the SLBRS framework, with the dual
objectives of minimizing network detoxification costs and reducing the number of
infected computers.

(3) By employing Pontryagin’s Maximum Principle, we establish the existence and
uniqueness of an optimal control strategy for the proposed system.

(4) We provide numerical demonstrations to highlight the practical effectiveness of our
theoretical analyses.

We point out that the control strategies significantly contribute to the restoration
of a contaminated network. Taking the same initial condition (22) and using the same
parameters (Table 1), we compute the equilibrium points of the aforementioned control
systems (1–3). The results are outlined below (Table 2).

Table 2. Comparison of stable values of the state variables in each model.

Model S* L* B R*

SLBRS with constant cure rates: System (1) 0.30 0.12 0.25 0.33
SLBRS with 1 control input: System (2) 0.36 0.11 0.17 0.36
SLBRS with 2 control inputs: System (3) 0.39 0.10 0.14 0.37

We can conclude, based on the results in Table 2, that the nontoxic compartments S*
and R* increase while the toxic compartments L* and B* decrease. This implies that our
proposed measures are indeed effective in counteracting computer virus attacks.

The more control variables there are, the easier it becomes to achieve the desired
control effects. Therefore, it is more challenging to study the optimal control problem
associated with SLBRS with fewer control inputs. From the technical perspective, the
analysis methods for the scenario with three control inputs are nearly identical to those for
the scenario with two control inputs. Therefore, our research methods in this paper can be
directly applied to solve the optimal control problem for SLBRS with three control inputs.
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